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Abstract. In Rajeev (Indian J. Pure Appl. Math. 44 (2013), no. 2, 231–
258.), ‘Translation invariant diffusion in the space of tempered distributions’,
it was shown that there is an one-to-one correspondence between solutions
of a class of finite dimensional stochastic differential equations (SDEs) and
solutions of a class of stochastic parial differential equations (SPDEs) in the
space of tempered distributions, which are driven by the same Brownian
motion. Coefficients of the SDEs were related to coefficients of the SPDEs
through convolution with the initial value of the SPDEs.

In this paper, we consider the situation where solutions of the SDEs are
stationary and ask whether solutions of the corresponding SPDEs are also
stationary. We provide an affirmative answer, when the initial random vari-
able takes value in a certain set C, which ensures that coefficients of the SDEs
are related to coefficients of the SPDEs in the above manner.

1. Introduction

The topology of infinite dimensional spaces plays a major role in the study of
stochastic differential equations (SDEs) in those spaces. These topological vector
spaces are usually taken to be countably Hilbertian nuclear spaces (see [14, 16])
and in particular real separable Hilbert spaces (see [3, 4, 7]). In [21], a correspon-
dence was shown between finite dimensional SDEs and stochastic partial differ-
ential equations (SPDEs) in S ′(Rd) (where S ′(Rd) denotes the space of tempered
distributions) via an Itô formula. The results there involves deterministic initial
conditions in some Hermite Sobolev space Sp(Rd). In this paper we extend this
correspondence to random initial conditions. Assuming the existence of stationary
solutions of finite dimensional SDEs, we show the existence of stationary solutions
of infinite dimensional SPDEs, via an Itô formula which is used in proving the
correspondence.

1.1. Main results. Let (Ω,F , (Ft), P ) be a filtered complete probability space
satisfying the usual conditions. Let {Bt} be a d dimensional (Ft) standard Brow-
nian motion. By (FB

t ) we denote the filtration generated by {Bt}. Let δ be an
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arbitrary state, viewed as an isolated point of Ŝp(Rd) := Sp(Rd) ∪ {δ}. For an
initial condition ψ ∈ Sp(Rd), consider the SPDE

dYt = A(Yt) dBt + L(Yt) dt; Y0 = ψ, (1.1)
where

(i) the operators A := (A1, · · · , Ad), L on Sp(Rd) as follows: for ϕ ∈ Sp(Rd)

Aiϕ := −
d∑

j=1
⟨σ , ϕ⟩ji ∂jϕ, i = 1, · · · , d (1.2)

and

Lϕ := 1
2

d∑
i,j=1

(⟨σ , ϕ⟩ ⟨σ , ϕ⟩t)ij ∂
2
ijϕ−

d∑
i=1

⟨b , ϕ⟩i ∂iϕ, (1.3)

(ii) σ = (σij)d×d, b = (b1, b2, · · · , bd) with σij , bi ∈ S−p(Rd), ∀i, j = 1, 2, · · · , d.
For any ϕ ∈ Sp(Rd), by ⟨σ , ϕ⟩ we denote the d × d matrix with entries
⟨σ , ϕ⟩ij := ⟨σij , ϕ⟩. Similarly ⟨b , ϕ⟩ is a vector in Rd with ⟨b , ϕ⟩i :=
⟨bi , ϕ⟩.

Given ψ ∈ Sp(Rd), let σ̄(· ;ψ) : Rd → Rd2 and b̄(· ;ψ) : Rd → Rd be denote the
functions σ̄(x;ψ) := (⟨σij , τxψ⟩) and b̄(x;ψ) := (⟨bi , τxψ⟩). Let τx, x ∈ Rd denote
the translation operators (see Section 2). The next result is about the existence
and uniqueness of a strong solution of (1.1).

Theorem 1.1 ([21, Theorem 3.4 and Lemma 3.6]). Let ψ, σij , bi, {Bt} be as above.
Suppose that the functions x 7→ σ̄(x;ψ) and x 7→ b̄(x;ψ) are locally Lipschitz. Then
equation (1.1) has a unique Ŝp(Rd) valued (FB

t ) adapted strong solution given by
Yt = τZt(ψ), for 0 ≤ t < η,

where η is an (FB
t ) adapted stopping time and {Zt} solves the SDE

dZt = σ̄(Zt;ψ) dBt + b̄(Zt;ψ) dt; Z0 = 0. (1.4)

We extend this result in Theorem 3.12 and Theorem 3.17 which allows initial
conditions to be random. Furthermore, in Theorem 4.2, assuming the existence
of stationary solutions of the finite dimensional SDEs, we show the existence of
stationary solutions of the corresponding SPDEs. In Theorem 4.5, under an addi-
tional assumption on the initial condition of the SPDE, viz. that it takes values
in a specific set, we show that stationary solutions of (possibly) unrelated finite
dimensional SDEs can be lifted to stationary solutions of the given SPDE. Note
that in this result, we do not require the SDEs to be in correspondence with the
SPDE. However, this is done at the cost of the additional assumption on the initial
condition.

1.2. Layout of the paper. In this paper, we use the same techniques as those
used in [21]. In Section 2, we list basic properties of Hermite Sobolev spaces which
are used throughout the paper.

In Section 3, we extend the Itô formula [20, Theorem 2.3] to Theorem 3.2 involv-
ing random initial conditions and in Theorem 3.4 and Theorem 3.6 prove existence
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and uniqueness results for the solutions of finite dimensional SDE (3.7). These re-
sults allow us to extend the said correspondence (see Theorem 3.12, Theorem 3.14,
Theorem 3.17). Note that the equation for Z involves the initial condition for Y
i.e. Y0, but with Z0 = 0. To discuss existence and uniqueness for Z, we use a
Lipschitz-type criteria, which depends on Y0. We need control on the norm of Y0
to make the usual proof via Picard iteration work. In Proposition 3.15 and Propo-
sition 3.16 we prove L2 estimates on the supremum of the norms of the solutions
of (3.1), in terms of the initial condition.

In Proposition 4.1, we show that Rd valued stationary processes can be lifted to
Sp(Rd) valued stationary processes via the translations operators τx. We then show
in Theorem 4.2 the existence of a stationary solution of infinite dimensional SPDE
(4.3) given that the corresponding finite dimensional SDE (3.7) has a stationary
solution. We present a method to lift stationary solutions of (possibly) unrelated
finite dimensional SDEs to stationary solutions of (4.3). We do this by describing
conditions on a random variable ξ that appears in the initial condition of (4.3).
We define a subset C of the Hermite Sobolev space with the following property:
if the random variable ξ takes values in the set C, then the corresponding finite
dimensional SDEs are all the same. This property is observed in Lemma 4.4
and using which, in Theorem 4.5, we construct stationary solutions of SPDEs in
our class. To guarantee non-explosion for finite dimensional SDEs with locally
Lipschitz coefficients, we use a ‘Liapunov’ type criteria (see [25, 7.3.14 Corollary]).
Two examples of stationary solutions are given in Example 4.7 and in Proposition
4.8, we obtain L1 estimates on the supremum of the norms of the stationary
solutions, in terms of the initial condition.

2. Topologies on S and S ′

Let S(Rd) be the space of smooth rapidly decreasing R-valued functions on Rd

with the topology given by L. Schwartz (see [27]) and let S ′(Rd) denote the dual
space, known as the space of tempered distributions. For any p ∈ R, let Sp(Rd) be
the completion of S(Rd) in the inner product ⟨· , ·⟩p which is defined in terms of
the L2(Rd) inner product ⟨· , ·⟩ (see [14, Chapter 1.3] for the details). The spaces
Sp(Rd), p ∈ R are separable Hilbert spaces and are known as the Hermite-Sobolev
spaces. We write S,S ′,Sp instead of S(R),S ′(R),Sp(R).

Note that S0(Rd) = L2(Rd) and for p > 0, Sp(Rd) ⊂ L2(Rd) (i.e. these distri-
butions are given by functions) and (S−p(Rd), ∥ · ∥−p) is dual to (Sp(Rd), ∥ · ∥p).
Furthermore,

S(Rd) =
∩
p∈R

(Sp(Rd), ∥ · ∥p), S ′(Rd) =
∪
p∈R

(Sp(Rd), ∥ · ∥p).

Given ψ ∈ S(Rd) (or Sp(Rd)) and ϕ ∈ S ′(Rd) (or S−p(Rd)), the action of ϕ on ψ
will be denoted by ⟨ϕ , ψ⟩.

Let {hn : n ∈ Zd
+} be the Hermite functions (see [14, Chapter 1.3]), where

Zd
+ := {n = (n1, · · · , nd) : ni non-negative integers}. If n = (n1, · · · , nd), we

define |n| := n1 + · · · + nd. Note that {hp
n : n ∈ Zd

+} forms an orthonormal basis
for Sp(Rd), where hp

n := (2|n| + d)−phn.
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Consider the derivative maps denoted by ∂i : S(Rd) → S(Rd) for i = 1, · · · , d.
We extend these maps by duality to ∂i : S ′(Rd) → S ′(Rd) as follows: for ψ ∈
S ′(Rd),

⟨∂iψ , ϕ⟩ := − ⟨ψ , ∂iϕ⟩ , ∀ϕ ∈ S(Rd).
Let {ei : i = 1, · · · , d} be the standard basis vectors in Rd. Then for any multi-
index n = (n1, · · · , nd) ∈ Zd

+ we have (see [12, Appendix A.5])

∂ihn =
√
ni

2
hn−ei −

√
ni + 1

2
hn+ei ,

with the convention that for a multi-index n = (n1, · · · , nd), if ni < 0 for some i,
then hn ≡ 0. Above recurrence implies that ∂i : Sp(Rd) → Sp− 1

2
(Rd) is a bounded

linear operator.
For x ∈ Rd, let τx denote the translation operators on S(Rd) defined by

(τxϕ)(y) := ϕ(y − x), ∀y ∈ Rd. Extend this operator to τx : S ′(Rd) → S ′(Rd)
by

⟨τxϕ , ψ⟩ := ⟨ϕ , τ−xψ⟩ , ∀ψ ∈ S(Rd).

