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Abstract. We study expected discounted penalty functionals for a class of
Lévy processes having a component given by the difference of two independent

Poisson compound processes, and a perturbation term given by an α-stable
process. We obtain a formula for the Laplace transforms of the expected
discounted penalty functionals, as well as explicit representations of such

functionals as infinite series of convolutions of given functions. We illustrate
our results in some particular examples.

1. Introduction

In this work we consider the Lévy insurance risk process Vα = {Vα(t), t ≥ 0}
defined by

Vα(t) = u+ ct+ Z1(t)− Z2(t)− ηWα(t), (1.1)

where u and c are nonnegative constants, Z1 = {Z1(t), t ≥ 0} and Z2 = {Z2(t),
t ≥ 0} are independent Poisson compound processes, and {Wα(t), t ≥ 0} is either
an independent standard Brownian motion (if α = 2), or else an independent
standard α-stable process with index of stability 1 < α < 2 and skewness, scale
and location parameters given respectively by β = 1, σ = 1 and µ = 0. We suppose
also some additional conditions on Z1 and Z2 which we describe in detail in Section
2.

The expected discounted penalty function for a general insurance risk process
V = {V (t), t ≥ 0} is defined by the following path functional of V :

ϕV (u) = E
[
e−δτ0ω(|V (τ0)|, V (τ0−))1{τ0<∞}

∣∣V (0) = u
]
,

where τ0 = inf{t > 0 : V (t) < 0} is the time of ruin of V , δ ≥ 0 is a discounted
force of interest and ω(x, y) : R+ × R+ → R+ is a given non-negative function
called penalty function. This functional was introduced by Gerber and Shiu [8]
in the context of the Cramèr-Lundberg risk process, generalizing in this way the
concept of ruin probability, and involves the joint distribution of the time of ruin,
the surplus immediately before ruin and the severity of ruin. The usefulness of
the process Vα in insurance risk modeling is well-known, see e.g. Albrecher et al.
[1] and the references therein for the case α = 2. Furrer [6] proposed the model
(1.1) with Z1 = 0 and studied the ruin probabilities of this model. Albrecher et
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al. [1] studied the expected discounted penalty functions of (1.1) for α = 2, while
the case of Z1 = 0, 1 < α ≤ 2 was investigated in [11].

In this paper we obtain the Laplace transform ϕ of Vα, as well as a defective
renewal equation for ϕ which allows to express ϕ as series of convolutions of given
real functions. Using this we calculate several useful functionals of the process,
namely: the ruin probability, the Laplace transform of the time of ruin, the first
moment of the severity of ruin given by |V (τ0)| and of the surplus prior to ruin
given by V (τ0−), the joint tail distribution and the bivariate Laplace transform of
the severity of ruin and the surplus prior to ruin.

The main difficulty in working with the process Vα lies in the lack of a closed
expression for the α-stable density, and the fact that we can not use the standart
tool of a first step analysis to obtain a renewal equation for ϕ, because of the
infinite number of jumps of the α-stable process in each time interval. Using the
weak approximation for the α-stable process given in Furrer et al. [7], we con-
struct a sequence of two-sided classical risk processes which weakly approximates
the process Vα in the Skorokhod space, and prove the convergence of the corre-
sponding expected discounted penalty functions. Afterward we obtain the Laplace
transform of ϕ and a defective renewal equation for ϕ. The results we present here
extend previous work of Furrer [6], Albrecher et al. [1], Tsai and Wilmott [15] and
Kolkovska and Mart́ın-González [11]. Weak approximations in risk theory have
been used in Sarkar and Sen [13] in the case α = 2 and λ2 = 0, and in Furrer et
al. [7] in the case λ2 = 0 to estimate ruin probabilities within finite time horizon.

The paper is organized as follows. In section 2 we give a detailed description
of the model and introduce some background results and notations. In section 3
we construct a sequence of two-sided Lévy processes that weakly converges to Vα,
and prove convergence of the corresponding discounted penalty functionals and
of the generalized Lundberg functions of the approximating processes. In section
4 we calculate the Laplace transform of ϕ, under Hypothesis 2.1 and Hypothesis
4.1 below. In section 5 we obtain another formula for the Laplace transform of
ϕ, this time in terms of the Dickson-Hipp translation operator. We also present a
defective renewal equation for ϕ from which we develop a representation of ϕ as
an infinite series of convolutions of known functions. In section 6 we provide some
examples that illustrate the use of our results. Several technical calculations are
deferred to an appendix.

2. Description of the Model and Background Results

We study the model (1.1) under the following conditions. The processes Z1

and Z2 are independent and given by Z1(t) =
∑N1(t)

i=1 Yi1, Z2(t) =
∑N2(t)

i=1 Yi2,
where for j = 1, 2, {Yij , i = 1, 2, . . . } is a sequence of independent and identically
distributed random variables with a common distribution function Fj(x) such that
Fj(0) = 0. In addition, {Nj(t), t ≥ 0}, j = 1, 2, are independent homogeneous
Poisson processes with parameters λj ≥ 0; η ≥ 0 is constant. The constants u
and c represent, respectively, initial capital and prime per unit time. The upward
jumps {Yi1, i = 1, 2, . . .} model the random gains of the insurance company, while
the downward jumps {Yi2, i = 1, 2, . . . } represent random claims. We are going
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to assume that Fj has density fj , j = 1, 2, where f2 is arbitrary, and the upward-
jumps density f1 is assumed to have Laplace transform given by the rational
function

f̂1(r) = Q(r)
N∏
i=1

(qi + r)−mi (2.1)

for some N,m ∈ N, where m1, . . . ,mN are natural numbers such that m1 +m2 +
· · · + mN = m while 0 < q1 < q2 < · · · < qN are real numbers and Q(r) is a
polynomial of degree at most m−1. The family of probability distributions whose
densities satisfy (2.1) is a wide class which includes the Erlang, Cox and phase-
type distributions, as well as mixtures of them. The assumption 1 < α < 2 implies
finiteness of the first moment of Vα(t) for each t ≥ 0, while the assumption β = 1
ensures that {Wα(t), t ≥ 0} possesses only positive jumps. Also, we assume that
the following conditions hold:

Hypothesis 2.1. a) The upward density f1 has a Laplace transform of the form
(2.1),

b) The net profit condition E[Vα(1)− u] = c+ λ1µ1 − λ2µ2 > 0 holds,
c) There exists a positive constant B such that ω(x, y) ≤ B for all x, y ≥ 0,
d) c ≥ 0 and η > 0.
e) We have P[(|Vα(τ0)|, Vα(τ0−)) ∈ Dω] = 0 where Dω is the set of discontinuity

points of ω.

Condition c) will be relaxed in Corollary 5.8 below. Condition e) is used to
apply the Continuous Mapping Theorem (see, for instance, Billingsley [2]), which
is required to obtain our main results. Several relevant penalty functions which
satisfy the above assumptions arise as particular instances of ω in the following
way:

(1) If ω(x, y) ≡ a for some constant a > 0 we obtain that ϕ(u) = aφδ(u),
where φδ(u) = E(e−δτ01{τ0<∞}) is the Laplace transform of the time to
ruin when δ > 0, and if δ = 0 we obtain ϕ(u) = aψ(u), where ψ(u) is the
ruin probability.

(2) Putting ω(x, y) = 1{x>a,y>b} for some constants a, b > 0 and δ = 0, we
obtain that ϕ is the joint tail of the severity of ruin |V (τ0)| and the surplus
prior to ruin V (τ0−).

(3) When δ > 0 and ω(x, y) = e−sx−ty for fixed constants s, t ≥ 0, then ϕ is
the trivariate Laplace transform of the time of ruin τ0, the severity of ruin
|V (τ0)| and the surplus before ruin V (τ0−).

(4) If δ = 0 and ω(x, y) = 1{x+y>a} for some constant a > 0, then ϕ is the tail
of the distribution of the claim that causes ruin.

(5) If ω(x, y) = max{K − ea−x, 0} for some constants K, a > 0, then ϕ is a
special case of a payoff function in option pricing; see Gerber and Shiu [9].

For any nonnegative function f we denote its Laplace transform by f̂(r), r ∈ C,
where C is the field of complex numbers. If F is a distribution function with finite
first moment µ, and F (0) = 0, its integrated tail distribution FI is defined by
FI(x) =

1
µ

∫ x

0
F (y) dy, where F (x) = 1 − F (x), x ≥ 0, and we denote its density

by fI(x) =
1
µF (x). The convolution of two nonnegative measurable functions h, g,
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is denoted by h ∗ g(x). We write g∗n for the n-th convolution of the function g
with itself, where g∗0(x) = 1{0}(x). Let us denote by Sα(σ, β, µ), the α-stable dis-
tribution with stability index 0 < α ≤ 2, and scale, skewness and shift parameters
σ > 0, β ∈ [−1, 1] and µ ∈ (−∞,∞), respectively; we write gα,β,σ,µ(x) for the
density function of Sα(σ, β, µ). The particular case of the α-stable density gα,β,1,1
is denoted by gα,β . It is well known (see e.g. Theorem 2.6.1 in Zolotarev [16]) that
the Laplace transform of the α-stable density gα,1,σ,µ is given by

ĝα,1,σ,µ(r) =

{
eσ[−µr−sgn(1−α)rα] α ̸= 1,
eσ[−µr+r log r] α = 1,

(2.2)

for r ≥ 0, and its characteristic function, according to Theorem C3, page 12 in
Zolotarev [16], is:

E[eiθX ] =

{
eσ(iµθ−|θ|α exp{−i(π/2)βK(α)sgn(θ)}) for α ̸= 1,
eσ[iµθ−|θ|(π/2+iβ log |θ|sgn(θ))] for α = 1,

(2.3)

where K(α) = α − 1 + sgn(1 − α) and sgn(θ) = 1{θ>0} + θ1{θ=0} − 1{θ<0}. We
denote by Wα = {Wα(t), t ≥ 0} the α-stable Lévy motion; Wα is a Lévy process

such that Wα(t) −Wα(s)
d
= Sα

[
(t− s)1/α, β, µ

]
for all 0 ≤ s < t < ∞. Recall

that when 1 < α < 2, only the moments of Wα with order less then α are finite,
the first moment of Wα(1) is µ, and when β = 1, only positive jumps of Wα are
possible. We refer the reader to Zolotarev [16] and Sato [14] for other properties of
stable processes. Finally, we denote by D the Skorokhod space of all real-valued,
càdlàg functions defined on [0,∞), endowed with the Skorokhod topology (see e.g.
Billingsley [2] for definitions and properties of processes with càdlàg paths). We
write ⇒ for the weak convergence in D.

