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DIFFERENTIAL EQUATIONS

Sushil Kumar Agarwal

Many physical phenomena can be modeled using the language of calculus.  For
example, observational evidence suggests that the temperature of a cup of tea (or
some other liquid) in a room of constant temperature will cool over time at a rate
proportional to the difference between the room temperature and the temperature of
the tea.

In symbols, if t is the time, M  is the room temperature, and f (t) is the temperature
of the tea at time t then f ’ (t) = k(M – f (t)) where k > 0 is a constant which will depend
on the kind of tea (or more generally the kind of liquid) but not on the room temperature
or the temperature of the tea.  This is Newton’s law of cooling and the equation that
we just wrote down is an example of a differential equation.  Ideally we would like to
solve  this  equation,  namely,  find the  function  f (t) that  describes  the  temperature
over time, though this often turns out to be impossible, in which case various
approximation techniques must be used.  The use and solution of differential equations
is an important field of mathematics; here we see how to solve some simple but useful
types of differential equation.

Informally, a differential equation is an equation in which one or more of the
derivatives of some function appear. Typically, a scientific theory will produce a
differential equation (or a system of differential equations) that describes or governs
some physical process, but the theory will not produce the desired function or functions
directly.

Recall from section 6.2 that when the variable is time the derivative of a function

y(t) is sometimes written as y�  instead of y� ; this is quite common in the study of

differential equation.

We start by considering equations in which only the first derivative of the function appears.

DEFINITION 1.  A first order differential equation is an equation of the form F (t,
y, y� ) = 0. A solution of a first order differential equation is a function f (t) that makes
F (t, f (t), f 2 (t)) = 0 for every value of t.
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Here, F is a function of three variables which we label t, y, and y� . It is understood

that y�  will explicitly appear in the equation although t and y need not.  The term “first

order” means that the first derivative of y appears, but no higher order derivatives do.

EXAMPLE 2. The equation from Newton’s law of cooling, y�  = k(M – y) is a first

order differential equation; F (t, y, y� ) = k(M – y) – y� .

EXAMPLE 3. y�  = t2 + 1 is a first order differential equation; F (t, y, y� ) = y�  – t2 – 1.

All solutions to this equation are of the form t3 /3 + t + C.

DEFINITION 4. A first order initial value problem is a system of equations of the

form F (t, y, y� ) = 0, y(t0) = y0.  Here  t0  is  a fixed  time  and y0  is  a number.   A

solution of an initial value problem is a solution f (t) of the differential equation that
also satisfies the initial condition f (t0) = y0.

EXAMPLE 5. The initial value problem y�  = t2 + 1, y(1) = 4 has solution f (t) = t3

/3 + t + 8/3.

The general first order equation is rather too general, that is, we can’t describe
methods that will work on them all, or even a large portion of them.  We can make
progress with specific kinds of first order differential equations.  For example, much

can be said about equations of the form y�  = � (t, y) where �  is a function of the two

variables t and y. Under reasonable conditions on � , such an equation has a solution
and the corresponding initial value  problem  has a unique  solution.   However,  in
general,  these  equations  can be very difficult or impossible to solve explicitly.

EXAMPLE 6. Consider this specific example of an initial value problem for New-

ton’s law of cooling: y�  = 2(25 – y), y(0) = 40. We first note that if y(t0) = 25, the right

hand side of the differential equation is zero, and so the constant function y(t) = 25 is
a solution to the differential equation.  It is not a solution to the initial value problem,
since y(0) j= 40. (The physical interpretation of this constant solution is that if a liquid
is at the same temperature as its surroundings, then the liquid will stay at that
temperature.)
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Then, it is simple to prove that the fundamental solution of this telegraph-type



Differential Equations 297

equation coincides with the law of the classical telegraph process with the
aforementioned deterministic time-change.

On the basis of the previous considerations, we now consider the space-time
fractional telegraph equation
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involving time-fractional Hadamard derivatives and space-fractional Riesz derivative
(see the previous section). Equation (3.1) has been previously studied in [2] in the
case where the Hadamard derivatives are replaced with Caputo fractional derivatives.
In this paper, the authors have shown that the fundamental solution of the space-time
fractional telegraph type equation
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coincides with the distribution of the composition of a stable process Sa(t), t > 0 with
the positively-valued process

L�(t) = � �2 1/
1 2inf 0 : ( ) ( ) (2 ) ( ) ,s s H s H s t� � � �� � � � �H t > 0,             (4)

where 2
1H �  and 2H �  are independent positively skewed stable processes of order 2n

and n, respectively. With the next proposition, we generalize Theorem 4.1 of D’Ovidio
et al. [2] to the case of Equation ()
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where

r1 = 2 2 | | ,c �� � � � � � r2 = 2 2 | | .c �� � � � � �                       (7)

We neglect the complete proof of this proposition because it consists of a simple
combination of the arguments of the proof of Theorem 4.1 in [2] and of the previous
considerations about the role of Hadamard time-fractional derivatives that induces a
deterministic logarithmic time-change. However, we remark that this result can be
easily generalized to the multidimensional case (where the fractional Laplacian appears)
and gives a more general probabilistic interpretation of the fundamental solution of
the space-time fractional telegraph equation.