Lemma 2.1. The translation operators τx, x ∈ Rd have the following properties:
(a) ([22, Theorem 2.1]) For x ∈ Rd and any p ∈ R, τx : Sp(Rd) → Sp(Rd) is

a bounded linear map. In particular, there exists a real polynomial Pk of
degree k = 2([|p|] + 1) such that

∥τxϕ∥p ≤ Pk(|x|)∥ϕ∥p, ∀ϕ ∈ Sp(Rd),
where |x| denotes the standard Euclidean norm of x.

(b) For x ∈ Rd and any i = 1, · · · , d we have τx∂i = ∂iτx.
(c) Fix ϕ ∈ Sp(Rd). Then x 7→ τxϕ is continuous.

Proof. We verify part (b) for elements of S(Rd) and then extend to elements of
S ′(Rd) via duality. Proof of part (c) is contained in the proof of [23, Proposition
3.1]. □

On S(Rd) consider the multiplication operators Mi, i = 1, · · · , d defined by
(Miϕ)(x) := xiϕ(x), ϕ ∈ S(Rd), x = (x1, · · · , xd) ∈ Rd.

By duality, extend these operators to Mi : S ′(Rd) → S ′(Rd). By [12, Appendix
A.5, equation (A.26)], xihn(x) =

√
ni+1

2 hn+ei(x) +
√

ni

2 hn−ei(x) and hence Mi :
Sp(Rd) → Sp− 1

2
(Rd) is a bounded linear operator, for any p ∈ R. For dimension

d = 1, we write Mx instead of M1.

3. Stochastic Differential Equations in S ′

We use the following terminology and notations. We say {ηn} is a localizing
sequence, if each ηn is an (Ft) stopping time with ηn ↑ ∞. We use stochastic
integration in the Hilbert spaces Sp(Rd) (as in [21]). Note that Sp(Rd) valued
stochastic integrals

∫ t

0 Gs dXs can be defined for Sp(Rd) valued predictable, locally
norm-bounded processes {Gt} and real semimartingales {Xt}. For any x ∈ Rn,
by |x| we denote the standard Euclidean norm of x. The dimension will be clear
from the context where this notation is used.
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Let ξ be an Sp(Rd) valued F0-measurable random variable. Now consider the
SPDE

dYt = A(Yt) dBt + L(Yt) dt; Y0 = ξ, (3.1)

where the operators A = (A1, · · · , Ad), L are as in (1.2), (1.3). We want to extend
the results of [21, Section 3] to the case of Sp(Rd) valued random initial conditions.
We have the following Itô formula (see [20, Theorem 2.3]).

Proposition 3.1. Let p ∈ R and ϕ ∈ S−p(Rd). Let X = (X1, · · · , Xd) be an
Rd valued continuous (Ft) adapted semimartingale. Then we have the following
equality in S−p−1(Rd), a.s.

τXt
ϕ = τX0ϕ−

d∑
i=1

∫ t

0
∂iτXs

ϕdXi
s + 1

2

d∑
i,j=1

∫ t

0
∂2

ijτXs
ϕd[Xi, Xj ]s, ∀t ≥ 0. (3.2)

We need to extend above result to allow random ϕ.

Theorem 3.2. Let p ∈ R. Let ξ be an Sp(Rd) valued F0-measurable random
variable with E∥ξ∥2

p < ∞. Let X = (X1, · · · , Xd) be an Rd valued continuous
semimartingale. Then we have the following equality in Sp−1(Rd), a.s.

τXtξ = τX0ξ −
d∑

i=1

∫ t

0
∂iτXsξ dX

i
s + 1

2

d∑
i,j=1

∫ t

0
∂2

ijτXsξ d[Xi, Xj ]s, ∀t ≥ 0. (3.3)

Proof. Fix ϕ ∈ S(Rd). Then ϕ ∈ S−p+1(Rd) and by the previous Proposition, we
have in S−p(Rd) a.s. for all t ≥ 0

τ−Xtϕ = τ−X0ϕ+
d∑

i=1

∫ t

0
∂iτ−XsϕdX

i
s + 1

2

d∑
i,j=1

∫ t

0
∂2

ijτ−Xsϕd[Xi, Xj ]s.

Then a.s.

⟨ξ , τ−Xt
ϕ⟩ = ⟨ξ , τ−X0ϕ⟩ +

⟨
ξ ,

d∑
i=1

∫ t

0
∂iτ−Xs

ϕdXi
s

⟩

+

⟨
ξ ,

1
2

d∑
i,j=1

∫ t

0
∂2

ijτ−Xsϕd[Xi, Xj ]s

⟩
, ∀t ≥ 0.

(3.4)

Now using [20, Proposition 1.3(a)] and Lemma 2.1(b), we obtain⟨
ξ ,

d∑
i=1

∫ t

0
∂iτ−XsϕdX

i
s

⟩
=

⟨
−

d∑
i=1

∫ t

0
∂iτXsξ dX

i
s , ϕ

⟩
and⟨

ξ ,
1
2

d∑
i,j=1

∫ t

0
∂2

ijτ−Xsϕd[Xi, Xj ]s

⟩
=

⟨
1
2

d∑
i,j=1

∫ t

0
∂2

ijτXsξ d[Xi, Xj ]s , ϕ

⟩
.
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Using (3.4) we get a P -null set N such that for ω ∈ Ω \ N and for any multi-index
n = (n1, · · · , nd) we have

⟨τXtξ , hn⟩ = ⟨τX0ξ , hn⟩ −

⟨
d∑

i=1

∫ t

0
∂iτXsξ dX

i
s , hn

⟩

+

⟨
1
2

d∑
i,j=1

∫ t

0
∂2

ijτXs
ξ d[Xi, Xj ]s , hn

⟩
, ∀t ≥ 0,

where hn are the Hermite functions which form a total set in Sp−1(Rd). Since
{τXtξ−τX0ξ+

∑d
i=1

∫ t

0 ∂iτXsξ dX
i
s− 1

2
∑d

i,j=1
∫ t

0 ∂
2
ijτXsξ d[Xi, Xj ]s} is an Sp−1(Rd)

valued process, we have the equality in Sp−1(Rd) a.s.

τXtξ − τX0ξ +
d∑

i=1

∫ t

0
∂iτXsξ dX

i
s − 1

2

d∑
i,j=1

∫ t

0
∂2

ijτXsξ d[Xi, Xj ]s = 0, t ≥ 0.

This completes the proof. □

Alternative proof of Theorem 3.2. We make two observations, including a prop-
erty of stochastic integrals, viz. (3.5).

(a) Given any F0-measurable set F , an Sp(Rd) valued predictable step process
{Gt} and a continuous Rd valued semimartingale {Xt}, we have a.s.

1F

∫ t

0
Gs dXs =

∫ t

0
1FGs dXs, t ≥ 0. (3.5)

Extend the above equality to the case involving Sp(Rd) valued norm-
bounded predictable process {Gt}.

(b) Given any F0-measurable set F , ϕ ∈ Sp(Rd), ψ ∈ S(Rd) and x ∈ Rd we
have

⟨1F τxϕ , ψ⟩ = 1F ⟨τxϕ , ψ⟩ = 1F ⟨ϕ , τ−xψ⟩
= ⟨1Fϕ , τ−xψ⟩ = ⟨τx(1Fϕ) , ψ⟩

(3.6)

and hence 1F τxϕ = τx(1Fϕ). Similarly 1F τxϕ = τ1F x(1Fϕ).
Using Proposition 3.1 and equations (3.5), (3.6), we establish Theorem 3.2 when
X is bounded and ξ is an Sp(Rd) valued F0-measurable simple function. When ξ
is square integrable, the result is proved by approximating ξ using Sp(Rd) valued
F0-measurable simple functions. Finally, via localization under stopping times,
we prove the result for unbounded X. □

We need an existence and uniqueness of solution to the following SDE:

dZt = σ̄(Zt; ξ) dBt + b̄(Zt; ξ) dt; Z0 = ζ, (3.7)

where ξ is an Sp(Rd) valued F0-measurable random variable and ζ is an Rd valued
F0-measurable random variable. Unless stated otherwise, we assume that both
ξ, ζ are independent of the Brownian motion {Bt}. Let (Gt) denote the filtration
generated by ξ, ζ and {Bt}. Let G∞ denote the smallest sub σ-field of F containing
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Gt for all t ≥ 0. Let GP
∞ be the P -completion of G∞ and let N P be the collection

of all P -null sets in GP
∞. Define

Fξ,ζ
t :=

∩
s>t

σ(Gs ∪ N P ), t ≥ 0,

where σ(Gs ∪N P ) denotes the smallest σ-field generated by the collection Gs ∪N P .
This filtration satisfies the usual conditions. Fξ,ζ

∞ will denote the σ field generated
by the collection

∪
t≥0 Fξ,ζ

t . If ζ is a constant, then we write (Fξ
t ) instead of (Fξ,ζ

t ).