3. Weak Approximations of Vα and Convergence of Lundberg
Equations

In this section we construct a sequence {Vn, n ≥ 0} of two-sided jumps classical
risk processes such that Vn ⇒ Vα, and prove that the Gerber-Shiu functional of
Vn converges to the corresponding functional of Vα. First we have the following
technical result.

Theorem 3.1. Let Z1(t) =
∑N1(t)

i=1 Yi1 and Z2(t) =
∑N2(t)

i=1 Yi2. For each k ∈ N
and any fixed constant c > 0, let A(k) = 1 − (k + 1)−1, λ1(k) = λ1/(1−A(k)),
b(k) = λ1/[c(1−A(k))] and

p∗k(x) =

{
A(k)b(k)e−b(k)x + (1−A(k))f1(x) for x > 0,
0 for x ≤ 0.

Consider the sequence of processes

V
[c]
k (t) = u+

N1,k(t)∑
i=1

Y ∗
ik −

N2(t)∑
i=1

Yi2 := u+ Z1,k(t)− Z2(t), k = 1, 2, . . . , (3.1)

where {Z1,k(t), t ≥ 0} is a compound Poisson process with intensity λ1(k), which
is independent of Z2, and {Y ∗

ik, i = 1, 2, . . . } is a sequence of independent and
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identically distributed random variables with common density function p∗k. Then,

as k → ∞, V
[c]
k ⇒ u+ ct+ Z1(t)− Z2(t).

Proof. Let t ≥ 0 be fixed, and let ξ1,k, ξ1 and ξ2 be the characteristic functions of

the random variables V
[c]
k (t), X11, and X12, respectively. Using that

ξ1,k(s) = exp

{
uis+ λ1(k)t

(
A(k)b(k)

b(k)− is
+ (1−A(k))ξ1(s)− 1

)
+ λ2t (ξ2(−s)− 1)

}
,

and limk→∞ λ1(k)
(

A(k)b(k)
b(k)−is − 1

)
= cis − λ1 we obtain lim

k→∞
ξ1,k(s)=exp{uis +

ctis+ λ1t (ξ1(s)− 1)+λ2t (ξ2(−s)− 1)}, which is the characteristic function of u+
ct+Z1(t)−Z2(t). From here the result follows from Theorem 15.17 in Kallenberg
[10]. □

Now we construct a sequence of processes {Vn,k, n, k ≥ 0} for which the prime c
is 0, and a sequence of processes {Vn, n ≥ 0} with prime c ≥ 0, such that Vn,k ⇒ Vn
for each fixed n and, moreover, Vn ⇒ Vα.

Theorem 3.2. Let cn = c+n1−1/αηα, n ∈ N, and let the sequence of risk processes

Vn,k = {Vn,k(t), t ≥ 0} be defined by Vn,k(t) = V
[cn]
k (t) − 1

n1/α

∑M(nt)
i=1 Wi, where

{V [cn]
k , k = 1, 2, . . . } is defined as in (3.1) with b(k) = λ1/[cn(1−A(k))] := bn(k)

and
∑M(nt)

i=1 Wi is a compound Poisson process independent of V
[cn]
k . We assume

that the Poisson process M has intensity ηα and that W1,W2, . . . are independent
and identically distributed random variables with common distribution Sα(1, 1, 1).
We also define the sequence of processes Vn = {Vn(t), t ≥ 0} by

Vn(t) = u+ cnt+ Z1(t)− Z2(t)−
1

n1/α

M(nt)∑
i=1

Wi. (3.2)

Then Vn,k ⇒ Vn for each n ∈ N, and Vn ⇒ Vα.

Proof. The first convergence follows from Theorem 3.1 and the independence of
{Wi}, {Z1,k} and Z2. For the proof of the second convergence, we note that since
Wi, i = 1, 2, . . ., have common distribution Sα(1, 1, 1), from (2.3) it follows that

for each n ≥ 1, 1
n1/α

∑n
k=1(Wk − 1)

d
= Wα(1, 1, 0). Hence equality (3) in Furrer

et al. [7] holds with ϕ(n) = n1/α, and since in our case c(n) = c + ηαn1−1/α and
λ = ηα, the hypothesis in Theorem 1 in Furrer et al. [7] are fulfilled, and therefore

it follows that u + cnt − n−1/α
∑M(nt)

i=1 Wi ⇒ u + ct − ηW (t). Using now the
independence of W , Z1 and Z2, we obtain the result. □

For any 1 < α ≤ 2, let us denote by ϕn,k, ϕn and ϕ the Gerber-Shiu functionals
of the processes Vn,k, Vn and Vα, respectively, with corresponding Laplace trans-

forms ϕ̂n,k, ϕ̂n and ϕ̂. The following result can be proved similarly as in Furrer et
al. [7].

Theorem 3.3. Under Hypothesis 2.1, limk→∞ ϕn,k(u) = ϕn(u) for all u ≥ 0 and
each n ∈ N. Moreover, limn→∞ ϕn(u) = ϕ(u).
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Using partial fractions decomposition it can be proved that, when f1 satisfies

(2.1), it admits the representation f1(x) =
∑N

i=1

∑mi

j=1 βij
xj−1qji e

−qix

(j−1)! , x > 0, where

βij =
1

qji (mi−j)!

dmi−j

drmi−j

{∏N
k=1,k ̸=i

Q(r)
qk+r

}∣∣∣
r=−qi

, hence

f̂1(r) =

N∑
i=1

mi∑
j=1

βijq
j
i

(qi + r)j
. (3.3)

We also need the following identity, which is known from interpolation theory:

Lemma 3.4. For each m ≥ 1 and for any different non-zero complex numbers
x1, . . . , xm+1,

m+1∑
j=1

xj m+1∏
l=1,l̸=j

(xl − xj)

−1

=

(∏
j

xj

)−1

.

For r ̸= qi we define the generalized Lundberg functions associated to the
processes Vn,k, Vn and Vα, respectively by

Lα,n,k(r) = λ2f̂2(r) + λ1(k)A(k)
bn(k)

bn(k)− r
+ λ1(k) (1−A(k))

N∑
i=1

mi∑
j=1

βijq
j
i

(qi − r)j

+nηα exp

{
− r

n1/α
+
rα

n

}
− (λ1(k) + λ2 + nηα + δ), r ̸= bn(k),

Lα,n(r) = λ2f̂2(r) + λ1

N∑
i=1

mi∑
j=1

βijq
j
i

(qi − r)j
+
(
c+ ηαn1−1/α

)
r

+nηα exp

{
− r

n1/α
+
rα

n

}
− (nηα + λ1 + λ2 + δ) ,

Lα(r) = λ2f̂2(r) + λ1

n∑
i=1

mi∑
j=1

βijq
j
i

(qi − r)j
+ cr + (ηr)α − (λ1 + λ2 + δ).

We denote Q1(r) =
∏N

k=1(qi − r)mi , C+ = {z ∈ C : Re(z) ≥ 0} and C++ := {z ∈
C : Re(z) > 0}. For ρ ∈ C+ and d > 0 we put

Bd(ρ) = {r ∈ C+ : |r − ρ| ≤ d}. (3.4)

We have the following result.

Lemma 3.5. The function P (r) = ar + brα − c, where a ≥ 0, b, c > 0 and
α ∈ (1, 2), has exactly one real and positive root.

Proof. Let us suppose that there exists a root s of P (r) such that Re(s) ≥ 0,
Im(s) ̸= 0 and Arg(s) = θ. Then by De Moivre’s formula we obtain a|s| sin(θ) +
b|s|α sin(αθ) = 0. We claim that θ = 0. By the assumption that Re(s) ≥ 0, we
have θ ∈ [−π/2, π/2], hence if 0 < θ ≤ π/2 we obtain αθ ∈ (0, π), which implies
sin(αθ) > 0, hence a|s| sin(αθ) > 0, and similarly for the case θ ∈ (−π/2, 0).
Thus, all possible roots of P are real. Since for r ≥ 0 we have dP (r)/dr > 0 and
d2P (r)/dr2 = bα(α − 1)rα−2 > 0 for all r > 0, P (r) is strictly increasing in the
nonnegative real line, and noting that P (0) = −c < 0, we obtain the result. □
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Proposition 3.6. a) lim
k→∞

Lα,n,k(r) = Lα,n(r) for all sufficiently large n ∈ N and

r ̸= bn(k), uniformly in r in sets of the form (3.4).
b) Moreover, lim

n→∞
Lα,n(r) = Lα(r), uniformly in sets of the form (3.4).

c) For δ ≥ 0, the functions Lα, Lα,n and Lα,n,k have exactly one root of multi-
plicity one in the interval [0, q1), which is equal to zero if and only if δ = 0.
We denote these roots by ρ1,δ, ρ1,δ(n) and ρ1,δ(n, k), respectively.

d) For δ ≥ 0 and c+η > 0, the function Lα has exactly m+1 roots ρ1,δ, . . . , ρm+1,δ

in C+. For δ > 0 these roots are in C++, and if δ = 0, ρ1,δ = 0 is the only
root on the imaginary axis. Moreover, for all sufficiently large n and k, and
all δ ≥ 0, the functions Lα,n and Lα,n,k also have m + 1 roots in C+, which
we denote respectively by ρ1,δ(n), . . . , ρm+1,δ(n) and ρ1,δ(n, k), . . . , ρm+1,δ(n, k).
When δ > 0 all these roots are in C++, and when δ = 0, ρ1,0(n, k) = ρ1,0(n) = 0
are the only roots of Ln,k and Ln, respectively, on the imaginary axis.

e) Let c + η > 0. For any j ∈ {1, 2, . . . ,m + 1} there exists l ∈ {1, 2, . . . ,m+ 1}
such that lim

k→∞
ρj,δ(n, k) = ρl,δ(n) and lim

n→∞
ρj,δ(n) = ρl,δ.

f) We have lim
δ→0

ρ1,δ = ρ1,0 = 0 .

