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ONTHE|N, p,,q,|, SUMMABILITY
FACTORSOF INFINITE SERIES

Debadutta Mohanty

Abstract

In this paper a theorem on generalized Norlund Summability Factors has
been proved which generalizes some earlier factor theorems on

N, p,| (B, |Cl, (4]) and [N, p,| ([1]) for k> 1.

1.INTRODUCTION

Given any series Zan , if there exists a sequence {1 } such that Z a, 4, is
n=0

summable by a method A, then we say that {1 } is a summability factor for the
method A. Results establishing theorems on summability factors are called factor

theorems.
In this section we introduce some notations, conventions and definitions which

areto be used in this paper. Let z &, bean infinite series with sequences of partial
0

sums{s}.
Let p={p,} be apositive non-increasing sequence of real numbers such that
n
pn=i;)pi—>ooasn—>oo; (1.2)
and
p,=p, =0 for i >1.

For apositive real sequenceq = (q,), we define an increasing sequence (r,) by
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r=(pP*0a), =2 P, G, 85N> (1.2)
i=0

where g, = 0(1) and 1=0(q,)asn —>© andq, =Q_ =r, =0fori =1 =
denotes the convolution product.

The (N, P, . qn)-transform of the sequence (s,) is defined by ([2]).

1 n
=~ _Zopnfi qs. (L3)

The series Zaﬂ is said to be |N, P, ,qn|k summablefor k> 1, if

k-1
Z (r_nJ |tn - tn—1|k <o, (14)

n=1 qn
If (d) be the sequence of (C, 1)-transform of the sequence (n, &), then

1 s 1 4
d =— ka = —— k asa, =0
. n+1k§=,oak n+1kZ=llak 8 =0, (L5)
2.NOTATIONS

We use the following notations

K
A;( = Z_pk—j 4 =P & + Pe_i—1Gaat -t Po G
j=i

S0 that
k
A:( = Z.pkfj qj’ 0<i<k (21)
j=i
= A", k>n
=0, i>k
and

Kk
B = D Pn O =Py G+ Py 1 G+ Py G

=0



Onthe|N, p, q |, Summability Factors of Infinite Series 57
so that
k
B,":Z_pmj q;_;, O<i<k<n 2.2)
i=i
=B", k=n
=0, i >k

we find the rdations as
Bl? = rn—k = A€7k
and
Blk +A?+7li—i = (p*q)n—i = r.n—i'

In particular, if i =0, then

k n
B0 + A<+l = r.n'

3. The object of this note is to prove the following theorem on|N, P, qn|k

summability.

Theorem: Let (p) , (g,) and (r,) be the sequences satisfying (1.1) and (1.2). If
(X) is a positive monotonic non-decreasing sequence and (A ) be any sequence

such that
Ay X, =01)as m—
Zm:n X, |A% A, =0(1), m— oo
n=1
> B[ —o(x,). me
n=1 In

and

r,=0(ng,) as n— o

(3.1)

(3.2)

(3.3)

(3.4)

whered_isthen-th (C, 1) transformof the sequence (na), thenthe series Z a, 4,

is summable [N, p, , q.|, , k >1.

k!
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It may be noticed that under the conditions of the theorem, we have that

AL, =4, -4, > 0as n — oo (3.5
4. We require the following Lemmas to prove the theorem.
It is easy to prove the following two equalities as
oy A -1 AP =B A-B " A (4.1)
and
Bl A" + By AV -BT AT BT AT, (4.2
= ‘qi(rn—l Pr_i =Ty pn—i—l}
= qi(rn pn—i—l - rn—l pn—i)-
Lemma 1: Under the relations given above, we find
n .
Z II An+BI n—l_Bl—l Anfl_BIHl AnJrl‘:O(l) (43)
qn - =1 ’ .
asn—oo.
Proof: From (4.2)
LHS™ qu(rn Pn_oi—1— Mo pn—i) (4.4)
qn n-1i=1
n -1 n-1
Zq Pnia —— zq Pn
qn n-1 i=1

i=1
r, 1
= (fpy = Pos d) —— (ry = Py % — Py Q)
qn rn 1

—. n

_ P,y o P
0

qn qn rn—l
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S%(pn—pn1)+ Po =0@1) asn -

n

=R.H.S.
Hence the Lemma.

