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SMC Based Synchronization and Anti-
Synchronization of Chaotic Systems for 
Secure Communication and Analog Circuit 
Realization
P. P. Singh* J. P. Singh** and B. K. Roy**

Abstract :  In this paper, synchronization and anti-synchronization of Bhalekar-Gejji chaotic system is 
proposed with application to secure communication. Further its analog circuit design and simulation is carried 
out using analog components. Proposed synchronization and anti-synchronization with application to secure 
communication is achieved using robust SMC. For communication, the information signal is masked with 
any single state. Lyapunov stability theory is used and required condition is derived to ensure the stability 
of error dynamics. Controller and stable switching surface is designed to insure the system trajectory with 
in the sliding manifold. Further analog circuit simulation is achieved to interface system with proposed 
scheme into the real world. MATLAB and MULTISIM platforms are used for simulation and circuit design. 
Simulation and realization results suggest that proposed scheme for synchronization and anti-synchronization 
of Bhalekar-Gejji (BG) chaotic system with application to secure communication is working satisfactorily.
Keywords : Synchronization; Anti-synchronization; Chaotic System Synchronization; Sliding Mode Control; 
Lyapunov Stability Theory; Multisim Circuit Design.

1. INTRODUCTION 

Chaotic systems are being potentially used for secure communication and signal processing because of 
their potential mechanism for signal design and generation. Chaotic signal can be used in various ways for 
masking information bearing waveforms, because they are typically noise like and broadband, therefore 
diffi cult to predict [1]. The other important property of chaotic system is aperiodic long time behavior 
arises from deterministic dynamical system which is sensitivity to initial condition [2]. Synchronization 
means if two systems have similar behavior at same time or they share common time. It is possible to make 
two chaotic system get synchronized, because of above property. This important property leads to some 
interesting and common applications in the fi eld of secure communication [3, 4]. Synchronization of two 
identical chaotic systems with different initial condition was illustrated by Pecora & Carroll in 1990 [5]. 

During last two decades, chaos synchronization has attracted a great attention from various fi elds 
[2]. There are two methods for synchronization of chaotic system as drive-response scheme and coupling 
scheme. Drive-response also called master-slave system which is widely used. Synchronization is achieved 
when error between the states of the master and slave systems tends to zero. Various control schemes 
have been developed for synchronization of chaotic system in the last two decades such as active control 
method [6, 7], adaptive control method [8], backstepping control method [9], sampled data feedback 
method [10], time delay feedback method [11], sliding mode control method [12], passive control [13], 
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optimal control [14], fuzzy control [15], PID control [16] etc. So many techniques are also available 
related to synchronization known as lag synchronization [17], phase synchronization [18], projective 
synchronization [19], generalized projective [20], exponential synchronization [21], anti-synchronization 
[7, 22] and hybrid synchronization [23, 24]. Meanwhile, another important phenomenon has devised is 
anti-synchronization between master-slave systems with many chaotic systems. Anti-synchronization is 
achieved when sum of states of two chaotic systems (master-slave) will asymptotically converge to zero, 
having equal amplitude and opposite phase between the state of master-slave systems [25]. 

In this paper, SMC is used for synchronization and anti-synchronization of two Bhalekar-Gejji 
(BG) [26, 27] chaotic systems. SMC is used because of its inherent advantages of robust realization, fast 
response as well as its insensitivity to parameter uncertainties and disturbances [28]. Synchronization 
property used here to show secure communication between the master and slave systems. For illustration 
purpose the message signal is transmitted at transmitter end in the form of sin wave and same message is 
recovered back at the receiver end.

Rest of paper is organized as follows. In Section 2, problem statement for synchronization of chaotic 
system is discussed. In Section 3, synchronization of Bhalekar-Gejji (BG) chaotic system using SMC is 
presented. In Section 4, problem formulation for anti-synchronization is discussed. In Section 5, anti-
synchronization of BG chaotic system using SMC is discussed. MULTISIM circuit design and realization 
for synchronization, anti-synchronization for proposed scheme based on BG chaotic system is achieved 
in Section 6. In Section 7, secure communication scheme based upon on synchronization is discussed. 
In Section 8, description of switching surface and controller for application to secure communication 
using Bhalekar-Gejji chaotic system is given and analog circuit is designed. In Section 9, simulation and 
circuit design results are shown for validation and verifi cation of proposed scheme. Finally, Section 10 
conclusions and future scope is addressed. 

2.  PROBLEM FORMULATION FOR SYNCHRONIZATION 

In this section, synchronization of Bhalekar-Gejji chaotic systems based on sliding mode control is 
discussed. In 2011, S. B. Bhalekar and V. D. Gejji proposed the Bhalekar-Gejji (BG) chaotic dynamical 
system as: 
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where x1, x2, x3 are the states. The system exhibit chaotic behavior for w = –2.667, = 10,  = 27.3, = 1. 
The master dynamics is defi ned by (1). The slave system along with controller is described as:
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where y1, y2, y3 are states of slave system (2) and u1, u2 are the control inputs. Synchronization between the 
master and slave systems can be achieved for any initial conditions, if 

 limt  ||ei (t)|| for  i = 1, 2, 3 (3)
The error dynamics is obtained as follows:
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Our aim is to design a sliding mode controller such that resulting error dynamics satisfi es condition 
(3) to synchronize the master and slave chaotic systems defi ned in (1) and (2). Based on the SMC theory, 
synchronization of BG chaotic system is discussed in the next section.