Proposition 3.3. Suppose the following conditions are satisfied:
(i) ξ is norm-bounded in Sp(Rd), i.e. there exists a constant K > 0 such that

∥ξ∥p ≤ K.
(ii) E|ζ|2 < ∞.

(iii) (Globally Lipschitz in x, locally in y) For any fixed y ∈ Sp(Rd), the func-
tions x 7→ σ̄(x; y) and x 7→ b̄(x; y) are globally Lipschitz functions in x
and the Lipschitz coefficient is independent of y when y varies over any
bounded set G in Sp(Rd); i.e. for any bounded set G in Sp(Rd) there exists
a constant C(G) > 0 such that for all x1, x2 ∈ Rd, y ∈ G

|σ̄(x1; y) − σ̄(x2; y)| + |b̄(x1; y) − b̄(x2; y)| ≤ C(G)|x1 − x2|.

Then SDE (3.7) has a continuous (Fξ,ζ
t ) adapted strong solution {Xt} with the

property that E
∫ T

0 |Xt|2 dt < ∞ for any T > 0. Pathwise uniqueness of solutions
also holds, i.e. if {X1

t } is another solution, then P (Xt = X1
t , t ≥ 0) = 1.

Proof. We follow the proof in [19, Theorem 5.2.1] with appropriate modifications.
First we show the uniqueness of the strong solution.

Let {Z1
t } and {Z2

t } be two strong solutions of (3.7). Define two processes

a(t, ω) := σ̄(Z1
t (ω); ξ(ω)) − σ̄(Z2

t (ω); ξ(ω)),
γ(t, ω) := b̄(Z1

t (ω); ξ(ω)) − b̄(Z2
t (ω); ξ(ω)).

Since ξ is norm-bounded, then by our hypothesis

|a(t, ω)|2 ≤ C2 ∣∣Z1
t (ω) − Z2

t (ω)
∣∣2
, |γ(t, ω)|2 ≤ C2 ∣∣Z1

t (ω) − Z2
t (ω)

∣∣2

with C = C(Range(ξ)). Using Itô isometry and Cauchy-Schwarz Inequality, we
get

E
∣∣Z1

t − Z2
t

∣∣2 ≤ 2E
∫ t

0
|a(s)|2 ds+ 2tE

∫ t

0
|γ(s)|2 ds

≤ 2C2(1 + t)
∫ t

0
E

∣∣Z1
s − Z2

s

∣∣2
ds

(3.8)

By Gronwall’s inequality, E
∣∣Z1

t − Z2
t

∣∣2 = 0, ∀t ≥ 0. This proves the uniqueness.
For the existence of solution we use a Picard type iteration. Set Z(0)

t = ζ and
then successively define

Z
(k+1)
t := ζ +

∫ t

0
σ̄(Z(k)

s ; ξ) dBs +
∫ t

0
b̄(Z(k)

s ; ξ) ds, ∀k ≥ 0. (3.9)
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Fix any compact time interval [0, N ]. For k ≥ 1, t ∈ [0, N ] we have

E|Z(k+1)
t − Z

(k)
t |2 ≤ 2C2(1 +N)

∫ t

0
E|Z(k)

s − Z(k−1)
s |2 ds. (3.10)

Using the Lipschitz continuity for any x ∈ Rd, y ∈ Range(ξ) we have, |σ̄(x; y) −
σ̄(0; y)| + |b̄(x; y) − b̄(0; y)| ≤ C|x|. But |σ̄(0; y)| = |⟨σ , y⟩| ≤ ∥σij∥−p∥y∥p and
|b̄(0; y)| = |⟨b , y⟩| ≤ ∥bi∥−p∥y∥p. This shows σ̄, b̄ has linear growth in x, i.e. there
exists a constant D = D(Range(ξ)) > 0 such that |σ̄(x; y)| ≤ D(1+|x|), |b̄(x; y)| ≤
D(1 + |x|) for x ∈ Rd, y ∈ Range(ξ). Since Z(0)

t = ζ, using (3.10) we get

E|Z(1)
t − Z

(0)
t |2 ≤ 2E

∫ t

0
|σ̄(ζ; ξ)|2 ds+ 2tE

∫ t

0
|b̄(ζ; ξ)|2 ds

≤ 4D2(1 +N)(1 + E|ζ|2)t, ∀t ∈ [0, N ].
(3.11)

Now we use an induction on k with (3.10) as the recurrence relations and (3.11)
as our base step. Then there exists a constant R > 0 such that

E|Z(k+1)
t − Z

(k)
t |2 ≤ (Rt)k+1

(k + 1)!
, ∀k ≥ 0, t ∈ [0, N ]. (3.12)

Let λ denote the Lebesgue measure on [0, N ]. We are going to show that the
iteration converges in L2(λ × P ) and the limit satisfy (3.7). As in [19, Theorem
5.2.1] we show

∥Z(m) − Z(n)∥L2(λ×P ) =
m−1∑
k=n

(
(RN)k+2

(k + 2)!

) 1
2

,

wherem,n are positive integers withm > n. Observe that ∥Z(m)−Z(n)∥L2(λ×P ) →
0 as m,n → ∞. Using completeness of L2(λ × P ) we have a limit, which we de-

note by {Xt}t∈[0,N ]. Using (3.12), we also have limn→∞ Z
(n)
t

L2(P )= Xt for each
t ∈ [0, N ].

This {Xt} is measurable and (Fξ,ζ
t ) adapted. Now using the linear growth of

x 7→ σ̄(x; y) (for every fixed y ∈ Sp(Rd)) we have

E
∫ N

0
σ̄(Xs; ξ)2 ds ≤ D2 E

∫ N

0
(1 + |Xs|)2 ds

≤ 2D2 E
∫ N

0
(1 + |Xs|2) ds = 2D2N + 2D2∥X∥2

L2(λ×P ) < ∞.

One defines stochastic integrals with respect to a Brownian motion for adapted
integrands satisfying the above integrability condition (see [17, Chapter 3, Re-
mark 2.11]). Hence {

∫ t

0 σ̄(Xs; ξ) dBs}t∈[0,N ] exists. Since E
∫ N

0 |Xs|2 ds < ∞, we
have

∫ N

0 |Xs|2 ds < ∞ almost surely. Using linear growth of x 7→ b̄(x; y) (for
every fixed y ∈ Sp(Rd)) and Cauchy-Schwarz inequality, existence of the process
{
∫ t

0 b̄(Xs; ξ) ds}t∈[0,N ] is established. Using Itô isometry and Lipschitz continuity
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of σ̄ we get

E
∣∣∣∣∫ t

0
σ̄(Z(k)

s ; ξ) dBs −
∫ t

0
σ̄(Xs; ξ) dBs

∣∣∣∣2

≤ C2 E
∫ N

0
|Z(k)

s −Xs|2 ds.

Using Jensen’s inequality and the Lipschitz property of b̄ we get

E
∣∣∣∣∫ t

0
b̄(Z(k)

s ; ξ) ds−
∫ t

0
b̄(Xs; ξ) ds

∣∣∣∣2

≤ C2N E
∫ N

0
|Z(k)

s −Xs|2 ds.

Using above estimates, for each t ∈ [0, N ] we have∫ t

0
σ̄(Z(k)

s ; ξ) dBs
L2(P )−−−−→
k→∞

∫ t

0
σ̄(Xs; ξ) dBs

and ∫ t

0
b̄(Z(k)

s ; ξ) dBs
L2(P )−−−−→
k→∞

∫ t

0
b̄(Xs; ξ) dBs.

From (3.9) we conclude that for each t ∈ [0, N ], a.s.

Xt = ζ +
∫ t

0
σ̄(Xs; ξ) dBs +

∫ t

0
b̄(Xs; ξ) ds.

By [19, Theorem 3.2.5], the integral
∫ t

0 σ̄(Xs; ξ) dBs has a continuous version. We
denote the continuous version of {ζ +

∫ t

0 σ̄(Xs; ξ) dBs +
∫ t

0 b̄(Xs; ξ) ds}t∈[0,N ] by
{X̃t}t∈[0,N ]. Then for each t ∈ [0, N ], a.s.

X̃t = ζ +
∫ t

0
σ̄(Xs; ξ) dBs +

∫ t

0
b̄(Xs; ξ) ds = Xt, a.s.

In particular, for all t ∈ [0, N ] we have E|Xt − X̃t|2 = 0. Then using the
Lipschitz property of σ̄,

∫ t

0 σ̄(Xs; ξ) dBs =
∫ t

0 σ̄(X̃s; ξ) dBs a.s. We also obtain∫ t

0 b̄(Xs; ξ) dBs =
∫ t

0 b̄(X̃s; ξ) dBs a.s. for each t ∈ [0, N ]. Then for each t ∈ [0, N ],
a.s.

X̃t = ζ +
∫ t

0
σ̄(X̃s; ξ) dBs +

∫ t

0
b̄(X̃s; ξ) ds, a.s.

Since {X̃t} is continuous, we have, a.s.

X̃t = ζ +
∫ t

0
σ̄(X̃s; ξ) dBs +

∫ t

0
b̄(X̃s; ξ) ds, t ∈ [0, N ].

So we have obtained a continuous (Fξ,ζ
t ) adapted solution for time interval [0, N ]

for any positive integer N . The uniqueness of this continuous solution follows from
the proof of uniqueness given at the beginning of this proof.