We assume here that

1Al A B A
o al |

qn rn—l i=1 ri

=0(1) (4.5)
and

1 ril 0 (Bll Al - B(i) An;ll)
qn rn—l i=1 ri

Lemma 2: ([1], Lemma)

=0 asn—>ow. (46

Suppose (X)) is a positive non-decreasing sequence such that (3.1) and (3.2)
hold. Then

2 X |A 4| <o 4.7)
n=1
and
n X,|A 4] =001),as n - .
Lemma 3: As the notations defined above, we get

m+1 ian _ pi-l n-1
SOBATCBT AT g

), as m—>oo_

n=i+1 rn rnfl

Proof: We have

szrl Bll An _B(i)7l Anil — mZJrl I Bll — I B(i)71

n=i+1 P P n=i+1 |

= A(m, i), say.

CIearIyA(m,i) is one positive and decreasing sequencefor 1<i < m, hence,

sup  A(mi) = A(m1)

1<i<m
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m+l o m+1 1 B(())
)

n=2 M1 n=2\Th1 Iy

m+1
i z(pnlqo_ P, qojz(& p’“”jqo P o me

n=2 rn -1 rn ri rm+l I’l

Thus A(m,i)=0(1) as m— o for each i < m; this completes the proof of
Lemma.

Similarly we can prove for eachi,

! BlI An+l - B(I) An;ll
2

n=i+1 rn rn,]_

=0(1), as m— oo, (4.9)

5. PROOF OF THE THEOREM

Let T _bethenth(N, p, , g,) transform of the series Zan Ay, then

== an,.q Zak/l

n i = k=0
1 n
== Zak/l an.q = Ya 4 A
n k=0 rn k=0
Then for n >1, we get, by Abel’s Transformation
1 n n-1 N
Tn_Tn—lz_ ZA & l__ZAn & ﬂ‘
n i=1 n]_l—l
n An An—l
= Z[r__ " &4 gnee A" =0
i=1 'n n-1
1 . n n -
= Z(rn—l A _A ! rn)ai 21
rn rn—1'=
1

= Z(BlA IilALil)aiﬂ’u(by(4.l))
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1 n B(i)—l n-1 ;Li
(L A A

nnlll

i 3

_ {ZABlA ~B A4 kzi_)kak

+ (Bln A -B ' A:*l)ln Zn:k-ak+0}

n

1 _“zl{(Bi A BT A, BAL B A”ul)’li*l} (+1d

i i+1

L EBA-B 0y

o, n

n

+

AsA L =4 — 4 .., wehave by using (4.2)

_(n+1) p, g, 4, d, 1 ni{(Bi A -B An—l)]ﬁ
+

nr, r,r., ‘-1 i

i+1 n L - B(I) n+—ll -
(AL R AL, —Am}(wl) d

— (n+1) pO qn X’n dn + 1 ni{(Bll An _ B(i)—l An—l)

nr, M1 -1
i n i n-1 1 — 1 i n i-1 n-1
_(Bl A+l_BOA )}ﬂ'd"'r r ZT(BlA_Bo A )ﬂ'i di
n-1 i=1
n-1

Z(Blnl AnJrl - B(I) An;ll) Aﬂ'l di

1 A d 1
= (n+ ) Eorqn . : + ror qu(n 1 pnl _rn _pn—i—l)ﬂ'i di

n n ‘n-1 i=1
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+

L S lea-BtA)ad-+

ror, i <ii

n-1 _ _
LS (BT AL -B A)Az d

rn rn—l i=1

+

=T, +T,+T,+T,,say.

To prove the Theorem, it is sufficient to show, by Minkowski’s inequality, that

" r k-1
Z, (q—J

Now, by using Abd’s transformation

m+1 r k-1 ‘
- z(—”j T

n =1 qn

T

nj

“ <o for 1 =1234

_ 5t A4 ) [ﬂ
n=1 r n

n

m+1 nﬁ“n dnk
- o) Y G| 4| [0

n=1 rn

m

- o) {

e dik Lo’ dik
al $ 80 s 3 90
1 i=1 i i=1 i

= 0(1) Zm;‘ Al X, +0@) |4, X,
= 0(1) zm: A2, X, +0(2)
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by virtue of Lemma 2 and hypothesis.
Next, by using Holder’s inequality and (4.4), we get

m+1 k-1
--% (3

k
m+1 1 n-1
B { alty Pros 1,y ) A |di|}

q|(rn Prics = Thor P )|ﬂ'l|k |di|k

k-1
{q Izlql( pn—i—l_rn—l pni)}

m m+1 _ _ -
01) qu|ﬂ1|k |di|k Z rn pnilfl rnfl pn—l
i=1

n=i+1 rn rnfl

m+1 pn . pn,i
O Bl g 3 (P B

n

qu|’7’||d ( _ pm+l|

d oA g d,
L z""

i=1 m+1

zlﬂl q.