We refer to [9] for a complete discussion about the functional setting and main
properties of this integro-differential operator.

In a series of works, Hilfer studied applications of a generalized fractional operator
having the Riemann–Liouville and the Caputo derivatives as specific cases. The Hilfer’s
derivative is defined as
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I �
� ��  is the Riemann–Liouville integral. Hereafter we will take for

simplicity a = 0.

The Laplace transform of the Hilfer fractional derivative w.r. to the time reads
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where (Lu)(x, s) = ( , ).u x s�
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We now recall the definition of the Riesz-Feller fractional derivative and for more
details we refer, for example, to the encyclopedical book by Samko et al. [13] For 0 <
a £ 2 and | q | min (a, 2 – a), the Riesz-Feller derivative is defined as
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For q = 0, the Riesz-Feller derivative becomes the Riesz fractional derivative, that is,
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The Fourier transform of (2.7) reads
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where f *(b) = (Ff )(b).

We note that the fundamental solution to the space-fractional differential equation
involving the Riesz-Feller derivative

p
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has Fourier transform

p�(�, t) = � �( / 2)exp | | signβ ,ite� ��� �

which is the characteristic function of a stable process Sa(s, g, m; t), with m = 0, s = cos
qp/2 and g = – tan pq/2/tan pq/2, (see, e.g. [17]).
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We neglect the complete proof of this proposition because it consists of a simple
combination of the arguments of the previous considerations about the role of
Hadamard time-fractional derivatives that induces a deterministic logarithmic time-
change. However, we remark that this result can be easily generalized to the
multidimensional case (where the fractional Laplacian appears) and gives a more
general probabilistic interpretation of the fundamental solution of the space-time
fractional telegraph equation.

Why could we solve this problem?  Our solution depended on rewriting the equation
so that all instances of y were on one side of the equation and all instances of t were
on the other; of course, in this case the only t was originally hidden, since we didn’t
write dy/dt in the original equation.  This is not required, however.

EXAMPLE: Solve  the  differential  equation  y�  = 2t(25 “ y).  This  is  almost

identical to the previous example.  As before, y(t) = 25 is a solution.  If y j= 25,
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derivative and ( )n
a

I �
� ��  is the Riemann–Liouville integral (see, e.g. [13,15]). Hereafter

we will take for simplicity a = 0.

The Laplace transform of the Hilfer fractional derivative w.r. to the time reads
(see [16])
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We now recall the definition of the Riesz-Feller fractional derivative and for more
details we refer, for example, to the encyclopedical book by Samko et al. [13] For 0 <
a £ 2 and | q | min(a, 2 – a), the Riesz-Feller derivative is defined as
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For q = 0, the Riesz-Feller derivative becomes the Riesz fractional derivative, that is,

0( )( )x D f x�  = 

/ 22

2

d .
dx

�
� �

� �� �
� �

The Fourier transform of (2.7) reads

( )( )x D f�
� �F  = ( /2)sign| | ( ) ( ) ( ),ie f f� �� � � � �

�� � � � � � � �
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This  technique  is  called  separation  of  variables.   The  simplest  (in principle)
sort  of separable equation is one in which g(y) = 1, in which case we attempt to solve

1 dy =f (t) dt.

We can do this if we can find an anti-derivative of f (t).

Also as we have  seen so far, a differential equation typically has an infinite
number of solutions.  Ideally, but certainly not always, a corresponding initial value
problem will have just one solution.  A solution in which there are no unknown
constants remaining is called a particular solution.
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The  general approach to separable  equations is this:  Suppose we wish to solve
y�   = f (t)g(y) where f and g are continuous  functions.  If g(a) = 0 for some a then y(t)

= a is a constant solution of the equation, since in this case y�  = 0 = f (t)g(a).  For
example, y�  = y2 – 1 has constant solutions y(t) = 1 and y(t) = – 1.

To find the nonconstant solutions, we note that the function 1/g(y) is continuous
where g j= 0, so 1/g has an antiderivative G. Let F be an antiderivative of f . Now we
write

G(y) = 1/g(y) dy = f (t) dt = F (t) + C,

so G(y) = F (t) + C. Now we solve this equation for y.

Of course,  there  are a few places  this ideal description  could go wrong: we need
to be able to find the antiderivatives G and F , and we need to solve the final equation
for y. The upshot is that the solutions to the original differential equation are the
constant solutions, if any, and all functions y that satisfy G(y) = F (t) + C.