Let {X(N)
t } and {X(N+1)

t } be the solutions up to time N and N+1 respectively.
Then {X(N+1)

t∈[0,N ]} is also a continuous solution up to time N and hence by the
uniqueness, is indistinguishable from {X(N)

t } on [0, N ]. Using this consistency, we
patch up the solutions {X(N)

t } to obtain the solution of (3.7) on the time interval
[0,∞). □
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We now come to a main result regarding the existence and uniqueness of solu-
tions of (3.7).

Theorem 3.4. Suppose the following are satisfied:
(i) E∥ξ∥2

p < ∞.
(ii) ζ = c, where c is some element in Rd.

(iii) (Globally Lipschitz in x, locally in y) For any fixed y ∈ Sp(Rd), the func-
tions x 7→ σ̄(x; y) and x 7→ b̄(x; y) are globally Lipschitz functions in x
and the Lipschitz coefficient is independent of y when y varies over any
bounded set G in Sp(Rd); i.e. for any bounded set G in Sp(Rd) there exists
a constant C(G) > 0 such that for all x1, x2 ∈ Rd, y ∈ G

|σ̄(x1; y) − σ̄(x2; y)| + |b̄(x1; y) − b̄(x2; y)| ≤ C(G)|x1 − x2|.

Then SDE (3.7) has a continuous (Fξ
t ) adapted strong solution {Xt} such that

there exists a localizing sequence of stopping times {ηn} with E
∫ T ∧ηn

0 |Xt|2 dt < ∞
for any T > 0. Pathwise uniqueness of solutions also holds, i.e. if {X̃t} is another
solution, then P (Xt = X̃t, t ≥ 0) = 1.

Remark 3.5. Theorem 3.4 is also true if ζ is an Rd valued F0-measurable square
integrable random variable, which is also independent of the Brownian motion
{Bt}. However, we only need the version for ζ = 0, which is used in Theorem
3.12.

Proof. For all positive integers k, define ξ(k) := ξ1(∥ξ∥p≤k). Note that ξ(k) k→∞−−−−→
L2

ξ

and the convergence is also almost sure. Also, 1(∥ξ∥p≤k)ξ
(k+1) = ξ(k). By (3.6),

we have for any x ∈ Rd, y ∈ Sp(Rd), F ∈ F ,
1F σ̄(x; y) = σ̄(x;1F y) = σ̄(1Fx;1F y),
1F b̄(x; y) = b̄(x;1F y) = b̄(1Fx;1F y).

(3.13)

By Proposition 3.3 we have the (Fξ(k)

t ) adapted (and hence (Fξ
t ) adapted) strong

solution denoted by {Z(k)
t }, satisfying a.s.

Z
(k)
t = c+

∫ t

0
σ̄(Z(k)

s ; ξ(k)) dBs +
∫ t

0
b̄(Z(k)

s ; ξ(k)) ds, t ≥ 0.

Using (3.5) and (3.13), we have a.s. for all t ≥ 0

1(∥ξ∥p≤k)Z
(k)
t = 1(∥ξ∥p≤k)c+

∫ t

0
σ̄(1(∥ξ∥p≤k)Z

(k)
s ; ξ(k)) dBs

+
∫ t

0
b̄(1(∥ξ∥p≤k)Z

(k)
s ; ξ(k)) ds.

and

1(∥ξ∥p≤k)Z
(k+1)
t = 1(∥ξ∥p≤k)c+

∫ t

0
σ̄(1(∥ξ∥p≤k)Z

(k+1)
s ;1(∥ξ∥p≤k)ξ

(k+1)) dBs

+
∫ t

0
b̄(1(∥ξ∥p≤k)Z

(k+1)
s ;1(∥ξ∥p≤k)ξ

(k+1)) ds
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= 1(∥ξ∥p≤k)c+
∫ t

0
σ̄(1(∥ξ∥p≤k)Z

(k+1)
s ; ξ(k)) dBs

+
∫ t

0
b̄(1(∥ξ∥p≤k)Z

(k+1)
s ; ξ(k)) ds.

Using the uniqueness obtained in Proposition 3.3 (applied to (Fξ
t ) adapted pro-

cesses), we have a.s.

1(∥ξ∥p≤k)Z
(k+1)
t = 1(∥ξ∥p≤k)Z

(k)
t , t ≥ 0, (3.14)

with the null set possibly depending on k. Let Ω̃k be the set of probability 1 where
the above relation holds. Then on Ω′ :=

∩∞
k=1 Ω̃k, which is a set of probability 1,

(3.14) holds for all k.
Note that (∥ξ∥p < ∞) = Ω and hence for any ω ∈ Ω, there exists a positive

integer k such that ∥ξ(ω)∥p ≤ k. Then write Ω′ =
∪∞

k=1 (Ω′ ∩ (∥ξ∥p ≤ k)). Now
Ω′ is an element of F with probability 1 and hence (Ω′)c is a null set in F . Since
(Ft) satisfies the usual conditions, we have (Ω′)c ∈ F0 and hence Ω′ ∈ F0.

We define a process {Xt} as follows: for any t ≥ 0

Xt(ω) :=

{
Z

(k)
t (ω), ifω ∈ Ω′ ∩ (∥ξ∥p ≤ k), k = 1, 2, · · ·

0, ifω ∈ (Ω′)c.

From equation (3.14), Z(k+1)
t = Z

(k)
t , ∀t ≥ 0 on Ω′ ∩ (∥ξ∥p ≤ k) and hence {Xt}

is well-defined. Furthermore {Xt} is (Fξ
t ) adapted and has continuous paths. We

now show that {Xt} solves equation (3.7). On Ω′ we have

1(∥ξ∥p≤k)Xt = 1(∥ξ∥p≤k)Z
(k)
t , ∀t ≥ 0, k = 1, 2, · · · (3.15)

i.e. above relation holds almost surely. Then for each k = 1, 2, · · · , a.s. t ≥ 0

1(∥ξ∥p≤k)Xt = 1(∥ξ∥p≤k)Z
(k)
t

= 1(∥ξ∥p≤k)c+
∫ t

0
σ̄(1(∥ξ∥p≤k)Z

(k)
s ; ξ(k)) dBs

+
∫ t

0
b̄(1(∥ξ∥p≤k)Z

(k)
s ; ξ(k)) ds

= 1(∥ξ∥p≤k)c+
∫ t

0
σ̄(1(∥ξ∥p≤k)Xs; ξ(k)) dBs

+
∫ t

0
b̄(1(∥ξ∥p≤k)Xs; ξ(k)) ds, (using (3.15))

= 1(∥ξ∥p≤k)c+
∫ t

0
1(∥ξ∥p≤k)σ̄(Xs; ξ) dBs

+
∫ t

0
1(∥ξ∥p≤k)b̄(Xs; ξ) ds, (using (3.13))

= 1(∥ξ∥p≤k)c+ 1(∥ξ∥p≤k)

∫ t

0
σ̄(Xs; ξ) dBs
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+ 1(∥ξ∥p≤k)

∫ t

0
b̄(Xs; ξ) ds, (using (3.5))

Let Ω̄k denote the set of probability 1 where the above relation holds. Then
Ω̄ :=

∩∞
k=1 Ω̄k is also a set of probability 1 and on Ω̄, for all k = 1, 2, · · · and for

all t ≥ 0

1(∥ξ∥p≤k)Xt = 1(∥ξ∥p≤k)

(
c+

∫ t

0
σ̄(Xs; ξ) dBs +

∫ t

0
b̄(Xs; ξ) ds

)
.

Then on Ω̄ ∩ (∥ξ∥p ≤ k) we have for all t ≥ 0

Xt = c+
∫ t

0
σ̄(Xs; ξ) dBs +

∫ t

0
b̄(Xs; ξ) ds.

But Ω̄ ∩ (∥ξ∥p ≤ k) ↑ Ω̄ and hence on Ω̄ above relation holds for all t ≥ 0. So
{Xt} is a solution of (3.7). Taking ηn := inf{t ≥ 0 : |Xt| ≥ n} it follows that
E

∫ t∧ηn

0 |Xt|2 dt < ∞ for any t > 0.
To prove the uniqueness, let {X̃t} be a continuous (Fξ

t ) adapted strong solution
of (3.7). Then a.s. for all t ≥ 0

1(∥ξ∥p≤k)X̃t

= 1(∥ξ∥p≤k)

(
c+

∫ t

0
σ̄(X̃s; ξ) dBs +

∫ t

0
b̄(X̃s; ξ) ds

)
= 1(∥ξ∥p≤k)c+

∫ t

0
σ̄(1(∥ξ∥p≤k)X̃s; ξ(k)) dBs +

∫ t

0
b̄(1(∥ξ∥p≤k)X̃s; ξ(k)) ds.

From the uniqueness obtained in Proposition 3.3 and equation (3.15), we now
conclude a.s. for all t ≥ 0, 1(∥ξ∥p≤k)X̃t = 1(∥ξ∥p≤k)Z

(k)
t = 1(∥ξ∥p≤k)Xt. Since

(∥ξ∥p ≤ k) ↑ Ω, this proves P (Xt = X̃t, t ≥ 0) = 1. □

In Theorem 3.4 we assume locally Lipschitz nature of the coefficients σ̄, b̄ in-
stead of those being globally Lipschitz. The extension from globally Lipschitz to
locally Lipschitz is a well-known technique in literature (see [15, Theorem 18.3
and the discussion in page 340 about explosion], [24, Chapter IX, Exercise 2.10],
[13, Theorem 2.3 and 3.1]). The one point compactification of Rd is denoted by
R̂d := Rd ∪ {∞}. We state the next result without proof.
Theorem 3.6. Suppose the following are satisfied:

(i) E∥ξ∥2
p < ∞.