Proof. To prove a) it suffices to consider the closed complex semicircle Bd :=
Bd(0). For any r ̸= bn(k) and n ∈ N, limk→∞ Lα,n,k(r) = Lα,n(r) due to (3.3).
We will show that this convergence is uniform in Bd. For r ∈ Bd and k > cnd−λ1
we have λ1(k + 1)− cnr > 0, and∣∣∣∣cnr − λ1 − λ1(k)A(k)

bn(k)

bn(k)− r
+ λ1(k)

∣∣∣∣ = ∣∣∣∣ cnr(λ1 − cnr)

λ1(k + 1)− cnr

∣∣∣∣ ≤ cndλ1 + c2nd
2

λ1(k + 1)− cnd
,

and the result follows.
To obtain b) first we prove that lim

n→∞
Lα,n(r) = Lα(r). Expanding the expo-

nential function we get Lα,n(r) = λ2f̂2(r)+λ1

∑N
i=1

∑mi
j=1

βijq
j
i

(qi−r)j
+cr+ηαrα+an(r)−

(λ1 + λ2 + δ), where an(r) = nηα
∑∞

k=2

(
− r

n1/α + rα

n

)k
/k!. For sufficiently large n

and r ∈ Bd, we have

|an(r)| = nηα

∣∣∣∣∣
∞∑

k=2

(
− r

n1/α
+
rα

n

)k

/k!

∣∣∣∣∣ < nηα
∞∑

k=2

|rα + r|k

nk/α
≤ nηα

∞∑
k=2

C(d)k/nk/α

= ηα
(
C(d)2/n(2−α)/α

)(
1− C(d)/n1/α

)−1

,

where C(d) = 2max{dα, d} is a constant depending on d. Since α ∈ (1, 2), the
right-hand side in the above inequality converges to 0 as n→ ∞ uniformly in Bd.
This completes the proof of b).

Now we prove part c). We will prove that Lα,n has one real nonnegative root
in [0, q1]; the cases for the functions L and Lα,n,k can be handled in a similar

way. From Hypothesis 2.1.b) we get
dLα,n

dr (0) = c+ n1−1/αηα + λ1µ1 − λ2µ2 > 0.

Moreover,
d2Lα,n

dr2 (r) > 0 for r < q1, hence Lα,n(r) is increasing in [0, q1) with
Lα,n(0) = −δ, and the result follows.

To prove d) we define L∗(r) = Q1(r)Lα(r) and L
∗∗(r) = Q1(r)[cr+η

αrα−(λ1+
λ2 + δ)]. Now we take δ > 0 and consider, for fixed s > 0, the contour Cs as the
imaginary axis together with a semicircle of radius s, moving clockwise from −is to



370 EKATERINA T. KOLKOVSKA AND EHYTER M. MARTÍN-GONZÁLEZ

is. We note that |L∗(r)−L∗∗(r)| =
∣∣∣Q1(r)

(
λ2f̂2(r) + λ1

∑n
i=1

∑mi
j=1 βijq

j
i (qi − r)−j

)∣∣∣ .
Since lim

|r|→∞
|L∗∗(r)| = ∞ for any c ≥ 0, for r in the semicircle and s sufficiently

large, we have∣∣∣∣∣λ2f̂2(r) + λ1

n∑
i=1

mi∑
j=1

βijq
j
i (qi − r)−j

∣∣∣∣∣ ≤ λ1 + λ2 < |cr + ηαrα − (λ1 + λ2 + δ)| , (3.5)

for c ≥ 0. For r in the imaginary axis it follows that

|cr + ηαrα − (λ1 + λ2 + δ)|

=

√
(ηα |Re (rα)|+ λ1 + λ2 + δ)2 + (cIm(r) + ηαIm (rα))2 > λ1 + λ2. (3.6)

From (3.5) and the last inequality we obtain for sufficiently large s that |L∗(r)−
L∗∗(r)| < |L∗∗(r)|. On the other hand, for r ∈ R\{0} we obtain similarly
|Lα(ir)| > 0, which implies that there are no roots on the imaginary axis and we
conclude that, when δ = 0, the only root on the imaginary axis is ρ1,δ = 0. More-
over, from c), such a root has multiplicity one. Now applying Rouche’s theorem we
conclude that L∗(r) has the same number of roots as L∗∗(r) in Cs. Letting s tend
to infinity we obtain the result for C++. Taking P (r) = cr + ηαrα − λ1 − λ2 − δ,
from Lemma 3.5 we conclude that L∗∗(r) has m+ 1 roots in C++ for c ≥ 0.

Now we prove the result about the number of roots of Lα,n(r). We take L∗∗(r)

as before and define L∗
n(r) = Q1(r)[λ2f̂2(r) + λ1

∑N
i=1

∑mi
j=1 βijq

j
i (qi − r)−j + cr +

ηαn1−1/αr+ nηα exp{− r

n1/α + rα

n
} − nηα − (λ1 + λ2 + δ)]. Then, for r in a semicircle

with sufficiently large radius s, 0 < ε < δ and n sufficiently large:

|L∗
n(r)− L∗∗(r)| ≤ |Q1(r)|

∣∣∣∣∣λ2f̂2(r) + λ1

N∑
i=1

mi∑
j=1

βijq
j
i

(qi − r)j

∣∣∣∣∣
+ |Q1(r)|

∣∣∣∣ηαn1−1/αr + nηαe
− r

n1/α
+ rα

n − nηα − ηαrα
∣∣∣∣

≤ |Q1(r)| (λ1 + λ2 + ε)

< |Q1(r)| |cr + ηαrα − (λ1 + λ2 + δ)| = L∗∗(r),

where the second inequality follows for sufficiently large n using the uniform con-

vergence of ηαn1−1/αr + ηαe
− r

n1/α
+ rα

n − nηα to ηαrα in Bd, which was proved in
b). Now for r in the imaginary axis we use (3.6) to obtain

|L∗∗(r)| > |Q1(r)| (λ1 + λ2 + δ) > |Q1(r)| (λ1 + λ2 + ε)

> |Q1(r)|

∣∣∣∣∣λ2f̂2(r) + λ1

N∑
i=1

mi∑
j=1

βijq
j
i

(qi − r)j
+ cr + ηαn1−1/αr

+ ηαe
− r

n1/α
+ rα

n − nηα − (λ1 + λ2 + δ)

∣∣∣∣ = |L∗
n(r)− L∗∗(r)| ,

and the result follows by Rouche’s theorem. The proof for Lα,n,k is similar. Fi-
nally we prove parts e) and f). If limk→∞ ρj,δ(n, k) = rj then from part a),
limk→∞ Lα,n,k(ρj,δ(n, k)) = Lα,n(rj) = 0, hence rj is a root of Lα,n(r). The sec-
ond limit is obtained in the same way. The limit limδ→0 ρ1,δ exists due to the
weak convergence of the stochastic processes having Laplace exponent Lα(r) with
δ > 0, to the stochastic process having Laplace exponent Lα(r) with δ = 0. Let us
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suppose that limδ→0 ρ1,δ = s0 ∈ [0, q1). Since Lα,δ(r) → Lα,0(r) uniformly when
δ → 0 on r ∈ [0, q1), we obtain s0 = 0 because, due to c), ρ1,0 = 0 is the only root
of Lα in [0, q1). □

4. The Laplace Transform of ϕ

The following three lemmas will be used in the sequel; their proofs are given in
appendix A.

Lemma 4.1. The integral In = n1+1/α
∫ 0

−∞ (1− e−rx − rx) gα,1(n
1/αx) dx is fi-

nite for each n ∈ N and r ∈ C+, and satisfies limn→∞ |In| = 0.

Lemma 4.2. Under Hypothesis 2.1, K0(n, k, r) := λ1(k)
∫∞
0

∫∞
0
e−ruϕn,k(u +

x)p∗k(x) dx du is finite for all r > 0, and admits the equivalent expression

K0(n, k, r) =
P1,k(r)

Q1,k(r)
ϕ̂n,k(r)−

P2,k(r)

Q1,k(r)
,

where

P1,k(r) = Q1,k(r)

[
λ1(k)A(k)bn(k)

bn(k)− r
+ λ1

N∑
i=1

mi∑
j=1

βijq
j
i

(qi − r)j

]
,

P2,k(r) = Q1,k(r)

[
λ1(k)(1−A(k))bn(k)

bn(k)− r
ϕ̂n,k(bn(k))

+ λ1

N∑
i=1

mi∑
j=1

βijq
j
i

j−1∑
l=0

(qi − r)lγl,i(n, k)

l!(qi − r)j

]
,

γl,i(n, k) =

∫ ∞

0

ϕn,k(z)e
−qizzldz, Q1,k(r) = (bn(k)− r)

N∏
j=1

(qj − r)mj .

Let us define

Mα,n(r) = n1+1/αηα
∫ ∞

0

∫ ∞

u

e−ruω(x− u, u)gα,1(n
1/αx)dxdu,

Mα(r) =
ηαα(α− 1)

Γ(2− α)

∫ ∞

0

∫ ∞

u

e−ruω(x− u, u)x−1−αdxdu, 1 < α < 2,

N(r) = λ2

∫ ∞

0

∫ ∞

u

e−ruω(x− u, u)f2(x)dxdu, (4.1)

and note that 1
λ2
N(r) = ξ̂ω(r), where ξω(u) =

∞∫
u

ω(x− u, u)f2(x)dx.

Lemma 4.3. For r1, r2 ∈ C+ with r1 ̸= r2 there holds lim
n→∞

(Mα,n(r1)−Mα,n(r2)) =

Mα(r1)−Mα(r2).

In order to obtain simpler expressions for the Laplace transforms ϕ̂n,k and ϕ̂,
we impose the following condition.