EXAMPLE: Consider the differential equation y�  = ky.  When k > 0, this describes

certain simple cases of population growth: it says that the change in the population y
is proportional to the population.  The underlying assumption is that each organism in
the current population reproduces at a fixed rate, so the larger the population the more
new organisms are produced.  While this is too simple to model most real populations,
it is useful in some cases over a limited time.  When k < 0, the differential equation
describes a quantity that decreases  in proportion to the current value;  this can be
used to model radioactive decay.

The  constant  solution  is  y(t) = 0; of course  this  will  not  be  the  solution  to  any
interesting  initial  value  problem. For the  non-constant  solutions,  we proceed
much as

before:

1

y dy =k dt y

ln    | y | = kt + C

|y| = ekt eC

y = ± eC ekt

y = Aekt .

Again, if we allow A = 0 this includes the constant solution, and we can simply
say that y = Aekt  is the general solution.  With an initial value we can easily solve for
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A to get the solution of the initial value problem.  In particular, if the initial value is
given for time t = 0, y(0) = y0 , then A = y0  and the solution is y = y0 ekt .

Exercises 1.

1. Which of the following equations are separable?

a. y�  = sin(ty)

b. y� = et ey

c. y y�  = t

d. y�  = (t2 – t) arcsin(y)

e. y�  = t

ln y + 4t2 ln y

2. Solve y�  = 1/(1 + t). �

3. Solve the initial value problem yÙ = tn with y(0) = 1 and n e” 0. �

4. Solve y�  = ln t. �

5. Identify the constant solutions (if any) of y�  = t sin y. �

6. Identify the constant solutions (if any) of y�  = tey . �

7. Solve y�  = t/y.  �

8. Solve y�  = y – 1. �

9. Solve y� = t/(y – 5).  You may leave your solution in implicit form:  that is,
you may stop once you have done the integration, without solving for y. �

10. Find a non-constant solution of the initial value problem y�  = y1/3 , y(0) = 0,
using separation of variables.  Note that the constant function y(t) = 0 also
solves the initial value problem.

This shows that an initial value problem can have more than one solution.
�

11. Solve the equation for Newton’s law of cooling leaving M  and k unknown.
�

12. After  10 minutes  in Jean-Luc’s room, his tea has cooled to 40o  Celsius
from 100o   Celsius. The room temperature is 25o  Celsius.  How much longer
will  it take to cool to
35? �



304 Sushil Kumar Agarwal

13. Solve the logistic equation yÙ = ky(M – y).  (This is a somewhat more

reasonable population model  in most  cases than  the  simpler y� = ky.)
Sketch  the  graph of the  solution  to  this

equation when M  = 1000, k = 0.002, y(0) = 1. �

14. Suppose that y�  = ky, y(0) = 2, and y�  (0) = 3. What  is y? �

15. A radioactive substance  obeys the equation y� = ky where k < 0 and y is  the
mass of the

substance at time t. Suppose that initially, the mass of the substance is y(0) =
M  > 0. At what time does half of the mass remain? (This is known as the half
life.  Note that the half life depends on k but not on M .) �

16. Bismuth-210 has a half life of five days. If there is initially 600 milligrams,
how much is left after 6 days? When will there be only 2 milligrams left?  �

17. The  half  life  of carbon-14 is  5730 years.   If one starts  with  100 milligrams
of carbon-14, how much is left after 6000 years?  How long do we have to
wait before there is less than 2 milligrams?  �

18. A certain species of bacteria doubles its population (or its mass) every hour

in the lab.  The differential  equation  that  models  this  phenomenon is  y�

= ky,  where k  > 0 and y is  the population of bacteria at time t. What  is y?
�

19. If a certain microbe doubles its population every 4 hours and after 5 hours
the total population has mass 500 grams, what was the initial mass? �

In recent years, an increasing interest for the analysis and applications of space
and time-fractional generalizations of the telegraph-type equations has been developed
in the literature. One of the first works in this direction was the paper by Orsingher
and Zhao [1] about the space-fractional telegraph equation and then a number of
papers regarding applications in probability, [2,3] in physics [4,5] or merely of
mathematical interest [6–8] appeared in the literature.

In the first part of this paper, we study the fractional telegraph equation involving
Hadamard-type time-fractional derivatives, that is,
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t t t
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with x��  and t > t0 > 0. We denote with the symbol (t¶/¶t)n u the Caputo-type

modification of the Hadamard derivative of order n recently introduced in [9] as follows:
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for n – 1 < n < n and n�� . We will explain the reason why we choose to use this

symbol for the Caputo-like Hadamard fractional operator and recall some of its main
properties in the next section devoted to mathematical preliminaries. Within the
framework of the analysis of the fractional telegraph equation involving Hadamard
derivatives, we will present analytical results concerning the Fourier transform of the
fundamental solution and give some insights regarding the probabilistic meaning of
the obtained results.

Exercises : Find the general solution of each equation in 1–4.

1. y�  + 5y = 0 �

2. y�  “ 2y = 0 �

3.  y�  + 2

y

1+t
 = 0 �

4. y�  + t2  y = 0

In 5–14, solve the initial value problem.