(ii) ζ = 0.
(iii) (Locally Lipschitz in x, locally in y) for any fixed y ∈ Sp(Rd) the functions

x 7→ σ̄(x; y) and x 7→ b̄(x; y) are locally Lipschitz functions in x and the
Lipschitz coefficient is independent of y when y varies over any bounded
set G in Sp(Rd); i.e. for any bounded set G in Sp(Rd) and any positive
integer n there exists a constant C(G,n) > 0 such that for all x1, x2 ∈
B(0, n), y ∈ G

|σ̄(x1; y) − σ̄(x2; y)| + |b̄(x1; y) − b̄(x2; y)| ≤ C(G,n)|x1 − x2|,
where B(0, n) = {x ∈ Rd : |x| ≤ n}.
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Then there exists an (Fξ
t ) stopping time η and an (Fξ

t ) adapted R̂d valued process
{Xt} such that

(a) {Xt} solves SDE (3.7) upto η i.e. a.s.

Xt =
∫ t

0
σ̄(Xs; ξ) dBs +

∫ t

0
b̄(Xs; ξ) ds, 0 ≤ t < η

and Xt = ∞ for t ≥ η.
(b) {Xt} has continuous paths on the interval [0, η).
(c) η = limm θm where {θm} are (Fξ

t ) stopping times defined by θm := inf{t ≥
0 : |Xt| ≥ m}.

This is also pathwise unique in this sense: if ({X ′
t}, η′) is another solution satis-

fying (a), (b), (c), then P (Xt = X ′
t, 0 ≤ t < η ∧ η′) = 1.

In Proposition 3.8 we show that stronger assumption on ξ implies a ‘local
Lipschitz’ condition. We use this result to obtain Theorem 3.9, which is a ver-
sion of Theorem 3.6. Fix p > d + 1

2 and y ∈ Sp(Rd). By [23, Theorem 4.1],
δx ∈ S−p(Rd), ∀x ∈ Rd. Hence x 7→ ⟨δx , y⟩ : Rd → R is well-defined. Abusing
notation, we denote this function by y. Next result is about the continuity and
differentiability of the function y.

Proposition 3.7. Let p, y be as above. Then the first order partial derivatives
of function y exist and the distribution y is given by the differentiable function y.
Furthermore, the first order distributional derivatives of y are given by the first
order partial derivatives of y, which are continuous functions.

Proof. Express the tempered distribution y as y
Sp(Rd)

=
∑∞

k=0
∑

|n|=k ynhn for some
yn ∈ R. Note that

(1) The Hermite functions hn are uniformly bounded (see [26]).
(2) From ∥y∥2

p =
∑∞

k=0
∑

|n|=k(2k + d)2py2
n, we get |yn| ≤ ∥y∥p(2|n| + d)−p.

(3) By [6, Chapter II, Section 5], the cardinality #{n ∈ Zd
+ : |n| =

(
k+d−1

d−1
)
.

Hence #{n ∈ Zd
+ : |n| = k} ≤ C ′.(2k + d)d−1 for some C ′ > 0.

Using these estimates we show that the convergences of
∑∞

k=0
∑

|n|=k ynhn(x) and∑∞
k=0

∑
|n|=k yn∂ihn(x) are uniform in x. The required continuity and differen-

tiability follows from properties of uniform convergence. □
Proposition 3.8. Let p > d+ 1

2 and σ ∈ S−p(Rd). Then for any bounded set G
in Sp+ 1

2
(Rd) and any positive integer n there exists a constant C(G,n) > 0 such

that for all x1, x2 ∈ B(0, n), y ∈ G

|σ̄(x1; y) − σ̄(x2; y)| ≤ C(G,n)|x1 − x2|,
where B(0, n) = {x ∈ Rd : |x| ≤ n}.

Proof. Let x1 = (x1
1, · · · , x1

d), x2 = (x2
1, · · · , x2

d) ∈ B(0, n). Then for any y ∈
Sp(Rd),

|σ̄(x1; y) − σ̄(x2; y)| ≤ ∥σ∥−p∥τx1y − τx2y∥p. (3.16)
The target of the subsequent computations is to obtain an estimate of ∥τx1y −
τx2y∥p. By Proposition 3.7, first order distributional derivatives of y are given by
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the first order partial derivatives of y, which are continuous functions. For any
1 ≤ i ≤ d and t = λix

1
i + (1 − λi)x2

i with λi ∈ [0, 1] we have
|(x1

1, · · · , x1
i−1, t, x

2
i+1, · · · , x2

d)| ≤ 2n.

Let y ∈ Sp+ 1
2
(Rd). Then by Lemma 2.1, there exist constants Cn > 0, C̃n > 0

independent of i such that
∥τ(x1

1,··· ,x1
i−1,t,x2

i+1,··· ,x2
d

)∂iy∥p = ∥∂iτ(x1
1,··· ,x1

i−1,t,x2
i+1,··· ,x2

d
)y∥p

≤ Cn ∥τ(x1
1,··· ,x1

i−1,t,x2
i+1,··· ,x2

d
)y∥p+ 1

2

≤ C̃n ∥y∥p+ 1
2

(3.17)

The following is an equality of continuous functions.
τ(x1

1,··· ,x1
i−1,x1

i
,x2

i+1,··· ,x2
d

)y(·) − τ(x1
1,··· ,x1

i−1,x2
i
,x2

i+1,··· ,x2
d

)y(·)

=
∫ x1

i

x2
i

τ(x1
1,··· ,x1

i−1,t,x2
i+1,··· ,x2

d
)∂iy(·) dt.

In view of (3.17), we have the equality of distributions in Sp(Rd)
τ(x1

1,··· ,x1
i−1,x1

i
,x2

i+1,··· ,x2
d

)y − τ(x1
1,··· ,x1

i−1,x2
i
,x2

i+1,··· ,x2
d

)y

=
∫ x1

i

x2
i

τ(x1
1,··· ,x1

i−1,t,x2
i+1,··· ,x2

d
)∂iy dt

and
∥τ(x1

1,··· ,x1
i−1,x1

i
,x2

i+1,··· ,x2
d

)y − τ(x1
1,··· ,x1

i−1,x2
i
,x2

i+1,··· ,x2
d

)y∥p

≤

∣∣∣∣∣
∫ x1

i

x2
i

∥τ(x1
1,··· ,x1

i−1,t,x2
i+1,··· ,x2

d
)∂iy∥p dt

∣∣∣∣∣ ≤ C̃n ∥y∥p+ 1
2

|x1
i − x2

i |.

Now
τx1y − τx2y = τ(x1

1,··· ,x1
d−1,x1

d
)y − τ(x1

1,··· ,x1
d−1,x2

d
)y

+ τ(x1
1,··· ,x1

d−1,x2
d

)y − τ(x1
1,··· ,x1

d−2,x2
d−1,x2

d
)y

+ · · ·
+ τ(x1

1,x2
2,··· ,x2

d
)y − τ(x2

1,··· ,x2
d

)y

and hence ∥τx1y−τx2y∥p ≤ C̃n ∥y∥p+ 1
2

∑d
i=1 |x1

i −x2
i | ≤ dC̃n ∥y∥p+ 1

2
|x1 −x2|. Us-

ing this estimate in (3.16), we have |σ̄(x1; y) − σ̄(x2; y)| ≤ dC̃n ∥σ∥−p∥y∥p+ 1
2

|x1 −
x2|. In particular, if G is a bounded set in Sp+ 1

2
(Rd), then for any y ∈ G

∥τx1y − τx2y∥p ≤ dC̃n ∥σ∥−p sup
y∈G

(∥y∥p+ 1
2
) |x1 − x2|,

i.e. the function x 7→ σ̄(x; y) is locally Lipschitz in x for any y ∈ G and the
Lipschitz constant can be taken uniformly in y ∈ G. □

Using Proposition 3.8, we get the following version of Theorem 3.6.

Theorem 3.9. Let p > d+ 1
2 . Suppose the following are satisfied:

(1) σ, b ∈ S−p(Rd).
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(2) ξ is Sp+ 1
2
(Rd) valued and E∥ξ∥2

p+ 1
2
< ∞.

(3) ζ = 0.

Then there exists an (Fξ
t ) stopping time η and an (Fξ

t ) adapted R̂d valued process
{Xt} such that

(a) {Xt} solves SDE (3.7) upto η i.e. a.s.

Xt =
∫ t

0
σ̄(Xs; ξ) dBs +

∫ t

0
b̄(Xs; ξ) ds, 0 ≤ t < η

and Xt = ∞ for t ≥ η.
(b) {Xt} has continuous paths on the interval [0, η).
(c) η = limm θm where {θm} are (Fξ

t ) stopping times defined by θm := inf{t ≥
0 : |Xt| ≥ m}.

This is also pathwise unique in this sense: if (X ′
t, η

′) is another solution satisfying
(a), (b), (c), then P (Xt = X ′

t, 0 ≤ t < η ∧ η′) = 1.

We are ready to prove the main result of this section. We make two definitions
extending [21, Definition 3.1 and Definition 3.3]. Note that ξ is assumed to be
independent of the Brownian motion {Bt} and Ŝp(Rd) = Sp(Rd) ∪ {δ}, where δ is
an isolated point (as described in Section 1).

