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ABSTRACT

Peristaltic transport of a Newtonian fluid, with heat transfer, in a vertical
porous axisymmetric tube under long wave length approximation is considered.
A closed form solution is obtained as an asymptotic expansion in terms of
free convection and porosity parameters. Expressions for temperature, the
pressure flow relationship, and the heat transfer coefficient at the tube wall
are derived. It is observed that pressure drop increases as the amplitude ratio
increases. Further, it is noticed that the mean flux increases by about 8 to 10
percent as the free convection parameter increases from 1 to 2 for given values
of other parameters.
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INTRODUCTION

Peristalsis is a mechanism for fluid transport by the passage of area contraction
and expansion waves along the length of the distensible tube. The need for peristaltic
pumping may arise to avoid using internal moving parts such as a piston. It is one
of the main mechanisms for fluid transport in physiological systems, in particular,
urine passage in ureter and food mixing and chyme movement in the intestines. A
blood pump in dialysis is designed on this principle to prevent contamination.

Because of its importance, theoretical and experimental studies of peristaltic
transport have been carried out by various authors [Shapiro et al. (1969); Zien and
Ostrach (1970); Radhakrishnamacharya (1982); Takabatake et al. (1988); Rao and
Usha (1995);  Usha and Rao (1997); Vajravelu et al.  (2005 a, b)].
Radhakrishnamacharya [1982] investigated peristaltic pumping of power-law fluid
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in an axisymmetric tube under long wave approximation. Takabatake et al. [1988]
developed complete numerical solutions for peristaltic pumping and its efficiency
in cartesian and axisymmetric geometries. The thermodynamical aspects of
peristalsis have received attention [Bestmen (1979); Radhakrishnamacharya and
Radhakrishnamurthy (1993, 1995)] as it might be relevant in certain processes like
oxygenation and hemodialysis. Translocation of water in trees involves flow through
a matrix of tubes, and some authors [Cany and Phillips (1993); Aikman and Anderson
(1971); Radhakrishnamurthy et al. (1995)] have investigated peristalsis with
particular reference to water transport in trees.

In view of this, we study heat transfer for the motion of a Newtonian fluid in a
vertical axisymmetric porous tube, under the action of peristalsis. Assuming long
wave length approximation, a perturbation solution in terms of free convection
(Gm) and porosity (�2) parameters is obtained and analytical expressions are derived
for temperature, pressure drop, and the heat transfer coefficient. It is observed that
temperature increases as the amplitude of the peristaltic wave increases. Further, it
is noticed that the mean flux increases by about 8 to 10 per cent as the free convection
parameter increases from 1 to 2 and for given values of all other parameters.

MATHEMATICAL FORMULATION

The flow of a Newtonian, incompressible fluid through an axisymmetric vertical
tube, filled with porous material is considered. Peristaltic waves of very large wave
length are assumed to travel down the wall of the tube. Cylindrical polar coordinate
system (X, R) is chosen such that X and R are the axial and radial coordinates
respectively.

The simplified, zeroth order equations, under long wave approximation,
governing the flow [Radhakrishnamurthy et al. (1995)] are the following:

Momentum equation:
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The wall deformation due to the propagation of an infinite train of peristaltic
waves is represented by

R = H (X, t ) = a + b Sin ) tc - (X  
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where p is the pressure, � is the coefficient of viscosity, � is the density, g is the
acceleration due to gravity, � is the coefficient of expansion, K is the thermal
conductivity of fluid, W and U are the velocity components of the fluid in X and R
directions respectively, T0 is the temperature on the boundary, T is the temperature
of the fluid, k0 is the permeability of the medium, ‘a’ is the mean radius of the tube,
b is the amplitude, � is the wave length, and c is the wave speed.

The boundary conditions are
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Let us introduce the wave frame of reference which moves with a constant
speed c relative to the laboratory frame. The variables x and r measured in the
wave frame are defined by

x = X – c t, r = R. (6)

The corresponding velocity components of the fluid are

w = W – c, u = U. (7)

The system governing the flow in the wave frame of reference is the following:

)( g )(  0 0
0

TTcw
kr

w
r

rrx

p
�����

�
�

�
�
�

�
�

�
�

�
�
�

�� ��
��

(8)

0 = 
r

u

r

u

x

w

�
�

��
�
�

(9)

0 = 
2

0

2

)( cw
kr

w

r

T
r

rr

k
���

�
�

�
�
�

�
�

��
�
�

�
�
�

�
�

�
� �

� (10)

The boundary conditions are:

� �
0

 h (x) = sin 2 /
w c

at r a b x
T T

� �
� �

� �
� (11)



20 K. Vajravelu, G. Radhakrishnamacharya & V. Radhakrishnamurthy

Introducing the following non-dimensional quantities,
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into the equation (8)–(11), we get (after dropping the primes),
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The non-dimensional boundary conditions are
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� (x) = 1 + � sin 2�x, (17)
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ANALYSIS

Equations (13) and (15) are non-linear and it is not possible to get an exact solution
for arbitrary value of all the parameters. Hence, we seek a perturbation solution in
the form of a series:
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F = (F00 + Gm F01 + …..) + �2 (F10 + …… ) + ………. (18)

where F is any flow variable.