5. y�  + y = 0, y(0) = 4 �

6. y�  “ 3y = 0, y(1) = – 2 �

7. y�  + y sin t = 0, y(À) = 1 �

8. y�  + yet  = 0, y(0) = e �

9. y�  + y/1 + t4 = 0, y(0) = 0 �

10. y�  + y cos(et ) = 0, y(0) = 0 �

11. t1 y�  – 2y = 0, y(1) = 4 �

12.  t2 y�  + y = 0, y(1) = – 2, t > 0 �

13.  t3 y�  = 2y, y(1) = 1, t > 0 �

14.  t4 y�  = 2y, y(1) = 0, t > 0 �

15. A function y(t) is a solution of y�  + ky = 0. Suppose that y(0) = 100 and y(2)
= 4. Find k and find y(t). �
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16. A function y(t) is a solution of y�  + tk y = 0. Suppose that y(0) = 1 and y(1) =
e–13.  Find k and find y(t). �

17. A bacterial culture grows at a rate proportional to its population. If the
population is one million at t = 0 and 1.5 million at t = 1 hour, find the
population as a function of time.  �

18. A radioactive element decays with a half-life of 6 years.  If a block of the
element has mass 10 kilograms at t = 0, find the amount of the element at
time t. �

As you might guess, a first order linear differential equation has the form y�  +

p(t)y = f (t). Not only is this closely related in form to the first order homogeneous
linear equation, we can use what we know about solving homogeneous equations to
solve the general linear equation.

Suppose that y1 (t) and y2 (t) are solutions to y�  + p(t)y = f (t).  Let g(t) = y1 – y2.
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In other words, g(t) = y1 – y2  is a solution to the homogeneous equation y�  + p(t)y
= 0. Turning this around, any solution to the linear equation y�  + p(t)y = f (t), call it y1

, can be written as y2 + g(t), for some particular y2 and some solution g(t) of the
homogeneous equation y�  + p(t)y = 0. Since we already know how to find all solutions
of the homogeneous equation, finding just one solution to the equation y�  + p(t)y = f
(t) will give us all of them.

How might we find that one particular solution to y�  + p(t)y = f (t)? Again, it turns
out that what we already know helps.  We know that the general solution to the
homogeneous equation y�  + p(t)y = 0 looks like AeP (t) .  We now make an inspired
guess:  consider the function v(t)eP (t), in which we have replaced the constant
parameter A with the function v(t).  This technique is called variation  of parameters.
For convenience write this as s(t) = v(t)h(t) where h(t) = eP (t) is a solution to the
homogeneous equation.  Now let’s compute a bit with s(t):
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The  last  equality  is  true  because h ’ (t) + p(t)h(t) = 0, since h(t) is a solution to
the homogeneous equation.  We are hoping to find a function s(t) so that s ’ (t) +
p(t)s(t) = f (t); we will  have such a function  if we can arrange to  have v ’ (t)h(t) = f (t),
that  is, v (t) = f (t)/h(t).  But this is as easy (or hard) as finding an anti-derivative of f
(t)/h(t).

Putting this all together, the general solution to y�  + p(t)y = f (t) is

v(t)h(t) + AeP (t) = v(t)eP (t) + AeP (t).]

Some people find it easier to remember how to use the integrating factor method
than variation of parameters.  Since ultimately they require the same calculation, you
should use whichever of the two you find easier to recall.  Using this method, the

solution of the previous example would look just a bit different:  Starting with y�  + 3y/

t = t2, we recall that the integrating factor is eJ 3/t  = e3 ln t = t3. Then we multiply through
by the integrating factor and solve:

t3 y�  + t33y/t = t3 t2

t3 y�  + t2 3y = t5

d

dt
 (t3y) = t5

t3 y = t6 /6

y = t3 /6.

The so-called telegraph process, T (t), t > 0, describes the random motion of a
particle moving on the real line with finite velocity c and alternating two possible
directions of motions (forward or backward) at Poisson paced times with constant rate
l > 0. This simple finite-velocity random motion was firstly suggested by the description
of particles transport. In this framework, the first derivation given in literature, as far
as we know, was given by Fürth in a discussion of several models of fluctuation
phenomena in physics and biology. A similar model was also considered by Taylor
[18] to treat turbulent diffusion and then studied in detail by Goldstein [11] and Kac.[12]
This process is called in the literature telegraph process because the probability law
of T (t) coincides with the fundamental solution of the hyperbolic telegraph equation.
Moreover, as a limiting case it coincides with the transition density of the classical
Brownian motion.

In more detail, the classical symmetric telegraph process is defined as
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T (t) = ( )

0
(0) ( 1) ,

t sV ds�� N t � 0,

where V(0) is a two-valued random variable independent of the Poisson process N (t),

t � 0.