Definition 3.10. (A) We say {Yt} is an Sp(Rd) valued strong solution of
SPDE (3.1), if {Yt} is an Sp(Rd) valued (Fξ

t ) adapted continuous pro-
cess such that a.s. the following equality holds in Sp−1(Rd),

Yt = ξ +
∫ t

0
A(Ys) dBs +

∫ t

0
L(Ys) ds; t ≥ 0.

(B) By an Ŝp(Rd) valued strong local solution of SPDE (3.1), we mean a pair
({Yt}, η) where η is an (Fξ

t ) stopping time and {Yt} an Ŝp(Rd) valued (Fξ
t )

adapted continuous process such that
(1) for all ω ∈ Ω, the map Y·(ω) : [0, η(ω)) → Sp(Rd) is continuous and

Yt(ω) = δ, t ≥ η(ω).
(2) a.s. the following equality holds in Sp−1(Rd),

Yt = ξ +
∫ t

0
A(Ys) dBs +

∫ t

0
L(Ys) ds; 0 ≤ t < η.

Definition 3.11. (A) We say strong solutions of SPDE (3.1) are pathwise
unique if given any two Sp(Rd) valued strong solutions {Y 1

t } and {Y 2
t },

we have P (Y 1
t = Y 2

t , t ≥ 0) = 1.
(B) We say strong local solutions of SPDE (3.1) are pathwise unique if given

any two Ŝp(Rd) valued strong solutions ({Y 1
t }, η1) and ({Y 2

t }, η2), we have
P (Y 1

t = Y 2
t , 0 ≤ t < η1 ∧ η2) = 1.

Now we prove the existence and uniqueness of solutions to (3.1).

Theorem 3.12. Suppose the following conditions are satisfied:
(i) E∥ξ∥2

p < ∞.
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(ii) (Globally Lipschitz in x, locally in y) For any fixed y ∈ Sp(Rd), the func-
tions x 7→ σ̄(x; y) and x 7→ b̄(x; y) are globally Lipschitz functions in x
and the Lipschitz coefficient is independent of y when y varies over any
bounded set G in Sp(Rd); i.e. for any bounded set G in Sp(Rd) there exists
a constant C(G) > 0 such that for all x1, x2 ∈ Rd, y ∈ G

|σ̄(x1; y) − σ̄(x2; y)| + |b̄(x1; y) − b̄(x2; y)| ≤ C(G)|x1 − x2|.

Then SPDE (3.1) has an (Fξ
t ) adapted continuous strong solution. The solutions

are pathwise unique.

To prove the above result, we first show a characterization of the solution of
equation (3.1) in Theorem 3.14. We also require the monotonicity inequality de-
scribed below. Let ρ = (ρij) be a constant d × r matrix with (aij) = (ρρt)ij and
θ = (θ1, · · · , θd) ∈ Rd. For ϕ ∈ S, we define

L̃ϕ := 1
2

∑d
i,j=1 aij∂

2
ijϕ−

∑d
i=1 θi∂iϕ,

Ãiϕ := −
∑d

j=1 ρji(∂jϕ), i = 1, · · · , r
Ãϕ := (Ã1ϕ, . . . , Ãrϕ)

Theorem 3.13 ([9, Theorem 2.1 and Remark 3.1]). For every p ∈ R there exists
a constant C = C(p, d, (ρij), (θi)) > 0, such that

2
⟨
ϕ , L̃ϕ

⟩
p

+ ∥Ãϕ∥2
HS(p) ≤ C.∥ϕ∥2

p, (3.18)

for all ϕ ∈ S(Rd), where ∥Ãϕ∥2
HS(p) :=

∑r
i=1 ∥Ãiϕ∥2

p. Furthermore, by density
arguments the above inequality extends to all ϕ ∈ Sp+1(Rd). The constant C
depends on (ρij), (θi) through the upper bound of |ρij |, |θi| and hence the inequality
extends to the case where ρ, θ are bounded processes parametrized by some set.

Theorem 3.14. Let ξ, σ̄, b̄ be as in Theorem 3.12. Let {Yt} be an (Fξ
t ) adapted

Sp(Rd) valued strong solution of SPDE (3.1). Define a process {Zt} as follows:

Zt :=
∫ t

0
⟨σ , Ys⟩ dBs +

∫ t

0
⟨b , Ys⟩ ds, t ≥ 0.

Then a.s. Yt = τZtξ for t ≥ 0 and consequently, Z solves SDE (3.7) with Z0 = 0.

Proof. This is an extension of [21, Lemma 3.6] to random initial condition ξ. The
arguments are similar and we include the details for completeness. First we define
linear operator valued processes {L̄(t)} and {Āj(t)}, j = 1, · · · , d. For ϕ ∈ S ′(Rd),

L̄(t, ω)ϕ := 1
2

d∑
i,j=1

(⟨σ , Yt(ω)⟩ ⟨σ , Yt(ω)⟩t)ij ∂
2
ijϕ−

d∑
i=1

(⟨b , Yt(ω)⟩)i ∂iϕ,

Āj(t, ω)ϕ := −
d∑

i=1
(⟨σ , Yt(ω)⟩)ij ∂iϕ.

Note that L̄(t, ω), Āj(t, ω) are linear operators from Sp(Rd) to Sp−1(Rd). We write
Zt = (Z1

t , · · · , Zd
t ) and Ā(t) = (Ā1(t), · · · , Ād(t)). By Theorem 3.2, we have the
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following equality in Sp−1(Rd): a.s. t ≥ 0

τZtξ = ξ +
∫ t

0
Ā(s)(τZsξ) dBs +

∫ t

0
L̄(s)(τZsξ) ds.

Since {Yt} is a solution of (3.1), we also have a.s. t ≥ 0

Yt = ξ +
∫ t

0
Ā(s)(Ys) dBs +

∫ t

0
L̄(s)(Ys) ds.

Define a localizing sequence {ηn} as

ηn := inf{t ≥ 0 : | ⟨σij , Yt⟩ | ≥ n, or | ⟨bi , Yt⟩ | ≥ n, i, j = 1, · · · , d}, n ≥ 1.

Now define X(n)
t := Yt∧ηn − τZt∧ηn

ξ. Recall that ⟨· , ·⟩ denotes the duality ac-
tion of S−p on Sp and hk denotes Hermite functions. For all multi-index k, we
have {⟨X(n)

s , hk⟩} is a continuous semimartingale and ∥X(n)
t ∥2

p−1 =
∑

k(2|k| +
d)2(p−1)⟨X(n)

s , hk⟩2. Then applying Itô formula, we get a.s.

∥X(n)
t ∥2

p−1 =
∫ t∧ηn

0
2

d∑
i=1

⟨
X(n)

s , Āi(s)X(n)
s

⟩
p−1

dB(i)
s

+
∫ t∧ηn

0

[
2

⟨
X(n)

s , L̄(s)X(n)
s

⟩
p−1

+ ∥Ā(s)X(n)
s ∥2

HS(p−1)
]
ds,

where {
∫ t∧ηn

0 2
∑d

i=1

⟨
X

(n)
s , Āi(s)X(n)

s

⟩
p−1

dB
(i)
s } is a continuous martingale and

the coefficients {⟨σij , Yt⟩} and {⟨bi , Yt⟩} are uniformly bounded for t ≤ ηn. Since
the coefficients are bounded, by Theorem 3.13, there exists a constant Cn > 0
such that a.s.

∥X(n)
t∧ηn

∥2
p−1 ≤

∫ t∧ηn

0
2

d∑
i=1

⟨
X(n)

s , Āi(s)X(n)
s

⟩
p−1

dB(i)
s + Cn

∫ t∧ηn

0
∥X(n)

s ∥2
p−1 ds

≤
∫ t∧ηn

0
2

d∑
i=1

⟨
X(n)

s , Āi(s)X(n)
s

⟩
p−1

dB(i)
s + Cn

∫ t

0
∥X(n)

s∧ηn
∥2

p−1 ds.

Taking expectation, we obtain E∥X(n)
t∧ηn

∥2
p−1 ≤ Cn

∫ t

0 E∥X(n)
s∧ηn

∥2
p−1 ds for all t ≥ 0.

By the Gronwall’s inequality we get E∥X(n)
t∧ηn

∥2
p−1 = 0, which implies the equality

a.s. Yt∧ηn = τZt∧ηn
ξ, t ≥ 0. Since ηn ↑ ∞, we have a.s. Yt = τZtξ, t ≥ 0. This

implies a.s. t ≥ 0

Zt =
∫ t

0
⟨σ , Ys⟩ dBs +

∫ t

0
⟨b , Ys⟩ ds

=
∫ t

0
⟨σ , τZsξ⟩ dBs +

∫ t

0
⟨b , τZsξ⟩ ds

=
∫ t

0
σ̄(Zs; ξ). dBs +

∫ t

0
b̄(Zs; ξ) ds

This completes the proof. □
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Proof of Theorem 3.12. The proof is similar to that of [21, Theorem 3.4]. By
Theorem 3.4, we have a solution {Zt} of (3.7) with initial condition Z0 = 0. Then
using the Itô formula in Theorem 3.2, we observe that the process {τZtξ} is a
solution.