=0(1) as m— oo, from1,.

Also, from the fact that r_ = 0(nq, ), we find

m+ 1 r k-1
|3 = nZ=:1 q_: |Tn3|k
m+1 k-1 n-1
1 1 i n i - n-
L “BA-B A Ad

n=2 qn rnrnfjl_i=lI
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o) ot [T A B A |
n=2 qn rn rn—l I
m+1 1 n-1 ] i n_ Bi—l n-1 K K
= 0(1) 2‘2 r,r., leql(Bl A r =4 )|ﬂi| |di|
{ 1 Z a(B A" - B A“)“}
qn n-1 i= ri

This is due to HOlder’s inequality. Now from (4.5) and Lemma 3, we get

AR S a(Bl A" - B AT g

n=2 rn rn—l i=1 ri

m _ K d_k m+1 i n_ pi-l n-1
B I IE S I G

n=1 ri n=i+1 rnrn—l

", gl |/1i|k7l |di|k

L

ZW q,

= 0(1) as M — oo, from1,.

Lastly, from (4.6) and (4.9) and by applying Holder’s inequality, we have that

r

m+1 k-1
|4 ) nZ=:l (q_nJ |T |
m+1 r k-1
-£[2]

m+1 1 n’li Bli+l Arl _ Bi An+— 1 k
<Y oo K {Zl( : i : l) A A |di|}
1 i=

n=2 qn rn rn—

n-1, _ k
1 (BlHl An+ 1 B(I) An;ll) A Z‘i di

rn rn—l i=1
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m+1 l n-1 ; i+1 n _Bi n-1 ] k
AP {z (B A B At di}

n=2 qn n i=1 I’i

m+1 n-1 B'Jrl l_B' -
o) § L G B AL B ALY s

n=2 rn rn]_ i=1 ri

1 n-1pi+l nl _B(I) rlrl—l k-1
{ S B A A }

Oy M1 -2 fi

m _ k me Bi+l n _ Bi n-1
0(1)2 G . k|Al| | | Zf (1 AL 0A+1)

rl n=i+1 rn rn—l

[y

M

o) 3 (a4l Glaa]) + o

i=1

S g/,
= 0(1) >lijA4] |r [
i=1

m-1 ] i qv|dv|k m qi di|k
o) [ > Aljaxl) Zl = mAL| Zl :

i=1

ZA(|A/1|) X; +01) mAZ,| X,

m-1 m-1
= 01) i X, |4 4| +001) XAz X, +0)
i=1 i=1

= 0(1) ,aS M— o
by virtue of the hypothesis and Lemma 2.
This completes the proof of the theorem.
Corollary 1 ([1]): Let (g,) be a sequence of positive number such that
Q,=0(n,g,) as n— .

If (x) is a positive monotonic non decreasing sequence such that
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Ay X, =0(1) as m— oo,

m m

>inX & 4,| = o)
n=1

and

i S |tn|k =0(X,,) as m—> o

n=1 n

wheret isthen-th (C, 1) transform of (na ), thenthe series Zan A, issummable
N.q

Taking p, = 1 for all ninthetheorem we get the corollary. In addition to thisif
wetake g, = 1 for all values of nwefind,

yk>1,
K

Corollary 2([4]): If (X)) is a positive monotonic non-decreasing sequence such
that

Ay X =0(1) as m— oo

m m

Zm:n X,

n=1

N 2| =0Q)

and
nzrl %|tn|k = 0(X,,) as m— w0
then theseriasZan 2, is summable |C, lek, k>1.
Corollary 3 ([5]): Let (p,) be a monotonic decreasing sequence such that
P =0n)as n - w.
If (X)) is a positive monotonic non-decreasing sequence such that
Ay X = 0(1) as m— oo

Zm:n X,

n=1

N 2| =0Q)
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and

Zm: % |dn|k =0(X,,) as m— w0

n=1

whered, isthen-th (C, 1) transform of the sequence (na,) then the series Z a, 4,

n=1
is summable [N, p,|, , k>1.

Putting g, = 1 for all n, we get the corollary.
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