Hypothesis 4.1. All roots of Lα(r) in C+ have multiplicity 1.
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Due to Proposition 3.6 e), Hypothesis 4.1 implies that for all sufficiently large
n and k the roots of Lα,n,k and Lα,n have multiplicity 1. We need the following
functions:

ĝ−α,1(r/n
1/α) =

∫ 0

−∞
e−rx/n1/α

gα,1(x) dx, ĝ
+
α,1(r/n

1/α) =

∫ ∞

0

e−rx/n1/α

gα,1(x) dx,

T (ϕn,k) = n1+1/αηα
∫ 0

−∞

∫ −x

0

ϕn,k(z)gα,1(n
1/αx) dz dx,

An(r) = n1+1/αηα
∫ 0

−∞

∫ −x

0

(
e−r(x+z) − 1

)
ϕn,k(z)gα,1(n

1/αx) dz dx

K(n, r) = n1+1/αηα
∫ 0

−∞

∫ ∞

−x

e−r(x+z)ϕn,k(z)gα,1(n
1/αx) dz dx. (4.2)

Due to Hypothesis 2.1 c), ϕn,k(r) ≤ B hence An(r) ≤ B n1+1/αηα

r

∫ 0

−∞(1 − e−rx–

rx)gα,1(n
1/αx) dx, and from Lemma 3.5 it follows that limn→∞An(r) = 0. In the

next theorem we obtain an expression for ϕ̂n,k.

Theorem 4.4. Assume that Hypothesis 2.1 holds and that (c, η) ̸= (0, 0). Then
the Laplace transform of the Gerber-Shiu penalty function ϕn,k of Vn,k admits the
representation

Lα,n,k(r)ϕ̂n,k(r) =
P1,k(r)

Q1,k(r)
−N(r)−Mα,n(r)− T (ϕn,k)−An(r). (4.3)

Moreover, under Hypothesis 2.1 and 4.1, we have for all δ ≥ 0,

Lα,n,k(r)ϕ̂n,k(r) =

m+1∑
l=1

Q1(ρl,δ(n, k))

Q1,k(r)

m+1∏
i=1,i̸=l

(ρi,δ(n, k)− r)

m+1∏
i=1,i̸=l

(ρi,δ(n, k)− ρl,δ(n, k))

× [(bn(k)− ρl,δ(n, k))(N(ρl,δ(n, k)) +An(ρl,δ(n, k)) +Mα,n(ρl,δ(n, k)))

− (bn(k)− r)(N(r) +An(r) +Mα,n(r))] . (4.4)

Proof. We consider a small time interval (0, h) and condition on the first jump
time and first claim size of Vn,k. This gives the equation

ϕn,k(u) = e−(λn+δ)hϕn,k(u) + λ1(k)
h∫
0

∞∫
0

e−(λ1(k)+δ)tϕn,k(u+ x)p∗k(x)dxdt

+λ2

h∫
0

u∫
0

e−(λ2+δ)tϕn,k(u− x)f2(x)dxdt+ λ2

h∫
0

∞∫
u

e−(λ2+δ)tω(x− u, u)f2(x)dxdt

+n1+1/αηα
h∫
0

u∫
0

e−(nηα+δ)tϕn,k(u− x)gα,1(n
1/αx)dxdt

+n1+1/αηα
h∫
0

0∫
−∞

e−(nηα+δ)tϕn,k(u− x)gα,1(n
1/αx)dxdt

+n1+1/αηα
h∫
0

∞∫
u

e−(nηα+δ)tω(x− u, u)gα,1(n
1/αx)dxdt,

where λn = λ1(k) + λ2 + nηα. Using the Taylor series of the exponential function
in e−(λn+δ)hϕn,k(u), dividing both sizes of the above equation by h, letting h→ 0
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and taking Laplace transforms, we obtain:

(λn + δ)ϕ̂n,k(r) = λ1(k)

∞∫
0

∞∫
0

e−ruϕn,k(u+ x)p∗k(x)dxdu

+λ2

 ∞∫
0

u∫
0

e−ruϕn,k(u− x)f2(x)dxdu+

∞∫
0

∞∫
u

e−ruω(x− u, u)f2(x)dxdu

+ n1+ 1
α ηα

×

 ∞∫
0

u∫
−∞

e−ruϕn,k(u− x)gα,1(n
1/αx)dxdu+

∞∫
0

∞∫
u

e−ruω(x− u, u)gα,1(n
1/αx)dxdu


= K0(n, k, r) + λ2ϕ̂n,k(r)f̂2(r) +N(r) + nηαϕ̂n,k(r)ĝ

+
α,1(r/n

1/α)

+K(n, r) +Mα,n(r). (4.5)

Next, we obtain a more explicit expression for the functionK(n, r) defined in (4.2).
Changing the order of integration and setting z = u− x in (4.2) yields

K(n, r) = n1+1/αηα
0∫

−∞

∞∫
−x

e−r(x+z)ϕn,k(z)gα,1(n
1/αx)dzdx

± n1+1/αηα
0∫

−∞

−x∫
0

e−r(x+z)ϕn,k(z)gα,1(n
1/αx)dzdx

= nηαϕ̂n,k(r)ĝ
−
α,1(r/n

1/α)− n1+1/αηα
0∫

−∞

−x∫
0

e−r(x+z)ϕn,k(z)gα,1(n
1/αx)dzdx

= nηαϕ̂n,k(r)ĝ
−
α,1(r/n

1/α)−An(r)− T (ϕn,k).

From the last equality we get

nηαϕ̂n,k(r)ĝ
+
α,1(r/n

1/α) +K(n, r) = nηαϕ̂n,k(r)ĝα,1(r/n
1/α) + T (ϕn,k) +An(r),

which, together with (4.5) and Lemma 4.2, yields

(λn + δ)ϕ̂n,k(r) =
P1,k(r)

Q1,k(r)
ϕ̂n,k(r)−

P2,k(r)

Q1,k(r)
+ λ2ϕ̂n,k(r)f̂2(r)

+N(r) + nηαϕ̂n,k(r)ĝα,1(r/n
1/α)−Mα,n(r)− T (ϕ̂n,k)−An(r). (4.6)

Let us note that, since Lα,n,k(r) = λ2f̂2(r) +
P1,k(r)

Q1,k(r)
+ nηαĝ(r/n1/α)− (λn + δ), (4.3)

follows from the above equality. Because of Hypothesis 4.1, all roots ρj,δ(n, k), j =
1, . . . ,m + 1, have multiplicity 1. Substituting r = ρj,δ(n, k) in (4.6) and using
Lagrange interpolation renders

P2,k(r) =

m+1∑
l=1

Q1,k(ρl,δ(n, k))
m+1∏

i=1,i̸=l

(ρi,δ(n, k)− r)

m+1∏
i=1,i ̸=l

(ρi,δ(n, k)− ρl,δ(n, k))

[N(ρl,δ(n, k)) +Mα,n(ρl,δ(n, k))

+T (ϕ̂n,k) +An(ρl,δ(n, k))
]
.
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Hence from (4.3),

Lα,n,k(r)ϕ̂n,k(r)

=

m+1∑
l=1

Q1,k(ρl,δ(n, k))

Q1,k(r)

m+1∏
i=1,i ̸=l

(ρi,δ(n, k)− r)

m+1∏
i=1,i̸=l

(ρi,δ(n, k)− ρl,δ(n, k))

(N(ρl,δ(n, k)) +Mα,n(ρl,δ(n, k)))

+

m+1∑
l=1

Q1,k(ρl,δ(n, k))

Q1,k(r)

m+1∏
i=1,i̸=l

(ρi,δ(n, k)− r)

m+1∏
i=1,i ̸=l

(ρi,δ(n, k)− ρl,δ(n, k))

(
T (ϕ̂n,k) +An(ρl,δ(n, k))

)

−
(
N(r) +Mα,n(r) + T (ϕ̂n,k) +An(r)

)
.

Using Lagrange interpolation and recalling that Q1,k(r) = (bn(k) − r)Q1(r), we
get

m+1∑
l=1

(bn(k)− ρl,δ(n, k))Q1(ρl,δ(n, k))

m+1∏
i=1,i ̸=l

(ρi,δ(n, k)− r)

m+1∏
i=1,i̸=l

(ρi,δ(n, k)− ρl,δ(n, k))

= (bn(k)− r)Q1(r).

Plugging this into the above equality we obtain (4.4). □

From Theorem 4.4 we obtain our main result in this section:

Theorem 4.5. Suppose Hypothesis 2.1 and 4.1 hold, and (c, η) ̸= (0, 0). Then
for all δ ≥ 0 the Laplace transform of the Gerber-Shiu penalty function of the
perturbed risk process Vα is given by

ϕ̂(r) =

m+1∑
j=1

Q1(ρj,δ)
m+1∏

i=1,i ̸=j
(ρi,δ−r)

m+1∏
i=1,i̸=j

(ρi,δ−ρj,δ)

[N(ρj,δ)−N(r) +Mα(ρj,δ)−Mα(r)]

Lα(r)

m+1∑
j=1

Q1(ρj,δ)
m+1∏

i=1,i̸=j
(ρi,δ−r)

m+1∏
i=1,i̸=j

(ρi,δ−ρj,δ)


, (4.7)

or equivalently, by

ϕ̂(r) =

m+1∑
j=1

Q1(ρj,δ)

m+1∏
i=1,i ̸=j

(ρi,δ−ρj,δ)

[
N(ρj,δ)−N(r)

ρj,δ−r
+

Mα(ρj,δ)−Mα(r)

ρj,δ−r

]

Lα(r)

m+1∑
j=1

Q1(ρj,δ)

m+1∏
i=1,i̸=j

(ρi,δ−ρj,δ)(ρj,δ−r)


. (4.8)

Proof. Since limk→∞ bn(k) = ∞ implies

lim
k→∞

Q1(ρj,δ(n))(bn(k)− ρj,δ(n))

Q1,k(r)
= lim

k→∞

Q1(ρj,δ(n))(bn(k)− ρj,δ(n))

Q1(r)(bn(k)− r)
=
Q1(ρj,δ(n))

Q1(r)
.

Identity (4.7) follows now from Theorem 3.3, by taking limits in (4.4) firstly when
k → ∞ and afterward when n → ∞ and using Proposition 3.6 e). The equality
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(4.8) follows immediately from (4.7) after multiplying and dividing by ρj,δ − r the
j-th term in the sums in the numerator and denominator of (4.7). □

Remark 4.6. Assume that f1 is the hyperexponential distribution with density

f1(x) =
m∑
l=1

Alqle
−qlx, x > 0,

with Al > 0 and
∑m

l=1Al = 1. In this case the roots of the Lundberg function Lα

are all real and different; the proof of this fact is similar to that in Bowers et al.
[3], page 422. If in addition η = 0, Theorem 4.5 above gives the result in Albrecher
et al. [1].