Using (18) in equations (13), (15) and (16) and solving the resultant equations
under the relevant boundary conditions, the solutions for the velocity component
w and temperature � can be obtained. However, for brevity the expression for
velocity component is not presented here, and the expression for temperature � is

� = (�00 + Gm �01 + ….. ) + �2 (�10 + ….. ) + …… (19)
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The pressure drop over one wave length is defined by
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Substituting the relation for 
x

p

�
�

 from equation (13) in (20) and using expressions

for velocity (which are not presented) and temperature from equation (19), the
non-dimensional pressure drop can finally be obtained as
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Here Q  is the non dimensional mean flux given by
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The heat transfer coefficient Z on the boundary of the tube in non-dimensional
form is given by
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which, in view of (18), can be expressed as
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RESULTS AND DISCUSSION

Analytical expressions for temperature, pressure drop, and the heat transfer
coefficient are given by the equations (19), (21) and (23) respectively. To explicitly
study the effects of various parameters on these flow variables, these quantities are
numerically evaluated and the results are presented in Figs. 1–8 and Tables 1-4.

Table 1
Heat Transfer variation with E

m

(G
m
 = 3, �2 = 2, � = 0.1)

x E
m
 = 1 E

m
 = 3 E

m
 = 5

0.0 2.42945 22.0037 61.17046
0.4 2.84512 25.72656 71.150905
0.8 0.39168 3.56543 9.91642

Table 2
Heat Transfer variation with G

m

(E
m
 = 3, �2 = 2, � = 0.1)

x G
m
 = 1 G

m
 = 3 G

m
 = 5

0.0 7.30205 22.0037 36.70534
0.4 8.54303 25.72656 42.910105
0.8 1.18121 3.56543 5.94964

Table 3
Heat Transfer variation with 2

(E
m
 = 3, G

m
= 3,  = 0.1)

x �2 = 1 �2 = 2 �2 = 3

0.0 22.42945 22.0037 21.99219
0.4 25.94013 25.72656 25.451301
0.8 3.76532 3.56543 3.47135

Table 4
Heat Transfer variation with 

(G
m
 = 3, E

m
= 3, 2 = 2)

x � = 0 � = 0.1 � = 0.2

0.0 0.0 22.0037 44.0073
0.4 0.0 25.72656 72.89057
0.8 0.0 3.56543 3.763
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Figs. 1-4 show the variation of temperature versus x with respect to various
parameters. It is observed from Figs. 1–4 that for fixed values of all other parameters,
temperature first increases down the tube and then decreases. This may be due to
the effect of peristalsis. From Figs. 1 and 2, we can see that for fixed values of all
other parameters, the temperature increases as the Eckert number (Em) or the Grashof
number (Gm) increases. Further, the temperature increases as �2 or � increases i.e.
the temperature increases as the tube becomes more porous or the peristaltic wave
amplitude increases (Figs. 3 and 4).

Fig. 1: Temp. Variation with E
m
(G

m
= 3, 2 = 2, E = 0.1)

Fig. 2: Temp. Variation with G
m
(E

m
= 3, 2 = 2, E = 0.1)
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Fig. 3: Temp. Variation with (E
m
= 3, G

m
 = 3,  2 = 2)

Fig. 4: Temp. Variation with (E
m
= 3, G

m
 = 3,   = 0.1)

Variation of pressure drop (�p) with mean flux (Q ) is depicted in Figs. 5–8.

Notice that for fixed values of all other parameters, pressure drop decreases with

mean flux (Q ) and it increases with amplitude ratio (�). �p increases as Em or Gm

increases. The effect of wall porosity parameter on �p is very insignificant.

Observe that the mean flux, Q , increases by about 8 to 10 percent as the free

convection parameter increases from 1 to 2 for given values of other parameters.

The heat transfer coefficient, Z, on the boundary of the tube is evaluated
numerically, and the results are presented in Tables 1-4. Z increases down the tube
and then decreases, as in the case of temperature, which may be due to peristalsis.
From Tables 1 and 2, we can see that, for fixed values of all other parameters, the
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Fig. 5: Variation of P with Q  (G
m
 = 1, 2 = 1, E

m
 = 0)

Fig. 6: Variation of P with Q  (G
m
 = 1, 2 = 1, E

m
 = 2)

Fig. 7: Variation of P with Q  (G
m
 = 1, 2 = 2, E

m
 = 2)
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Fig. 8: Variation of P with Q  (G
m
 = 2, 2 = 1, E

m
 = 2)

heat transfer coefficient increases as the Eckert number or the Grashof number
increases. Table 3 shows that heat transfer decreases with porosity (though not
very significantly) but increases significantly with amplitude ratio (Table 4).
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