3.  SYNCHRONIZATION OF BG CHAOTIC SYSTEM USING SMC

The SMC technique is used to achieve synchronization for pair of chaotic system (1) and (2), involves 
two major steps. First, selects appropriate switching surfaces which guaranteed stability of equivalent 
dynamics in sliding mode such that synchronization error (22) converge to zero. Second, to establish the 
control law which guaranteed the existence of sliding mode s(t) = 0, is defi ned as provided k1, k2 > 0
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System trajectory operates in sliding mode (Itkis, 1976), when it satisfi es: ṡ1 = 0 and ṡ2 = 0. So, (5) is 
written as:
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Resulting in the form of (7) as:
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Using (4) and (7), the equivalent sliding mode error dynamics is written as:
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To ensure the occurrence of sliding motion, the controller is proposed in (9).
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where > 0 has to be selected suitably.
Theorem : The control inputs u1, u2 of (9) causes to converge the state trajectories of the systems (1) 

and (2) onto the sliding surface s(t) = 0 and holds lim(t ) ||ei(t)|| = 0.
Proof : Let a Lyapunov function be defi ned as

 V(s) = 2 2
2 2

1 ( )
2

s s  (10)

Having the fi rst order continuous derivative of V(s) and using (4), we have

 V( )s  = 2 2
1 1 2 2 1 1 1[ – ]s we y x u k e  

+ s2[ae2 – be3 + y1y2 – x1x2 + u2 + e2 + k2e3]  (11)
By using the control law (9) we have
 V( )s  = –|s1| – |s2| ≤ 0 (12)
For s(t) = 0 and  > 0 according to suitable choice, following holds
 V( )s  = s1ṡ1 + s2ṡ2 < 0
Thus, according to Lyapunov stability theory s(t) always converges to switching surface s(t) = 0. Hence, 

error dynamics in sliding manifold is asymptotically stable and the error dynamics converges to zero.



176 P. P. Singh, J. P. Singh and B. K. Roy

4.  PROBLEM FORMULATION FOR ANTI-SYNCHRONIZATION 

The master dynamics is defi ned in (1). The slave system is described in (2). The anti-synchronization error 
between the master and slave systems is obtained as follows:
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To synchronize the master-slave chaotic systems in (1) and (2), respectively, our aim is to design a 
SMC such that the resulting error vector satisfi es condition (3).

5.  ANTI-SYNCHRONIZATION OF BG CHAOTIC SYSTEM USING SMC

In this section, we discuss the anti-synchronization of two identical Bhalekar-Gejji chaotic systems based 
on sliding mode control. The appropriate switching surface is defi ned as in (34) provided k1, k2 > 0.
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where e1, e2 and e3 are the anti-synchronization errors. To ensure the occurrence of the sliding motion, the 
controller is proposed in (15).
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where > 0 has to be selected suitably. The control inputs u1, u2 of (15) causes to converge the system 
trajectory of (1) and (2) onto the sliding surface s(t) = 0. Let us consider a Lyapunov function and having 
fi rst order continuous differentiation and using the control law of (15) results a negative defi nite function 
V̇(s) as:

 V̇(s) = –|s1| – |s2|   0 (16)
For s(t) = 0 and a suitable choice of  > 0 holds V̇(s) = s1ṡ1 + s2ṡ2 < 0.
Thus, according to the Lyapunov stability theory s(t) always converges to switching surface s(t) = 0. Hence, 

the error dynamics in sliding manifold is asymptotically stable according to (16), and error dynamics 
converges to zero. Based on synchronization and anti-synchronization scheme developed in the previous 
sections, analog circuit design using MULTISIM is given in the next section.

6.  MULTISIM CIRCUIT DESIGN AND REALIZATION

In this section, the circuit simulation of BG chaotic system its synchronization and anti-synchronization 
scheme is shown using NI Multisim 11.0.

6.1. Circuit simulation for Bhalekar-Gejji chaotic system

Here, BG chaotic system (1) is simulated using analog components resistance, capacitance and Op-amp 
of different values using MULTISIM is shown in the Fig. 1. Phase plane of BG chaotic system is shown 
in MULTISIM Oscilloscope in the Fig. 2.