5. A Renewal Equation for the Laplace Transform of ϕ

In this section we obtain expressions for the Gerber-Shiu penalty function ϕ by
inverting its Laplace transform, given in Theorem 4.5. The expressions we obtain
are in terms of the operator Tr introduced in Dickson-Hipp [4], which is defined
by the equation

Trf(x) =

∫ ∞

x

e−r(y−x)f(y)dy, x ≥ 0,

when the integral exists. Here f is any nonnegative function on (0,∞) and r ∈ C+.
Notice that Trf exists for all r ∈ C+ when f is integrable, and satisfies Trf(0) =

f̂(r) and T̂r2f(r1) = (f̂(r1)− f̂(r2))/(r2 − r1) for all r, r1, r2 ∈ C+ with r1 ̸= r2.

Hence, for r1, r2 ∈ C++, r1 ̸= r2 and mα(u) =
α(α−1)
Γ(2−α)

∫∞
u
ω(x− u, u)x−1−α dx,

Mα(r1)−Mα(r2)

r2 − r1
= ηαT̂r2mα(r1). (5.1)

In order to simplify our notation, we define

E(ρj,δ) =
Q1(ρj,δ)∏

l̸=j

(ρl,δ − ρj,δ)
, j = 1, 2, . . . ,m+ 1.

The following corollary is a direct consequence of (4.8) and (5.1).

Corollary 5.1. Assume that Hypothesis 2.1 and 4.1 hold. Then

ϕ(r) = hα,δ,ω ∗Wα,δ(u), u > 0, (5.2)

where

hα,δ,ω(u) =

m+1∑
j=1

E(ρj,δ)Tρj,δ [λ2ξω + ηαmα] (u) (5.3)

and Wα,δ(u), u > 0 is the function with Laplace transform

Ŵα,δ(r) =

−Lα(r)

m+1∑
j=1

Q1(ρj,δ)
m+1∏

i=1,i̸=j

(ρi,δ − ρj,δ)(ρj,δ − r)


−1

. (5.4)
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Our next step is to show that the function Ŵα,δ(r) is related to the Laplace
transform of the time to ruin when δ > 0 and to the ruin probability when
δ = 0, and that it is the Laplace transform of some function Wα,δ(u) whose
explicit form is given in Proposition 5.6 below. We recall that for c > 0 and
α ∈ (1, 2), the tail of the extremal stable distribution ζα,c is given by ζα,c(x) =∑∞

n=0
(−c)n

Γ(1+{α−1}n)x
n(α−1), x > 0, and denote the density of ζα,c by zα,c. Due

to Lemma 1 in Furrer [6], ẑα,c(r) exists for all r ≥ 0 and is given by ẑα,c(r) =
c/(c+ rα−1). Since ρj,δ, j = 1, 2, . . . ,m + 1, appear in conjugate pairs, it follows

that
∏m+1

j=1 ρj,δ > 0 for δ > 0. Using Lemma 3.4 and the change of variables

ρ∗j,δ(r) = ρj,δ − r, one can show that if ρ1,δ, . . . , ρm+1,δ are different complex num-

bers and Pl(x) = alx
l + al−1x

l−1 + · · ·+ a1x+ q0 is a polynomial of degree l, then
for all l ≥ 1,

m+1∑
j=1

Pl(ρj,δ)∏m+1
l=1,l̸=j(ρl,δ − ρj,δ)

=


0 if l = 0, 1, . . . ,m− 1

(−1)mam if l = m.
(5.5)

The following two lemmas can be proved using Lemma 3.4 and (5.5), and the fact
that the roots {ρj,δ} of Lα are in conjugate pairs.

Lemma 5.2. For δ > 0, it holds
∑m+1

j=1 E(ρj,δ) = 1, and
∑m+1

j=1 E(ρj,δ)ρ
−1
j,δ =∏N

l=1 q
ml
l∏m+1

k=1 ρk,δ
.

Lemma 5.3. For any function K : (0,∞) → [0,∞) and all δ ≥ 0, the functions

x→
∑m+1

j=1 E(ρj,δ)Tρj,δ
K(x) and x→

∑m+1
j=1 E(ρj,δ)ρj,δTρj,δ

K(x), are real-valued.

We define the function ℓα(u) :=
(α−1)u−α

Γ(2−α) , u > 0, and note that although ℓα(u)

is not integrable, the function Trℓα(x) exists and is finite for all x > 0 and r > 0.
For all complex numbers r1, r2 ∈ C+ such that r1 ̸= r2 and α ∈ (1, 2), it can be
proved by integration by parts (see Zolotarev [16], page 10) that∫ ∞

0

[e−r1x − e−r2x]x−αdx =
Γ(2− α)

α− 1
[rα−1

2 − rα−1
1 ]. (5.6)

It follows from (5.6) that T̂r1ℓα(r2) =
∫∞
0
e−r2x

∫∞
x
e−r1(y−x)ℓα(y)dydx =

rα−1
1 −rα−1

2
r1−r2

for r1 ̸= r2, and T̂r1ℓα(r1) =
∫∞
0
e−r1x

∫∞
x
e−r1(y−x)ℓα(y)dydx = (α− 1)rα−2

1 if r1 ̸= 0.

Let us define for all x > 0 the functions fα,δ(x) =
∑m+1

j=1 E(ρj,δ)ρj,δTρj,δ
ℓα(x)

and gδ(x) = λ2
∑m+1

j=1 E(ρj,δ)Tρj,δ
f2(x). Due to Lemma 5.3, hα,δ,ω, fα,δ and gδ

are real-valued. In the sequel we assume the following condition.

Hypothesis 5.1. The functions hα,δ,ω, fα,δ and gδ defined above are nonnegative.

It is straightforward to prove that Hypothesis 5.1 holds in the case when f1 is
a hyperexponential distribution and f2 is a general density function, because in
such case E(ρj,δ) and ρj,δ are nonnegative numbers.

In the following proposition we obtain an alternative representation of Ŵα,δ

which allows us to calculate its inverse Laplace transform.
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Proposition 5.4. Assume that hypothesis 2.1, 4.1 and 5.1 hold. Then,
a). For η > 0 and c > 0,

Ŵα,δ(r) =

1
ηαθδ

ν̂α,δ(r)

1− 1
θδ

[κδ ν̂α,δ(r) + η−αĝδ(r)ν̂α,δ(r)]
, (5.7)

where κδ = 1
ηα ĝδ(0) + f̂α,δ(0), θδ = c/ηα + κδ and

ν̂α,δ(r) =
ẑα,θδ (r)

1 + 1
θδ
f̂α,δ(r)ẑα,θδ (r)

. (5.8)

b). The function Ŵα,δ(r) is related to the time to ruin and the probability of
ruin ψ(u) by the following equalities:

φ̂δ(r) =
1

r
− δ

r

∏N
i=1 q

mi
i∏m+1

j=1 ρj,δ
Ŵα,δ(r), δ > 0,

and

ψ̂(r) =
1

r
− c+ λ1µ1 − λ2µ2

r

∏N
i=1 q

mi
i∏m+1

j=2 ρj,0
Ŵα,0(r),

where φδ(u) = E
[
e−δτ01{τ0<∞}|Vα(0) = u

]
is the Laplace transform of the ruin

time for δ > 0.

Proof. See appendix A. □

From Proposition 5.4 b) we obtain the following corollary.

Corollary 5.5. For u > 0, both ψ(u) and φδ(u) are tails of probability distribu-

tions with respective densities ψ′(u) = (c + λ1µ1 − λ2µ2)

∏N
i=1 q

mi
i∏m+1

j=2 ρj,0
Wα,0(u) and

φ′
δ(u) = δ

∏N
i=1 q

mi
i∏m+1

j=1 ρj,δ
Wα,δ(u). Hence, from (5.2) the Gerber-Shiu function is given

by the expressions

ϕ(u) =


[
(c+ λ1µ1 − λ2µ2)

∏N
i=1 q

mi
i∏m+1

j=2 ρj,0

]−1

hα,0,ω ∗ ψ′(u) for δ = 0,[
δ

∏N
i=1 q

mi
i∏m+1

j=1 ρj,δ

]−1

hα,δ,ω ∗ φδ(u) for δ > 0.

Now we are ready to give a representation of Wα,δ as a series of convolutions
of the functions fα,δ, gδ, να,δ defined above.

Proposition 5.6. Under hypothesis 2.1, 4.1 and 5.1 the following properties hold.

a) For r ≥ 0, the function ν̂α,δ(r) defined in (5.8) is the Laplace transform of the

function να,δ(u) = zα,θδ ∗
∞∑

n=0

[
− 1

θδ

]n
[fα,δ ∗ zα,θδ ]

∗n (u).

b) For u ≥ 0, the function Ŵα,δ(u) defined in (5.7) is the Laplace transform of

the functions Wα,δ(u) =
1

ηαθδ
να,δ ∗

∞∑
n=0

θδ
−n
[
κδνα,δ + η−αgδ ∗ να,δ

]∗n
(u),

c) να,δ(u) and
1

θδηα gδ ∗ να,δ(u) + κδ

θδ
να,δ(u) are defective density functions.
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Proof. Since 0 <
f̂α,δ(0)

θδ
< 1, Hypothesis 5.1 implies 0 <

f̂α,δ(r)
θδ

< 1 for all r ≥

0. Hence the series ẑα,θδ (r)
∞∑

n=0

[
− 1

θδ

]n [
f̂α,δ(r)ẑα,θδ (r)

]n
is absolutely convergent

for r ≥ 0, and its limit equals the right-hand side of (5.8). We set I(u) :=∫∞
0

∑∞
n=0

[
1
θδ

]n
zα,θδ ∗ [fα,δ ∗ zα,θδ ]

∗n
(u)du. Using monotone convergence we get

I(u) = lim
m→∞

m∑
n=0

∫ ∞

0

[
1

θδ

]n
zα,θδ ∗ [fα,δ ∗ zα,θδ ]

∗n (u)du

≤ lim
m→∞

m∑
n=0

∣∣∣∣[− 1

θδ

]n
ẑα,θδ (0)

[
f̂α,δ(0)ẑα,θδ (0)

]n∣∣∣∣
=

∞∑
n=0

∣∣∣∣[− 1

θδ

]n
ẑα,θδ (0)

[
f̂α,δ(0)ẑα,θδ (0)

]n∣∣∣∣ <∞,

which implies that the series
∑∞

n=0

[
− 1

θδ

]n
zα,θδ ∗ [fα,δ ∗ zα,θδ ]

∗n
(u) converges ab-

solutely. This proves a).
To prove c), due to Hypothesis 5.1 and the definition of ν̂α,δ we have ν̂α,δ(0) < 1,

hence να,δ is a defective density function. From Proposition 5.4 and (5.7) we obtain

ϕ̂(r) =

1
ηαθδ

ν̂α,δ(r)

−Lα(r)

[∑m+1
j=1

Q1(ρj,δ)∏m+1
i=1,i̸=j

(ρi,δ−ρj,δ)(ρi,δ−r)

]
ν̂α,δ(r)

ηαθδ

=

1
ηαθδ

ν̂α,δ(r)

1− 1
θδ

[κδ ν̂α,δ(r) + η−αĝδ(r)ν̂α,δ(r)]
.