The component of the unconditional distribution of the telegraph process
concentrated inside the interval (– ct, + ct), is given by

P{T (t) � dx} = 2 2 2 2 2 2
0 0 ,

2

te
dx I Ic t x c t x

c tc c

�� �� �� �� � � �� �� �� � � �� ��� � � �� �
  | x | < ct.

The component of the unconditional distribution that pertains to the Poisson
probability of no changes of directions is concentrated on the boundary, i.e. x = ± ct,

P{T (t) = ± ct} = .
2

te��

Hence, we are able to give in explicit form the density f (x, t) of the distribution of
T (t), that is,

f (x, t) = 2 2 2 2 2 2
0 0 ( , )1 ( )

2

t

ct ct
e

I I xc t x c t x
c tc c

��

� �
�� �� �� � � �� �� �� � � �� ��� � � �� �

[ ( ) ( )],
2

te
ct x ct x

��

� � � � � �

where Q(×) is the Heaviside function and d(×) is the Dirac delta function. We remark
that the component of the distribution of the telegraph process concentrated in (– ct, +
ct), given by formula is the solution to the Cauchy problem

2 2
2

2 2

0

2 ,

( , 0) ( ),

0( , )
t

p p p
c

tt x
p x x

p
x t

t �

�� � �
� � �� �� ��� � ��

� �� �
���

We  have  seen how to  solve  a restricted  collection  of differential  equations,  or
more ac- curately,  how to attempt to solve them—we  may not  be able to find the
required  anti- derivatives.  Not surprisingly, non-linear equations can be even more
difficult to solve.  Yet much is known about solutions to some more general equations.
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Suppose  � (t, y) is  a function  of two  variables.   A more general  class  of first
order differential equations has the form y�  = � (t, y). This is not necessarily a linear
first order equation, since �  may depend on y in some complicated way; note however
that y�  appears in a very simple form. Under suitable conditions on the function � , it
can be shown that every such differential equation has a solution, and moreover that
for each initial condition the associated initial value problem has exactly one solution.
In practical applications this is obviously a very desirable property.

EXAMPLE 1.  The equation y�  = t – y2 is a first order non-linear equation, because
y appears to the second power.  We will not be able to solve this equation.

EXAMPLE 2. The equation y�  = y2  is also non-linear, but it is separable and can
be solved by separation of variables.

Not all differential equations that are important in practice can be solved exactly,
so techniques have been developed to approximate solutions.  We describe one such
technique, Euler’s Method, which is simple though not particularly useful compared
to some more sophisticated techniques.

Suppose we wish to approximate a solution to the initial value problem y� = � (t,
y), y(t0) = y0, for t �  t0 .  Under  reasonable  conditions  on � , we know the  solution
exists, represented  by a curve  in the  t-y plane;  call this  solution  f (t).  The  point  (t0,
y0) is  of course on this curve.  We also know the slope of the curve at this point,
namely � (t0 + Dt, y0). If we follow the tangent line for a brief distance, we arrive at a
point that should be almost on the graph of f (t), namely (t0 + � , y0 + � (t0 , y0) � ); call
this point (t1 , y1).  Now we pretend,  in effect,  that this point really is on the graph of
f (t), in which case we again know the slope of the curve through (t1, y1), namely
� (t1, y1). So we can compute a new point, (t2 , y2) = (t1 + Dt, y1 + � (t1 , y1)Dt) that is
a little farther along, still close to the graph of f (t) but  probably not  quite  so close  as
(t1 , y1).  We  can continue  in this  way, doing a sequence of straightforward
calculations, until we have an approximation (tn , yn) for whatever time tn we need.
At each step we do essentially the same calculation, namely

(ti+1, yi+1) = (ti + �t, yi + � (ti , yi)�).

We expect that smaller time steps Dt will give better approximations, but of course
it will require more work to compute to a specified time.  It is possible to compute a
guaranteed upper bound on how far off the approximation might be, that is, how far
yn is from f (tn). Suffice it to say that the bound is not particularly good and that there
are other  more complicated approximation techniques that do better.
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EXAMPLE 3. Let us compute an approximation to the solution for y�  = t – y2,
y(0) = 0, when t = 1. We will use Dt = 0.2, which is easy to do even by hand, though
we should not expect the resulting approximation to be very good. We get

(t1 , y1) = (0 + 0.2, 0 + (0 – 02)0.2) = (0.2, 0)

(t2 , y2) = (0.2 + 0.2, 0 + (0.2 – 02)0.2) = (0.4, 0.04)

(t3 , y3) = (0.6, 0.04 + (0.4 – 0.042)0.2) = (0.6, 0.11968)

(t4 , y4) = (0.8, 0.11968 + (0.6 – 0.119682)0.2) = (0.8, 0.23681533952)

(t5 ,  y5) = (1.0, 0.23681533952 + (0.6 – 0.236815339522)0.2) = (1.0,
0.385599038513605)

So y(1) �  0.3856. As it turns out, this is not accurate to even one decimal place.
Fig- ure 17.4.1 shows these points connected by line segments (the lower curve)
compared to a solution obtained  by a much better approximation technique.  Note
that the  shape is approximately correct even though the end points are quite far apart.
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Figure 1: Approximating a solution to y�  = t – y, y(0) = 0.