6.2. Circuit simulation for synchronization of Bhalekar-Gejji chaotic system
In this subsection, synchronization error dynamics, sliding surface, control law describes in 4), (5) and (9), 
respectively, are simulated using analog components resistance, capacitance, Op-amp of different values. 
The dynamics of (9) and (5) in terms of analog circuit design are given in (17) and (18), respectively. 
Circuit simulation for synchronization scheme between the master and slave system is shown in the Fig. 3.
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Figure 1: Circuit simulation of Bhalekar-Gejji (BG) chaotic system

Figure 2: Phase plane of Bhalekar-Gejji chaotic system with respect to x1, x2 plane in Oscilloscope-XSC1 and with respect to
x1,x3 plane in Oscilloscope-XSC2
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6.3. Circuit simulation for anti-synchronization of Bhalekar-Gejji chaotic system

Here, anti-synchronization error dynamics, sliding surface, control law describes in (13), (14) and (15), 
respectively, are simulated using analog components resistance, capacitance, Op-amp of different values. 
Circuit simulation for anti-synchronization scheme between the master and slave system is achieved in the 
similar fashion and not shown here to avoid repetition. The dynamics of (15) and (14) in terms of analog 
circuit design are given in (19) and (20), respectively.
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7. APPLICATION TO SECURE COMMUNICATION

A potential approach of synchronization of chaotic system for communication is based on chaotic signal 
masking and its recovery. Let’s consider an example, a signal m is added to state x1 of the transmitter as 
s = x1 + m. It is assumed that for masking signal to noise ratio of m(t) is lower than x1. Here, the basic idea 
is to use the received signal to generate masking signal at the receiver and subtract it from the received 
signal to recover m. If the receiver has synchronized with s as the drive, the y1 = x1 and consequently m(t) 
is recovered as m̂  = s – y1. Using above synchronization scheme, synchronizing error dynamics between 
transmitter and receiver can be written as:
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8. 8. DESIGN OF SWITCHING SURFACE AND CONTROLLER

The SMC technique to achieve synchronization for secure communication for pair of chaotic system (19) 
and (20) involves two major steps as discussed in Section 5 provided selection of sliding surfaces in (23). 
So, that equivalent sliding mode error dynamics is written as:
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To ensure the occurrence of the sliding motion, controller is proposed as follows: 
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Figure 3: (a)
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Figure 3: (b)

where,  > 0 has to be selected suitably. As per Theorem control u1, u2 of (23) causes the trajectory of the 
master and slave systems to converge onto the sliding surface s(t) = 0 and satisfi es limt  ||ei(t)||= 0. Thus, 
according to Lyapunov stability theory s(t) always converges to switching surface s(t)=0. Hence, error 
dynamics in sliding manifold is asymptotically stable and error dynamics converges to zero and message 
can be retrieve at the receiver. The circuit design is shown for the secure communication in the Fig. 3.

9. RESULTS AND DISCUSSION
Results are simulating with time step 0.005 and running for 10 seconds. For analog circuit design and 
simulation MULTISIM is used. Circuit simulation of system synchronization, anti-synchronization and 
respective controllers, sliding surfaces is designed successfully with application to secure communication.

9.1. MATLAB Simulation Results

The initial conditions to simulate the synchronization and anti-synchronization, corresponding controllers and 
the error dynamics are x(0) = [(10 20 30)]T and y(0) = [17  22 9)]T. Parameters of BG system (1) for chaotic 
behavior are  = 27.3, = 1, = 10, w = –2.667 [27]. Please refer Figs. 4-6 for the simulation results.
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Figure 3: Circuit design for secure communication using Bhalekar-Gejji chaotic system

9.2. MULTISIM Circuit Simulation Results
The initial conditions for simulating the synchronization and anti-synchronization of states, controllers 
and error dynamics, are x(0) = [(0  0.2  0.2)]T and  y(0) = [(0  0  0)]T. Synchronized and anti-synchronized 
states response is given in the Fig. 7 in LHS and RHS, respectively. Communication circuit design 
(Fig. 3) and message signal at the transmitter end and recovered signal at receiver end using Multisim is 
shown in Fig. 8 in LHS and RHS, respectively.

10.  CONCLUSIONS AND FUTURE SCOPE
In this paper, global synchronization and anti-synchronization scheme with application to secure 
communication is presented to investigate fi rst time in literature for newly developed Bhalekar-Gejji 
(BG) systems. SMC have been proposed to guarantee the occurrence of global asymptotic stability. It 
has been shown that the master and slave systems are synchronized and anti-synchronized by proper 
design of the control and stable switching surface. The proposed control forces the system states onto 
the switching surface. Application to secure communication shows the synchronizability of Bhalekar-
Gejji chaotic systems in the drive-response framework. Finally, numerical simulations are presented to 
show the effectiveness of the proposed synchronization and anti-synchronization schemes. Further, analog 
circuit design and realization for proposed synchronization, anti-synchronization and application to secure 
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communication is carried out and achieved for hardware realization. Proposed synchronization scheme 
can also be used in the complex dynamical network such as small world network and scale-free networks. 
It may be the future direction for researchers to precede and explore this work further.
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Figure 5: Switching surfaces stabilization for synchronization and anti-synchronization
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Figure 7: Synchronized (in LHS) and Anti-synchronized (in RHS) states: fi rst, second and the third states of master and slave 
systems in (a), (b) and (c), respectively
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Figure 8:  Masked Message signal (red line) at the transmitter end and recovered signal (green line) at the receiver end
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