To prove the uniqueness, let {Y 1
t }, {Y 2

t } be two solutions. Then define {Z1
t }

and {Z2
t } corresponding to {Y 1

t }, {Y 2
t } as in Theorem 3.14. The uniqueness part

in Theorem 3.4 implies a.s. Z1
t = Z2

t , ∀t ≥ 0 and hence a.s. Y 1
t = Y 2

t , ∀t ≥ 0. □

Since Yt = τZtξ solves SPDE (3.1) (notations as in Theorem 3.12), we have
E∥Y0∥2

p = E∥ξ∥2
p < ∞. Now we prove estimates on Y using two different tech-

niques.

Proposition 3.15. There exists a localizing sequence {ηn} such that

E sup
t≥0

∥Y ηn

t ∥2
p ≤ Cn.E∥Y0∥2

p,

where the constant Cn depends only on n.

Proof. Consider the process {Zt} as in Theorem 3.14. Define a localizing sequence
{ηn} as follows: ηn := inf{t ≥ 0 : |Zt| ≥ n}, n ≥ 1. Now using Lemma 2.1(a)
there exists a polynomial Q of degree 2([|p|] + 1) such that

∥Y ηn

t ∥p ≤ ∥ξ∥p.Q(|Zηn

t |) ≤ ∥ξ∥p sup
{x:|x|≤n}

Q(|x|).

Hence supt≥0 ∥Y ηn

t ∥2
p ≤ Cn ∥ξ∥2

p with Cn = (sup{x:|x|≤n} Q(|x|))2. This implies
the required estimate. □

Following [8, Lemma 1], we get the next estimate.

Proposition 3.16. There exists a localizing sequence {ηn} such that for any pos-
itive real number T ,

E sup
t≤T

∥Y ηn

t ∥2
p−1 ≤ C.E∥Y0∥2

p−1,

where the constant C depends only on n and T .

Proof. Define three localizing sequences. For any positive integer n, consider

η̄n := inf{t ≥ 0 : ∥Yt − Y0∥p ≥ n},

and
η′

n := inf{t ≥ 0 : |⟨σ , Yt⟩| ≥ n, or |⟨b , Yt⟩| ≥ n},

and ηn := η̄n ∧ η′
n. Now using Itô formula for ∥ · ∥2

p−1 we obtain a.s. t ≥ 0

∥Y ηn

t ∥2
p−1 = ∥Y0∥2

p−1 +
∫ t∧ηn

0
2

d∑
i=1

⟨Y ηn
s , AiY

ηn
s ⟩p−1 dB

(i)
s

+
∫ t∧ηn

0

[
2 ⟨Y ηn

s , LY ηn
s ⟩p−1 +

d∑
i=1

∥AiY
ηn

s ∥2
p−1

]
ds

(3.19)
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where {
∫ t∧ηn

0 2
∑d

i=1 ⟨Y ηn
s , AiY

ηn
s ⟩p−1 dB

(i)
s } is a continuous martingale and B(i)

t

denotes the i-th component of Bt. Then using the monotonicity inequality in
Theorem 3.13 and taking expectation in (3.19), we have

E∥Y ηn

t ∥2
p−1 ≤ E∥Y0∥2

p−1 + γ

∫ t

0
E∥Y ηn

s ∥2
p−1 ds

where the constant γ depends only on ηn. Then Gronwall’s inequality implies

E∥Y ηn

t ∥2
p−1 ≤ eγt.E∥Y0∥2

p−1, t ≥ 0. (3.20)

Let {Mt} and {Vt} respectively denote the martingale term and the finite variation
term on the right hand side of (3.19). Then using the monotonicity inequality and
(3.20), we get

E sup
t≤T

Vt ≤ γ E sup
t≤T

∫ t

0
∥Y ηn

s ∥2
p−1 ds = γ

∫ T

0
E∥Y ηn

s ∥2
p−1 ds ≤ C̃ E∥Y0∥2

p−1 (3.21)

for some constant C̃ depending only on ηn and T .
By [1, Theorem 2.5], for each 1 ≤ i ≤ d, there exists a bounded operator

Ti : Sp−1(Rd) → Sp−1(Rd) such that

|2 ⟨Y ηn

t , AiY
ηn

t ⟩p−1 | =

∣∣∣∣∣∣−2
d∑

j=1
⟨σji , Y

ηn

t ⟩ ⟨Y ηn

t , ∂jY
ηn

t ⟩p−1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
d∑

j=1
⟨σji , Y

ηn

t ⟩ ⟨Y ηn

t , TjY
ηn

t ⟩p−1

∣∣∣∣∣∣
≤ n

d∑
j=1

| ⟨Y ηn

t , TjY
ηn

t ⟩p−1 | ≤ β∥Y ηn

t ∥2
p−1.

(3.22)

where β = nd max{∥Tj∥Sp−1(Rd)→Sp−1(Rd) | 1 ≤ j ≤ d}. Using (3.22), we obtain
(as in [8, Lemma 1])

E sup
t≤T

|Mt| ≤ 1
2
E sup

t≤T
∥Y ηn

t ∥2
p−1 + C.E∥Y0∥2

p−1 (3.23)

for some C > 0 depending only on ηn and T . Using (3.19), (3.21) and (3.23) we
get the desired estimate. □

The counterpart of Theorem 3.12 involving locally Lipschitz coefficients is as
follows. This result is an extension of [21, Theorem 3.4].

Theorem 3.17. Suppose the following conditions are satisfied:
(i) E∥ξ∥2

p < ∞.
(ii) (Locally Lipschitz in x, locally in y) for any fixed y ∈ Sp(Rd) the functions

x 7→ σ̄(x; y) and x 7→ b̄(x; y) are locally Lipschitz functions in x and the
Lipschitz coefficient is independent of y when y varies over any bounded
set G in Sp(Rd); i.e. for any bounded set G in Sp(Rd) and any positive
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integer n there exists a constant C(G,n) > 0 such that for all x1, x2 ∈
B(0, n), y ∈ G

|σ̄(x1; y) − σ̄(x2; y)| + |b̄(x1; y) − b̄(x2; y)| ≤ C(G,n)|x1 − x2|,

where B(0, n) = {x ∈ Rd : |x| ≤ n}.
Then an (Fξ

t ) adapted continuous strong local solution of SPDE (3.1) exists. The
solutions are also pathwise unique.

4. Stationary Solutions

In this section, we investigate existence of stationary solutions of the SPDE
(3.1). First we show that finite dimensional stationary processes can be lifted to
infinite dimensional stationary processes via the translation operators τx.

Proposition 4.1. Let {Zt} be an Rd valued stationary process. Let ξ be an Sp(Rd)
valued random variable (for some p ∈ R), which is independent of {Zt}. Then the
process {Yt} defined by Yt := τZtξ is also stationary.

Proof. Let L= denote equality in law. Since {Zt} is stationary, for time points
s, t1, t2, · · · , tn ≥ 0 we have

(Zt1 , Zt2 , · · · , Ztn) L= (Zs+t1 , Zs+t2 , · · · , Zs+tn).

Let ψ ∈ C. Following the proof of [23, Proposition 3.1], we have x 7→ τxψ is
continuous and hence is measurable. Using this fact and the stationarity of {Zt},
for Borel sets G1, · · · , Gn in Sp(Rd), we have

P ((τZt1
ψ, τZt2

ψ, · · · , τZtn
ψ) ∈ G1 ×G2 × · · · ×Gn)

= P ((τZs+t1
ψ, τZs+t2

ψ, · · · , τZs+tn
ψ) ∈ G1 ×G2 × · · · ×Gn).

(4.1)

Let µξ denote the law of ξ on Sp(Rd). Then using conditional probability and the
independence of {Zt} and ξ, we have

P ((τZt1
ξ, τZt2

ξ, · · · , τZtn
ξ) ∈ G1 ×G2 × · · · ×Gn)

=
∫

Sp

P ((τZt1
ξ, τZt2

ξ, · · · , τZtn
ξ) ∈ G1 ×G2 × · · · ×Gn|ξ = ψ)µξ(dψ)

=
∫

C
P ((τZt1

ψ, τZt2
ψ, · · · , τZtn

ψ) ∈ G1 ×G2 × · · · ×Gn)µξ(dψ).

Similarly,

P ((τZs+t1
ξ, τZs+t2

ξ, · · · , τZs+tn
ξ) ∈ G1 ×G2 × · · · ×Gn)

=
∫

C
P ((τZs+t1

ψ, τZs+t2
ψ, · · · , τZs+tn

ψ) ∈ G1 ×G2 × · · · ×Gn)µξ(dψ).

Using (4.1) we have
P ((τZt1

ξ, τZt2
ξ, · · · , τZtn

ξ) ∈ G1 ×G2 × · · · ×Gn)
= P ((τZs+t1

ξ, τZs+t2
ξ, · · · , τZs+tn

ξ) ∈ G1 ×G2 × · · · ×Gn)
(4.2)

i.e. {Yt} is stationary. □
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As a consequence of the previous result, stationary solutions of finite dimen-
sional SDEs can be lifted to stationary solutions of corresponding infinite dimen-
sional SPDEs.
Theorem 4.2. Let ξ be an Sp(Rd) valued F0-measurable random variable and
independent of {Bt}. Let {Zt} be a stationary solution of SDE (3.7). Then the
process {Yt} defined by Yt := τZtξ is a stationary solution of the SPDE

dYt = A(Yt) dBt + L(Yt) dt; Y0 = τZ0ξ. (4.3)
Proof. Using the Itô formula in Theorem 3.2, we show that Yt = τZtξ solves (4.3).
By Proposition 4.1, {Yt} is stationary, since {Zt} is stationary. □

Theorem 4.2 allows us to construct stationary solutions of SPDE (4.3) from
those of SDE (3.7). In practice, however, it might be difficult to obtain stationary
solutions of the SDEs (3.7). These difficulties may arise from the coefficients σ̄, b̄,
i.e. from the interplay of σ, b and the random variable ξ. In Theorem 4.5, we
present a method of constructing stationary solutions of SPDE (4.3) from those
of finite dimensional SDEs (4.4) by modifying the random variable ξ. Since there
is no relation between the coefficients σ, b and f, g, a connection is made between
the SDE (4.4) and the SPDE (4.3) at the cost of an additional assumption on the
initial condition ξ.