Putting r = 0 in the above equality and using the second equality in (5.5), it
follows that

1− 1

θδ

[
η−αĝδ(0) + κδ

]
ν̂α,δ(0) = −Lα(0)ν̂α,δ(0)

ηαθδ

m+1∑
j=1

Q1(ρj,δ)∏m+1
i=1,i ̸=j(ρi,δ − ρj,δ)ρj,δ

=
ν̂α,δ(0)

ηαθδ

δ
∏N

i=1 q
mi
i∏m+1

j=1 ρj,δ
> 0.

From the inequality above and the fact that ν̂α,δ(0) and ĝδ(0) + κδ are always
positive, it follows that 1

θδ
[η−αĝδ(0) + κδ] ν̂α,δ(0) < 1. Now using Hypothesis

5.1 we obtain 1
θδ

[η−αĝδ(r) + κδ] ν̂α,δ(r) < 1 for all r ≥ 0, which implies that
1

θδηα gδ ∗να,δ(u)+ κδ

θδ
να,δ(u) is a defective density function. The proof of this result

for να,δ(u) is similar. The proof of b) follows from c) similarly as in a). □

From (5.2) and Proposition 5.6 we obtain the main result in this section, in
which we give a representation of ϕ(u) in terms of an infinite series of convolu-
tions of hα,δ,ω and the functions gδ and να,δ defined above, and the corresponding
defective renewal equation for ϕ.

Theorem 5.7. Assume that hypothesis 2.1, 4.1 and 5.1 hold. Then, for η > 0
the Gerber-Shiu penalty function satisfies the defective renewal equation

ϕ(u) =
1

θδ

∫ u

0

ϕ(u− y)

[
κδνα,δ(y) +

1

ηα
gδ ∗ να,δ(y)

]
dy +

1

ηαθδ
hα,δ,ω ∗ να,δ(u),
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whose solution is given by ϕ(u) = 1
ηαθδ

hα,δ,ω ∗
∞∑

n=0
ν
∗(n+1)
α,δ ∗

[
κδ

θδ
+ 1

ηαθδ
gδ

]∗n
(u).

We note from Corollary 5.1 that the only dependence of ϕ on the penalty
function ω appears in hα,δ,ω(u), hence in order to obtain a formula for ϕ(u) for
different penalty functions we only need to calculate the corresponding function
hα,δ,ω. Let us take ω(x, y) = e−sx−ty for s, t ≥ 0. Using (5.3), we obtain that in
this case the function hα,δ,ω defined above has the form

hα,δ,ω(u) =
m+1∑
j=1

E(ρj,δ)Tρj,δ
(ηαf1,s,t + λ2f2,s,t) (u),

where f1,s,t(x) = e−txℓα(x) − se−txTsℓα(x) and f2,s,t(x) = e−txTsf2(x). Since

− ∂

∂s
e−sx−ty|s=t=0 = x, − ∂

∂t
e−sx−ty|s=t=0 = y and

∂2

∂s∂t
e−sx−ty|s=t=0 = xy, for

δ > 0 the results of the previous theorem can be extended to the cases of penalty
functions

ω(x, y) = x, ω(x, y) = y and ω(x, y) = xy, (5.9)

which are not bounded. This can be shown by applying the dominated convergence
theorem and calculating the corresponding derivatives of hα,δ,ω. In this way we
obtain the following result.

Corollary 5.8. Let δ > 0 and

hα,δ,ω(u) =



m+1∑
j=1

E(ρj,δ)Tρj,δ

(
ηαΛα + λ2µ2F 2,I

)
(u) if ω(x, y) = x,

m+1∑
j=1

E(ρj,δ)Tρj,δ ((α− 1)ηαΛα + λ2G) (u) if ω(x, y) = y,

m+1∑
j=1

E(ρj,δ)Tρj,δ (η
αΛ∗

α + λ2G
∗) (u) if ω(x, y) = xy,

(5.10)

where G(u) = uF2(u), Λα(u) =
∫∞
u
ℓα(x)dx, Λ

∗
α(u) = uT0ℓα(u), G

∗(u) = u
∫∞
u

(z−
u)f2(z)dz and F2,I is the integrated tail distribution of F2. Then Theorem 5.7
holds also for the penalty functions (5.9), with the same functions gδ and να,δ,
and corresponding functions hα,δ,ω given by (5.10).

6. Examples and Conclusions

Here we illustrate how to apply the above results to two particular cases of risk
processes. We assume that λ1 = λ2 = η = 1, c > 0, 1 < α ≤ 2, and the penalty
function ω is such that Hypothesis 2.1 holds.

Example 6.1. For given positive constants a, b, let f1(x) = ae−ax, x > 0 and
f2(x) = be−bx, x > 0. In this case the Lundberg’s equation Lα(r)− δ = 0 is given
by b

b+r + a
a−r + cr + rα − 2− δ = 0, and it has two roots in C++, denoted by ρ1

and ρ2. These roots are real and satisfy the inequalities ρ1 < a < ρ2 < b. In order
to obtain from (5.2) the Gerber-Shiu function ϕ for general penalty function ω,
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we need to calculate the functions hα,δ,ω and Wα,δ. From (5.3) it follows that

hα,δ,ω(u) =
a− ρ1
ρ2 − ρ1

∞∫
u

e−ρ1(x−u)

∞∫
x

ω(y − x, x)

(
λ2be

−by +
α(α− 1)

Γ(2− α)
y−1−α

)
dydx

+
ρ2 − a

ρ2 − ρ1

∞∫
u

e−ρ2(x−u)

∞∫
x

ω(y − x, x)

(
λ2be

−by +
α(α− 1)

Γ(2− α)
y−1−α

)
dydx,

(6.1)

and from (A.7) we obtain

Ŵα,δ(r) =
1

c+ rα−1 − b
b+r

a+b
(b+ρ1)(b+ρ2)

+ a−ρ1
ρ2−ρ2

ρ1
ρα−1
1 −rα−1

ρ1−r
+ ρ2−a

ρ2−ρ1
ρ2

ρα−1
2 −rα−1

ρ2−r

.

(6.2)

Since α < 2, the above formula does not admit a simple decomposition in partial
fractions as in the case when α = 2. However, using the formula in Proposition

5.6 b) we obtain an expression for the inverse of Ŵα,δ. Therefore

Wα,δ(u) =
1

ηαθδ
να,δ ∗

∞∑
n=0

θδ
−n

κδνα,δ + ·∫
0

e−bxνα,δ(· − x)dx

∗n

(u),

where κδ = a+b
(b+ρ1)(b+ρ2)

+ a−ρ1

ρ2−ρ1
ρα−1
1 + ρ2−a

ρ2−ρ1
ρα−1
2 , θδ = c + a+b

(b+ρ1)(b+ρ2)
+

a−ρ1

ρ2−ρ1
ρα−1
1 + ρ2−a

ρ2−ρ1
ρα−1
2 , and the function να,δ is given by

να,δ(u) =zα,θδ ∗
∞∑

n=0

[
− 1

θδ

]n [
a− ρ1
ρ2 − ρ1

ρ1

·∫
0

zα,θδ (· − y)

∞∫
y

e−ρ1(z−y) (α− 1)z−α

Γ(2− α)
dzdy

+
ρ2 − a

ρ2 − ρ1
ρ2

·∫
0

zα,θδ (· − y)

∞∫
y

e−ρ2(z−y) (α− 1)z−α

Γ(2− α)
dzdy

]∗n
(u); (6.3)

see Proposition 5.6 a). In view of (6.2) the expressions for the Laplace transforms
of the ruin probability and of the ruin time given in Proposition 5.6 b) are simpler
to calculate in this example.