If you need to do Euler’s method  by hand, it is useful  to construct  a table to keep
track of the work, as shown  in figure 2. Each row holds the computation for a single
step:  the starting point (ti , yi ); the stepsize Dt; the computed slope � (ti , yi); the
change in y, Dy = � (ti , yi)Dt; and the new point, (ti+1 , yi+1) = (ti  + Dt, yi  + Dy). The
starting point in each row is the newly computed point from the end of the previous
row.

It is easy to write a short function in Sage to do Euler’s method; see this Sage
work- sheet.
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(t, y) �t � (t, y) �y = � (t, y)�t (t + �t, y + �y)

(0, 0) 0.2 0 0 (0.2, 0)

(0.2, 0) 0.2 0.2 0.04 (0.4, 0.04)

(0.4, 0.04) 0.2 0.3984 0.07968 (0.6, 0.11968)

(0.6, 0.11968) 0.2 0.58 . . . 0.117 . . . (0.8, 0.236 . . .)

(0.8, 0.236 . . .) 0.2 0.743 . . . 0.148 . . . (1.0, 0.385 . . .)

Figure 2: Computing with Euler’s Method.

Euler’s method is related to another technique that can help in understanding a
differential equation in a qualitative way. Euler’s method is based on the ability to
compute the slope of a solution curve at any point in the plane,  simply by computing
� (t, y).  If we compute � (t, y) at many points, say in a grid, and plot a small line
segment with that slope at the point, we can get an idea of how solution curves must
look.  Such a plot is called a slope  field.  A slope field for �  = t “ y2  is shown in figure

3; compare this to figure 1. With a little practice, one can sketch reasonably accurate
solution curves based on the slope field, in essence doing Euler’s method visually.

Figure 3: A slope field for y�  = t – y .

Even  when a differential  equation  can be solved  explicitly,  the  slope  field  can
help in understanding what the solutions look like with various initial conditions.

Recall the logistic equation from exercise 13 in section 17.1, y�  = ky(M – y): y is a
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population at time t, M is a measure of how large a population the environment can
support, and k measures the reproduction rate of the population.  Figure 4 shows a
slope field for this equation that is quite informative.  It is apparent that if the initial
population is smaller than M  it rises to M over the long term, while if the initial
population is greater than M it decreases to M . It is quite easy to generate slope fields
with Sage; follow the AP link in the figure caption.

Figure 4: A slope field for y�  = 0.2y(10 – y).

EXERCISES 5.

1. Verify that the function in part (a) of theorem 17.5.2 is a solution to the differential
equation a y��  + by y�  + cy = 0.

2. Verify that the function in part (b) of theorem 17.5.2 is a solution to the differential
equation a y��  + by y�  + cy = 0.

3. Verify that the function in part (c) of theorem 17.5.2 is a solution to the differential
equation a y��  + by y�  + cy = 0.

4. Solve the initial value problem y��  – w y = 0, y(0) = 1, y y�  (0) = 1, assuming w /
= 0. �

5. Solve the initial value problem 2 y��  + 18y = 0, y(0) = 2, y y�  (0) = 15. �
6. Solve the initial value problem y��  + 6y y�  + 5y = 0, y(0) = 1, y y�  (0) = 0. �
7. Solve the initial value problem y��  – y y�  – 12y = 0, y(0) = 0, y y�  (0) = 14. �
8. Solve the initial value problem y��  + 12y y�  + 36y = 0, y(0) = 5, y y�  (0) = “10. �
9. Solve the initial value problem y��  – 8y y�  + 16y = 0, y(0) = –3, y y�  (0) = 4. �

10. Solve the initial value problem y��  + 5y = 0, y(0) = “2, y y�  (0) = 5. �
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11. Solve the initial value problem y��  + y = 0, y(p/4) = 0, y y�  (p/4) = 2. �
12. Solve the initial value problem y��  + 12y y�  + 37y = 0, y(0) = 4, y y�  (0) = 0. �
13. Solve the initial value problem y��  + 6y y�  + 18y = 0, y(0) = 0, y y�  (0) = 6. �
14. Solve the initial value problem y��  + 4y = 0, y(0) =  y y�  (0) = 2. Put your answer

in the form developed at the end of example 17.5.3. �
15. Solve the initial value problem y��  + 100y = 0, y(0) = 5, y y�  (0) = 50. Put your

answer in the form developed at the end of example 17.5.3. �
16. Solve the initial value problem y��  + 4y y�  + 13y = 0, y(0) = 1, y y�  (0) = 1. Put

your answer in the form developed at the end of example 17.5.3. �
17. Solve the initial value problem y��  “ 8y y�  + 25y = 0, y(0) = 3, y y�  (0) = 0. Put

your answer in the form developed at the end of example 17.5.3. �
18. A mass-spring system m y��  + by y�  + ky has k = 29, b = 4, and m = 1. At time t =

0 the position is y(0) = 2 and the velocity is y y�  (0) = 1. Find y(t). �
19. A mass-spring  system  m y��  + by y�  + ky has k = 24, b = 12, and m = 3.  At time

t = 0 the position is y(0) = 0 and the velocity is y y�  (0) = “1. Find y(t). �
20. Consider the differential equation a y��  + by y�  = 0, with a and b both non-zero.