Assume that
(1) f : Rd → Rd×d, g : Rd → Rd are measurable functions such that the SDE

dZt = f(Zt)dBt + g(Zt)dt, ∀t ≥ 0 (4.4)
has a continuous, stationary solution and we denote the corresponding
invariant measure by ν. Let f = (fij), g = (gi), 1 ≤ i, j ≤ d be the
component functions of f, g.

(2) σij , bi (for i, j = 1, · · · , d) are tempered distributions given by continuous
functions.

Remark 4.3. Typically f, g will be locally Lipschitz functions such that explo-
sions do not happen in finite time. This non-explosion is usually guaranteed by a
‘Liapunov’ type criteria. See for example, [25, 7.3.14 Corollary].

Note that there exists a p > 0 such that σij , bi ∈ S−p(Rd) for all i, j. Fix such
a p > 0. Consider the following subset of Sp(Rd),

C =
{
ψ ∈ Sp(Rd) :

∫
Rd

σij(y + x)ψ(y) dy = fij(x),∀x ∈ Rd;∫
Rd

bi(y + x)ψ(y) dy = gi(x), ∀x ∈ Rd, i, j = 1, · · · , d
}
.

(4.5)

Note that C is a closed and convex. The motivation behind above conditions
requires clarification. Firstly, we want to choose a subset C of Sp(Rd) such that
the resultant equation (1.4) is the same for all deterministic initial conditions ψ
as ψ varies over the set C. This allows us to think of σ̄(x;ψ) and b̄(x;ψ) as just
σ̄(x) and b̄(x). Secondly, we want σ̄ = f and b̄ = g which is a choice that allows
us to use the invariant measure ν of (4.4). The set C considered above provides
exactly those conditions, which is pointed out in the next result.
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Lemma 4.4. Let ψ ∈ C. Then σ̄(x;ψ) = f(x) and b̄(x;ψ) = g(x) for all x ∈ Rd.

We present the main result of this section.

Theorem 4.5. Let ξ be a C-valued F0-measurable random variable with E∥ξ∥2
p <

∞ and independent of {Bt}. Then the process {Yt} defined by Yt := τZtξ, is a
stationary process and solves SPDE (4.3), where {Zt} is the stationary solution
of SDE (4.4).

Proof. Using Lemma 4.4 and the Itô formula in Theorem 3.2, we show that Yt =
τZtξ solves (4.3). By Proposition 4.1, {Yt} is stationary. □

The next result will be used in Example 4.7.

Lemma 4.6. The tempered distribution x given by the function x ∈ R 7→ x
belongs to S−p for any p > 3

4 . The tempered distribution given by the function
b(x) := x3, x ∈ R belongs to S−p for any p > 7

4 .

Proof. First we show that the tempered distribution 1 given by the constant func-
tion 1 belongs to S−p for any p > 1

4 . The Hermite-Sobolev spaces Sp(R;C) can
be defined corresponding to the Schwartz space S(R;C), where the functions are
complex valued. The Fourier transform ·̂ : S(R;C) → S(R;C) defined by

ϕ̂(x) := 1√
2π

∫
Rd

e−ixyϕ(y) dy, ∀ϕ ∈ S(R;C)

extends to ·̂ : S(R;C) → S(R;C) via duality. By [12, Appendix A.5, equation
(A.27)], ĥn = (−i)nhn, which leads to an isometry ·̂ : Sp(R;C) → Sp(R;C). If
T ∈ S ′(R;C) is such that ⟨T , ϕ⟩ ∈ R, ∀ϕ ∈ S(R) then we have ∥T̂∥Sp(R;C) =
∥T∥Sp(R;C) = ∥T∥Sp . By [23, Theorem 4.1(a)], δ0 ∈ S−p for any p > 1

4 and we
have 1 ∈ S−p for any p > 1

4 .
The operator Mx was defined in Section 2. Observe that for any ϕ ∈ S and

p > 1
4 ,

| ⟨x , ϕ⟩ | = | ⟨1 , Mxϕ⟩ | ≤ ∥1∥−p∥Mxϕ∥p ≤ ∥1∥−p∥Mx∥S
p+ 1

2
→Sp . ∥ϕ∥p+ 1

2
.

This implies x ∈ S−p for p > 3
4 . Proof for b is similar. □

Example 4.7. We present two examples where the stationary solutions of SDE
(4.4) can be lifted to stationary solutions of SPDE (4.3) via Theorem 4.5.

(1) Take d = 1, f(x) ≡ 1, g(x) = −x, ∀x, σ = f, b = g. It is well-known that
(4.4) (the Ornstein-Uhlenbeck diffusion) has a stationary solution with the
following initial condition:

dZt = dBt − Zt dt; Z0 ∼ N
(
0, 1

2
)
, (4.6)

where N(0, 1
2 ) denotes the law of a Gaussian random variable with mean

0 and variance 1
2 (see [17, Example 6.8]). By Lemma 4.6, σ ∈ S−p for

p > 1
4 and b ∈ S−p for p > 3

4 . Take p > 3
4 . It is easy to check that

C = {ψ ∈ Sp :
∫
R ψ = 1,

∫
R tψ(t) dt = 0}. C is non empty since (centered)

Gaussian densities satisfy such conditions.
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(2) We take Ω = C([0,∞),R) and use the setup of [25, Chapter VII, Sections
3 and 5]. Consider f(x) ≡ 1, g(x) = −x3, ∀x ∈ R, σ = f, b = g. Then (4.4)
has an invariant measure, say ν, given by

ν(B) := c

∫
B

exp
(

−x4

2

)
dx

for any Borel set B in R, where c = 2 3
4

(
Γ( 1

4 )
)−1 is the normalization

constant. By Lemma 4.6, σ, b ∈ S−p for p > 7
4 . Then

C =
{
ψ ∈ Sp :

∫
R
ψ = 1,

∫
R
tψ(t) dt = 0,

∫
R
t2ψ(t) dt = 0,

∫
R
t3ψ(t) dt = 0

}
.

C is non-empty since ψ1, ψ2 ∈ C where

ψ1(t) = exp(−t2)
[

3
2
√
π

− 1√
π
t2

]
, ψ2(t) = exp

(
− t2

2

) [
3

2
√

2π
− 1

2
√

2π
t2

]
.

We now prove an estimate of a stationary solution {Yt}.

Proposition 4.8. Let ξ, {Zt}, {Yt} be as in Theorem 4.5. In addition assume
that ξ is norm-bounded and Z0 has moments of orders upto 4([|p|] + 1) and f, g
are Lipschitz continuous. Then

(a) E∥Y0∥2
p = E∥τZ0ξ∥2

p < ∞.
(b) E supt≤T ∥Yt∥p ≤ C (E∥Y0∥2

p) 1
2 , where C is a positive constant depending

only on f, g and T .

Proof. By Lemma 2.1, we have E∥τZ0ξ∥2
p ≤ REP (|Z0|) where R > 0 and P is a

polynomial of degree 4([|p|] + 1). Then by our assumption, E∥τZ0ξ∥2
p < ∞.

Observe that Yt = τZtξ = τZt−Z0τZ0ξ = τZt−Z0Y0. Using Lemma 2.1(a) we
have

∥Yt∥p ≤ ∥Y0∥p Pk(|Zt − Z0|),
where Pk is some real polynomial of degree k = 2([|p|] + 1) with non-negative
coefficients. We use the following estimate to establish the result.

E sup
t≤T

∥Yt∥p ≤ (E∥Y0∥2
p) 1

2 (E sup
t≤T

Pk(|Zt − Z0|)2) 1
2 . (4.7)

Now a.s. Zt −Z0 =
∫ t

0 f(Zs) dBs +
∫ t

0 g(Zs) ds, t ≥ 0. Using stationarity of Z and
the BDG inequalities ([15, Proposition 15.7]), we show E supt≤T Pk(|Zt − Z0|)2 is
bounded. In this estimate we use the assumption on the moments of Z0 and linear
growth of f, g. This completes the proof. □

Remark 4.9. We make a few observations.
(1) If the convex set C (as in equation (4.5)) has more than one element, then

consider probability measures on C which are convex combinations of Dirac
measures on C. By Theorem 4.5, we have the existence of infinitely many
stationary solutions corresponding to each of these probability measures.
This may be happening due to C being not translation invariant.
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(2) The set C may be non-compact. Consider the special case d = 1, f(x) ≡
1, g(x) = −x, σ = f, b = g and take p sufficiently large so that the tempered
distribution given by the function x 7→ x2 is in S−p. Then the image of
C under this tempered distribution (a continuous linear functional on Sp)
contains (0,∞), the variances of centered Gaussian densities. So C is
unbounded and non-compact.

Remark 4.10. Existence of invariant measures of finite dimensional diffusions and
Markov processes has been studied by many authors (to cite only a few see [2, 5,
10, 11, 18], [25, Chapter VII, Section 5]).
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