Example 6.2. Let f1(x) be as in Example 6.1, and assume that f2(x) = b2e−bxx,
x > 0, i.e. f2 is an Erlang density with shape parameter k = 2 and scale parameter
b > 0. In this case the Lundberg’s equation is ( b

b+r )
2 + a

a−r + cr+ rα − 2− δ = 0,
which has two roots in C++, denoted by ρ1, ρ2. These roots are real and satisfy

the inequalities ρ1 < a < ρ2. In this case Ŵα,δ(r) =
1

L̃α(r)
, where

L̃α(r) = c+ rα−1 −
{

a− ρ1

ρ2 − ρ1

[
b2

b+ ρ1

1

(b+ r)2
+

b2

(b+ ρ1)2
1

b+ r

]
+

ρ2 − a

ρ2 − ρ1

[
b2

b+ ρ2

1

(b+ r)2
+

b2

(b+ ρ2)2
1

b+ r

]}
+

a− ρ1

ρ2 − ρ1
ρ1

ρα−1
1 − rα−1

ρ1 − r
+

ρ2 − a

ρ2 − ρ1
ρ2

ρα−1
2 − rα−1

ρ2 − r
.
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Again, this expression does not admit a partial fraction decomposition when α < 2.
Hence we use Proposition 5.6 b) to obtain:

Wα,δ(u) =
1

ηαθδ
να,δ ∗

∞∑
n=0

θδ
−n

κδνα,δ +

·∫
0

(
a− ρ1
ρ2 − ρ1

[
b2

b+ ρ1
e−bxx+

b2

(b+ ρ1)2
e−bx

]

+
ρ2 − b

ρ2 − ρ1

[
b2

b+ ρ2
e−bxx+

b2

(b+ ρ2)2
e−bx

])
να,δ(· − x)dx

}∗n

(u),

where κδ = a−ρ1

ρ2−ρ1

[
1

b+ρ1
+ b

(b+ρ1)2

]
+ ρ2−a

ρ2−ρ1

[
1

b+ρ2
+ b

(b+ρ2)2

]
+ a−ρ1

ρ2−ρ1
ρα−1
1 + ρ2−a

ρ2−ρ1

×ρα−1
2 and θδ = c+ a−ρ1

ρ2−ρ1

[
1

b+ρ1
+ b

(b+ρ1)2

]
+ ρ2−a

ρ2−ρ1

[
1

b+ρ2
+ b

(b+ρ2)2

]
+ a−ρ1

ρ2−ρ1
ρα−1
1 +

ρ2−a
ρ2−ρ1

ρα−1
2 . The functions hα,δ,ω and να,δ have the same expressions as in (6.1)

and (6.3), with the corresponding roots ρ1 and ρ2.
Although the expressions for Wα,δ(u) presented in these two examples are diffi-

cult to work with in general, the formulas for Ŵα,δ(r) are rather simple and their
inverse Laplace transforms can be calculated by using numerical methods.

Since hα,δ,ω and the constants in the expressions above can be calculated explic-
itly, the function Wα,δ becomes the most interesting object of study. For instance,
the expressions given in Proposition 5.6 a) and b) allow the use of theoretical tools
to obtain asymptotic expressions for να,δ and Wα,δ. These results can be used, in
turn, to obtain asymptotic expressions for the ruin probability, the Laplace trans-
form of the time to ruin, the joint tail of the severity of ruin and the surplus prior
to ruin and some other important cases of Gerber-Shiu functions. The asymptotic
expressions for the ruin probability and the joint tail of the severity of ruin and
the surplus prior to ruin are the main topic in Kolkovska and Mart́ın-González
[12].

Finally, the function Wα,δ is related to the density of the negative Wiener-Hopf
factor of the Lévy process Vα, which we study in further detail and generality in
a forthcoming work.

Appendix A. Remaining Proofs

Proof of Lemma 4.1. The existence of the integral In follows from the
existence of both, ĝα,1 and the first moment of gα,1 for α ∈ (1, 2). Setting

y = −n1/αx we obtain In =
∫∞
0
n
(
1− ery/n

1/α

+ ry

n1/α

)
gα,1(−y)dy, and putting

I∗n(y, r) = n
(
1− ery/n

1/α

+ ry
n1/α

)
gα,1(−y) gives |I∗n(y, r)| =

∣∣∣∣ ∞∑
k=2

rk yk

nk/α−1 gα,1(−y)
∣∣∣∣

≤
∞∑

k=2

|r|kykgα,1(−y) =
(
e|r|y − 1− |r|y

)
gα,1(−y). Since

∞∫
0

(
e|r|y − 1− |r|y

)
gα,1(−y)

×dy =
0∫

−∞

(
e−|r|y − 1 + |r|y

)
gα,1(y)dy < ∞, using that |In| ≤

∫∞
0

|I∗n(x, r)| dx

the result follows from the dominated convergence theorem.

Proof of Lemma 4.2. Hypothesis 2.1 implies that ϕn,k(u) is bounded for all
u ≥ 0, hence K0(n, k, r) is finite. By performing the change of variables z = u+ x
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we obtain

K0(n, k, r) = λ1(k)A(k)

∫ ∞

0

e−rzϕn,k(z)

∫ z

0

bn(k)e
−(bn(k)−r)xdxdz

+ λ1

N∑
i=1

mi∑
j=1

βij

∫ ∞

0

e−rzϕn,k(z)

∫ z

0

xj−1qji e
(r−qi)x

(j − 1)!
dxdz.

Using the formula
∫ x

0

yk−1qkj e
−qjy

(k−1)! dy = 1−
k−1∑
l=0

e−qjx

l! qljx
l we get

K0(n, k, r) = λ1(k)A(k)
bn(k)

bn(k)− r

∫ ∞

0

e−rzϕn,k(z)dz − λ1(k)(1−A(k))

× bn(k)

bn(k)− r

∫ ∞

0

ϕn,k(z)e
−bn(k)zdz

+ λ1

N∑
i=1

mi∑
j=1

βijq
j
i

(qi − r)j

∫ ∞

0

e−rzϕn,k(z)dz

− λ1

N∑
i=1

mi∑
j=1

βijq
j
i

(qi − r)j

∫ ∞

0

e−rzϕn,k(z)

{
j−1∑
l=0

e−qiz+rz

l!
(qi − r)lzl

}
dz

=

[
λ1(k)A(k)bn(k)

bn(k)− r
+ λ1

N∑
i=1

mi∑
j=1

βijq
j
i

(qi − r)j

]
ϕ̂n,k(r)

− λ1(k)(1−A(k))bn(k)

bn(k)− r
ϕ̂n,k(bn(k))− λ1

N∑
i=1

mi∑
j=1

βijq
j
i

j−1∑
l=0

(qi − r)lγl,i(n, k)

l!(qi − r)j
,

and the result follows.

Proof of Lemma 4.3. Let us write e(u; r1, r2) = e−r1u−e−r2u and recall that

d(α) = α(α−1)
Γ(2−α) . Notice that

η−α(Mα,n(r1)−Mα,n(r2)) = n1+1/α

∫ ∞

0

∫ ∞

u

e(u; r1, r2)ω(x− u, u)gα,1(n
1/αx)dxdu.

(A.1)

From formula (14.37), page 89 in [14], we get limx→∞
gα,1(x)

d(α)x−1−α = 1. Hence, for

every ε > 0 there exists a positive number Aε > 1 such that for all u > Aε,

gα,1(x)

d(α)x−1−α
< (1 + ε). (A.2)

We take A = Aε and n > Aα, and split (A.1) as follows:

η−α(Mα,n(r1)−Mα,n(r2)) = n1+1/α

∫ ∞

1

∫ ∞

u

e(u; r1, r2)ω(x− u, u)gα,1(n
1/αx)dxdu

+ n1+1/α

∫ 1

A/n1/α

∫ ∞

u

e(u; r1, r2)ω(x− u, u)gα,1(n
1/αx)dxdu

+ n1+1/α

∫ A/n1/α

0

∫ ∞

u

e(u; r1, r2)ω(x− u, u)gα,1(n
1/αx)dxdu.

(A.3)
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Noticing that u ≥ 1 and x ≥ u imply n1/αx > A, from (A.2) we obtain for the
first term above,∣∣∣∣n1+1/α

∫ ∞

1

∫ ∞

u

e(u; r1, r2)ω(x− u, u)gα,1(n
1/αx)dxdu

∣∣∣∣
≤ 2d(α)B(1 + ε)

∫ ∞

1

∫ ∞

u

x−1−αdxdu =
2d(α)B(1 + ε)

α(α− 1)
.

Hence, using dominated convergence it follows that

lim
n→∞

n1+1/α

∫ ∞

1

∫ ∞

u

e(u; r1, r2)ω(x− u, u)gα,1(n
1/αx) dx du

= d(α)

∫ ∞

1

∫ ∞

u

e(u; r1, r2)ω(x− u, u)x−1−α dx du. (A.4)

Now we consider the second term in (A.3). In this case n1/αx ≥ A, hence∣∣∣∣∣n1+1/α

∫ 1

A/n1/α

∫ ∞

u

e(u; r1, r2)ω(x− u, u)gα,1(n
1/αx)dxdu

∣∣∣∣∣
≤ d(α)B

∫ 1

0

∫ ∞

u

|e(u; r1, r2)|
gα,1(n

1/αx)

d(α) [n1/αx]
−1−α d(α)x

−1−αdxdu

≤ d(α)B(1 + ε)

∫ 1

0

∞∑
k=1

|rk2 − rk1 |uk

k!

∫ ∞

u

1

x1+α
dxdu ≤ 2d(α)B

α

(
|r1 − r2|
2− α

+ e|r1| + e|r2|
)
.

Using again dominated convergence yields

lim
n→∞

n
α+1
α

∫ 1

A

n1/α

∫ ∞

u

e(u; r1, r2)ω(x− u, u)gα,1(n
1/αx)dxdu

= d(α)

∫ 1

0

∫ ∞

u

e(u; r1, r2)ω(x− u, u)x−1−αdxdu. (A.5)

For the third term in (A.3) we use the change of variables y = n1/αu and z = n1/αx.
This gives∣∣∣∣∣n1+1/α

∫ A/n1/α

0

∫ ∞

u

e(u; r1, r2)ω(x− u, u)gα,1(n
1/αx)dxdu

∣∣∣∣∣
≤ n1−1/α

∫ A

0

∫ ∞

y

∣∣∣e−r1y/n
1/α

− e−r2y/n
1/α
∣∣∣ω (z − y

n1/α
,

y

n1/α

)
gα,1(z)dzdy

≤ B

∫ A

0

∫ ∞

y

∞∑
k=1

|rk1 − rk2 |yk

k!n(k+1−α)/α
gα,1(z)dzdy ≤ B

n(2−α)/α

∫ A

0

(
e|r1|y + e|r2|y

)
Gα,1(y)dy

≤ B

n(2−α)/α
A
(
e|r1|A + e|r2|A

)
Gα,1(0),

where to obtain the last inequality we used that n ≥ Aα > 1, which implies
n−(2−α)/α ≥ n−(k+1−α)/α for all k ≥ 2. From here the result follows using (A.4)
and (A.5).