Find the general solution  by  the  method  of this  section.   Now let  g = y y�  ; the
equation  may be written  as ag y�  + bg  = 0, a first  order  linear  homogeneous
equation.   Solve this  for  g, then  use  the relationship g = y y�  to find y.

21. Suppose that y(t) is a solution to a y��  + by y�  + cy = 0, y(t0 ) = 0, y y�  (t0 ) = 0. Show
that y(t) = 0.

Now we consider second order equations of the form a y��  + by y�  + cy = f (t), with
a, b, and c constant.  Of course, if a = 0 this is really a first order equation, so we
assume a j= 0. Also, much as in exercise 20 of section 17.5, if c = 0 we can solve the
related first order equation ah y�  + bh = f (t), and then solve h = y y�  for y. So we will
only examine examples in which c j= 0.

Suppose that y1(t) and y2 (t) are solutions to a y��  + by y�  + cy = f (t), and consider
the function h = y1 – y2 . We substitute this function into the left hand side of the
differential equation and simplify:

a(y1 – y2) + b(y1 – y2) + c(y1 – y2) = ay1 + by1 + cy1 – (ay2 + by2 + cy2) = f (t) – f (t) = 0.

So h is a solution to the  homogeneous equation a y��  + by y��  + cy = 0.  Since  we

know how to  find all such h, then  with just  one particular  solution y2 we can express
all possible solutions y1, namely, y1 = h + y2, where now h is the general solution to
the homogeneous equation.  Of course, this is exactly how we approached the first
order linear equation.
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To make use of this observation we need a method to find a single solution y2.
This turns out to be somewhat more difficult than the first order case, but if f (t) is of
a certain simple form, we can find a solution using the method  of undetermined
coefficients, sometimes more whimsically called the method of judicious guessing.

EXAMPLE 1: Solve the differential equation y��  – y y�  –6y = 18t2 + 5. The general

solution of the homogeneous equation is Ae3t  + Be.  We guess that a solution to the
non-homogeneous equation might look like f (t) itself, namely, a quadratic y = at2 + bt
+ c.

Substituting this guess into the differential equation we get

y��  – y y�  – 6y = 2a – (2at + b) – 6(at2 + bt + c) = – 6at2 + (– 2a – 6b)t + (2a – b – 6c).

We want this to equal 18t2 + 5, so we need

– 6a = 18

– 2a – 6b = 0

2a – b – 6c = 5

This is a system of three equations in three unknowns and is not hard to solve:  a
= – 3, b = 1, c = –2.  Thus the general solution to the differential equation is Ae3t  + Be
– 3t2 + t – 2.

So the “judicious guess” is a function with the same form as f (t) but with
undetermined (or better, yet to be determined) coefficients.  This works whenever f (t)
is a polynomial.

EXAMPLE 2: Consider  the  initial  value  problem  m y��  + ky = –mg,  y(0) = 2,
y y� (0) = 50.  The  left  hand side  represents  a mass-spring  system  with  no damping,
i.e., b  = 0.  Unlike  the  homogeneous  case, we now consider  the  force  due to
gravity,  “mg, assuming the spring is vertical at the surface of the earth, so that g =
980. To be specific, let  us take  m  = 1 and k  = 100.  The  general  solution  to  the
homogeneous  equation is  A cos(10t) + B sin(10t).   For the  solution  to  the  non-
homogeneous  equation  we guess simply  a constant  y = a, since  –mg  = –980  is  a
constant. Then y��  + 100y = 100a so a = –980/100 = –9.8.  The desired general solution
is then A cos(10t) + B sin(10t) “ 9.8. Substituting the initial conditions we get

2 = A – 9.8

 50 = 10B

so A = 11.8 and B = 5 and the solution is 11.8 cos(10t) + 5 sin(10t) – 9.8.
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More generally, this method can be used when a function similar to f (t) has
derivatives that are also similar to f (t); in the examples so far, since f (t) was a
polynomial, so were its derivatives.  The method will work if f (t) has the form p(t)eat

cos(bt) + q(t)eat sin(bt), where p(t) and q(t) are polynomials; when a = b= 0 this is
simply p(t), a polynomial. In the most general form it is not simple to describe the
appropriate judicious guess; we content ourselves with some examples to illustrate
the process.