Proof of Proposition 5.4. In order to prove a) first we will show that J0(r) =

0 for all r ≥ 0, where J0(r) = λ1

m+1∑
j=1

Q1(ρj,δ)
m+1∏

i=1,i̸=j

f̂1(−r)−f̂1(−ρj,δ)

ρj,δ−r
(ρi,δ − ρj,δ)

−1. For
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fixed r ≥ 0 we obtain, setting ρ∗j,δ(r) = ρj,δ − r and q∗i (r) = qi − r,

J0(r) = λ1

m+1∑
j=1

N∏
h=1

(q∗h(r)− ρ∗j,δ(r))
mh

m+1∏
i=1,i≠j

(ρ∗i,δ(r)− ρ∗j,δ(r))

N∑
k=1

mk∑
l=1

βklq
l
k

(q∗k(r)− ρ∗j,δ(r))
l − (q∗k(r))

l

(q∗k(r))
l(q∗k(r)− ρ∗j,δ(r))

lρ∗j,δ(r)

= λ1

m+1∑
j=1

N∏
h=1

(q∗h(r)− ρ∗j,δ(r))
mh

m+1∏
i=1,i≠j

(ρ∗i,δ(r)− ρ∗j,δ(r))

N∑
k=1

mk∑
l=1

βklq
l
k

P ∗
l (ρ

∗
j,δ(r))

(q∗k(r))
l(q∗k(r)− ρ∗j,δ(r))

l
, (A.6)

where P ∗
l is a polynomial of degree l−1. We note that for each j ∈ {1, . . . ,m+1},

N∑
k=1

mk∑
l=1

βklq
l
k

P ∗
l (ρ

∗
j,δ(r))

(q∗k(r))
l(q∗k(r)− ρ∗j,δ(r))

l
=

P ∗∗(ρ∗j,δ(r))
N∏

h=1

(q∗h(r)− ρ∗j,δ(r))
mh

,

where P ∗∗(ρ∗j,δ(r)) is a polynomial on ρ∗j,δ(r) of degree at most m−1. Putting the

above equality in (A.6) gives J0 = λ1
m+1∑
j=1

P∗∗(ρ∗
j,δ(r))

m+1∏
i=1,i̸=j

(ρ∗
i,δ(r)−ρ∗

j,δ(r))

= 0 due to (5.5).

Using that λ1 + λ2 + δ = λ2f̂2(ρj,δ) + λ1f̂1(−ρj,δ) + cρj,δ + ηαραj,δ, from (5.4) and

the equality
ρα
j,δ−rα

ρj,δ−r = ρj,δ
ρα−1
j,δ −rα−1

ρj,δ−r + rα−1 we get

Ŵα,δ(r)

=
1

m+1∑
j=1

Q1(ρj,δ)

m+1∏
i=1,i̸=j

(ρi,δ−ρj,δ)

(
−λ2

(f̂2(r)−f̂2(ρj,δ))

ρj,δ−r
+ c+ ηα

ρα
j,δ

−rα

ρj,δ−r

)
=

1
m+1∑
j=1

E(ρj,δ)

(
−λ2T̂ρj,δf2(r) + c+ ηαρj,δ

ρα−1
j,δ

−rα−1

ρj,δ−r
+ ηαrα−1

)
=

1

c+ ηαrα−1 − λ2

m+1∑
j=1

E(ρj,δ)T̂ρj,δf2(r) + ηα
m+1∑
j=1

E(ρj,δ)ρj,δ
ρα−1
j,δ

−rα−1

ρj,δ−r

(A.7)

=

1
ηαθδ

ν̂α,δ(r)

1− 1
θδ

[η−αĝδ(r) + κδ] ν̂α,δ(r)

where the last equality is obtained by dividing the nominator and the denominator
of (A.7) by c + ηακδ + ηαrα−1 + ηα

∑m+1
j=1 E(ρj,δ)ρj,δT̂ρj,δ ℓα(r). This shows a). To

prove b) we define the function ν∗α,δ(r) = (c+ ηαrα−1 + ηαf̂α,δ(r))
−1. From (5.2) and

(A.7) we obtain

ϕ̂(r) = ĥα,δ,ω(r)ν
∗
α,δ(r)(1− ĝδ(r)ν

∗
α,δ(r))

−1. (A.8)

First we consider the case of δ > 0. We will show in this case that if ω(x, y) ≡ 1,
then

1

r

[
1− ĝδ(r)ν

∗
α,δ(r)− δRν∗α,δ(r)

]
= ĥα,δ,ω(r)ν

∗
α,δ(r), (A.9)
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where R =
(∏N

i=1 q
mi
i

)(∏m+1
j=1 ρj,δ

)−1

. Using that Lα(ρj,δ) = 0 and Lemma 5.2

we obtain

m+1∑
j=1

E(ρj,δ)
δ

ρj,δ
=

m+1∑
j=1

E(ρj,δ)

λ2

(
f̂2(ρj,δ)− 1

)
ρj,δ

+ c+ ηαρα−1
j,δ +

λ1

(
f̂1(−ρj,δ)− 1

)
ρj,δ


=

m+1∑
j=1

E(ρj,δ)

λ2

(
f̂2(ρj,δ)− 1

)
ρj,δ

+ c+ ηαρα−1
j,δ


+ λ1

m+1∑
j=1

E(ρj,δ)
f̂1(−ρj,δ)
ρj,δ

− λ1

m+1∑
j=1

E(ρj,δ)

ρj,δ
. (A.10)

From Lemma 5.2 it follows that λ1
∑m+1

j=1
E(ρj,δ)
ρj,δ

= λ1R. On the other hand, due to

(2.1), f̂1(−ρj,δ) = Q(−ρj,δ)∏N
i=1(qi−ρj,δ)

mi
, hence from the definition of E(ρj,δ) we obtain

λ1
∑m+1

j=1 E(ρj,δ)
f̂1(−ρj,δ)
ρj,δ

= λ1
∑m+1

j=1

Q(−ρj,δ)∏m+1
k=1,k ̸=j(ρk,δ − ρj,δ)ρj,δ

. Since Q is a

polynomial in ρj,δ of degree at most m− 1 and constant term
∏N

i=1 q
mi
i , it follows

that Q(−ρj,δ)ρ−1
j,δ = (ρj,δ)

−1 ∏N
i=1 q

mi
i + Q0(−ρj,δ), where Q0(r) is a polynomial

of degree at most m−2. Hence, applying (5.5) we get λ1
∑m+1

j=1 E(ρj,δ)
f̂1(−ρj,δ)

ρj,δ
=

λ1R. Using this and the equality λ1
∑m+1

j=1
E(ρj,δ)
ρj,δ

= λ1R, (A.10) simplifies to

δR =

m+1∑
j=1

E(ρj,δ)

λ2

(
f̂2(ρj,δ)− 1

)
ρj,δ

+ c+ ηαρα−1
j,δ

 . (A.11)

Lemma 5.2 yields 1− ĝδ(r)ν
∗
α,δ(r) =

m+1∑
j=1

E(ρj,δ)
(
1− λ2T̂ρj,δ

f2(r)ν
∗
α,δ(r)

)
. From

this equality and (A.11),

1

r

[
1− ĝδ(r)ν

∗
α,δ(r)− δRν∗α,δ(r)

]
(A.12)

=
1

r

m+1∑
j=1

E(ρj,δ)

1−λ2T̂ρj,δf2(r)ν
∗
α,δ(r)−

λ2

(
f̂2(ρj,δ)− 1

)
ρj,δ

+ c+ ηαρα−1
j,δ

 ν∗α,δ(r)

 .

Using that ν∗α,δ(r) =
1

c+ ηαrα−1 + ηαf̂α,δ(r)
and Lemma 5.2,

m+1∑
j=1

E(ρj,δ)

[
c+ ηαrα−1 + ηαρj,δ

ρα−1
j,δ − rα−1

ρj,δ − r

]
ν∗α,δ(r) = 1. (A.13)
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From (A.13) and (A.12) we obtain, for r ̸= ρj,δ,

1

r

[
1− gδ(r)ν

∗
α,δ(r)− δRν∗α,δ(r)

]
=

1

r

m+1∑
j=1

E(ρj,δ)

[
c+ ηαrα−1 + ηαρj,δ

ρα−1
j,δ − rα−1

ρj,δ − r

]
ν∗α,δ(r)

−1

r
λ2

m+1∑
j=1

E(ρj,δ)T̂ρj,δf2(r)ν
∗
α,δ(r)

−1

r

m+1∑
j=1

E(ρj,δ)

(
λ2(f̂2(ρj,δ)− 1)

ρj,δ
+ c+ ηαρα−1

j,δ

)
ν∗α,δ(r)

=
1

r

m+1∑
j=1

E(ρj,δ)


ηαr ρα−1

j,δ − rα−1

ρj,δ − r
+ λ2r

1−f̂2(r)
r

− 1−f̂2(ρj,δ)

ρj,δ

ρj,δ − r

 ν∗α,δ(r)


=

m+1∑
j=1

E(ρj,δ)
(
ηαT̂ρj,δ ℓα(r) + λ2T̂ρj,δF 2(r)

)
ν∗α,δ(r).

Since ξω(u) = F 2(u) when ω(x, y) = 1, from (5.3), (5.1) and the above equality
we obtain

ĥα,δ,ω(r)=

m+1∑
j=1

E(ρj,δ)
(
ηαT̂ρj,δ ℓα(r)+λ2T̂ρj,δF 2(r)

)
=

1

r

[
1− ĝδ(r)ν

∗
α,δ(r)− δRν∗α,δ(r)

]
ν∗α,δ(r)

,

which proves (A.9). From (A.9) and (A.8) it follows that

φ̂δ(r) =
1

r

1− ĝδ(r)ν
∗
α,δ(r)− δRν∗α,δ(r)

1− ĝδ(r)ν∗α,δ(r)
=

1

r
− 1

r

[
δRν∗α,δ(r)

1− ĝδ(r)ν∗α,δ(r)

]

=
1

r
− 1

r


δR

ηα

θδ + rα−1 + f̂α,δ(r)− η−αĝδ(r)− κδ


=

1

r
− 1

r

[
δR

ηαθδ
να,δ(r)

1− 1
θδ

[η−αĝδ(r) + κδ] να,δ(r)

]
,

=
1

r
− 1

r
δRŴα,δ(r),

where the last equality follows from (5.7). This shows b).
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no. 1, 59–74.
7. Furrer, H.; Michna, Z. and Weron, A.: Stable Lévy motion approximation in collective risk
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