EXAMPLE 3:  Find the general solution to y��  + 7y y�  + 10y = e3t. The characteristic

equation is r2 + 7r + 10 = (r + 5)(r + 2), so the solution to the homogeneous equation
is Ae–5t  + Be–2t.  For a particular solution to the inhomogeneous equation we guess
Ce3t . Substituting we get

9Ce3t  + 21Ce3t  + 10Ce3t  = e3t 40C.

When C = 1/40 this is equal to f (t) = e3t, so the solution is Ae–5t +Be–2t +(1/40)e3t.

EXAMPLE 4: Find the general solution to y��  + 7y y�  + 10y =  –2t. Following the

last example we might guess Ce–2t, but since this is a solution to the homogeneous
equation it cannot work. Instead we guess Cte–2t. Then

(–2C–2t –2Ce–2t + 4Ct–2t) + 7(Ce–2t –  2Cte–2t) + 10Ct–2t =  e–2t (–3C).

Then C = –1/3 and the solution is Ae+ Be – (1/3)te.

In general, if f (t) = ekt  and k is one of the roots of the characteristic equation, then
we guess Ctekt  instead of Cekt. If k is the only root of the characteristic equation, then
Ctekt will not work, and we must guess Ct2 ekt.

EXAMPLE 5: Find the general solution to y��  – 6y y�  + 9y = e3t. The characteristic

equation is r2 – 6r + 9 = (r – 3)2 , so the general solution to the homogeneous equation
is Ae3t + Bte3t.  Guessing Ct2 e3t  for the particular solution, we get

(9Ct2e3t + 6Cte3t + 6Cte3t  + 2Ce3t ) – 6(3Ct2e3t  + 2Cte3t ) + 9Ct2 e3t  = e3t 2C.

The solution is thus Ae3t + Bte3t + (1/2)t2e3t.

It is common in various physical systems to encounter an f (t) of the form a cos(wt)
+ b sin(wt).

EXAMPLE 6: Find the  general  solution  to y��  + 6y y�  + 25y = cos(4t).   The  roots of

the characteristic equation are “3 ± 4i, so the solution to the homogeneous equation is
e– (A cos(4t) + B sin(4t)).  For a particular solution,  we guess C cos(4t) + D sin(4t).
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Substituting as usual:

(–16C cos(4t) + –16D sin(4t)) + 6(–4C sin(4t) + 4D cos(4t)) + 25(C cos(4t) + D sin(4t))

= (24D + 9C) cos(4t) + (“24C + 9D) sin(4t).

To make this equal to cos(4t) we need

24D + 9C = 1

9D – 24C = 0

which gives C = 1/73 and D = 8/219. The full solution is then e–(1/73) cos(4t) + (8/
219) sin(4t). (A cos(4t)+B sin(4t))+

The function e–3t (A cos(4t) + B sin(4t)) is a damped oscillation as in example 3,
while (1/73) cos(4t) + (8/219) sin(4t) is a simple undamped oscillation.  As t increases,
the sum e–

(A cos(4t) + B sin(4t)) approaches zero, so the solution

e–3t (A cos(4t) + B sin(4t)) + (1/73) cos(4t) + (8/219) sin(4t)

becomes more and more like the simple oscillation (1/73) cos(4t) + (8/219) sin(4t)—
notice that the initial conditions don’t matter to this long term behavior.  The damped
portion is called the transient part of the solution, and the simple oscillation is called
the steady state part of the solution.  A physical example is a mass-spring system.  If
the only force on the mass is due to the spring, then the behavior of the system is a
damped oscillation. If in addition an external force is applied to the mass, and if the
force varies according to a function of the form a cos(wt) + b sin(wt), then the long
term behavior will be a simple oscillation determined by the steady state part of the
general solution; the initial position of the mass will not matter.

As with the exponential form, such a simple guess may not work.

EXAMPLE 7: Find  the  general  solution  to  y��  + 16y = – sin(4t). The  roots of

the  characteristic  equation  are  ± 4i,  so the  solution  to  the  homogeneous equation
is A cos(4t) + B sin(4t). Since  both  cos(4t)  and sin(4t)  are  solutions  to  the
homogeneous equation, C cos(4t) + D sin(4t) is also, so it cannot be a solution to the
non-homogeneous equation.  Instead, we guess Ct cos(4t) + Dt sin(4t).  Then
substituting:

(–16Ct cos(4t) – 16D sin(4t) + 8D cos(4t) – 8C sin(4t))) + 16(Ct cos(4t) + Dt sin(4t))
= 8D cos(4t) – 8C sin(4t).

Thus C = 1/8, D = 0, and the solution is C cos(4t) + D sin(4t) + (1/8)t cos(4t).
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In general, if f (t) = a cos(wt) + b sin(wt), and ±wi are the roots of the characteristic
equation, then instead of C cos(wt) + D sin(wt) we guess Ct cos(wt) + Dt sin(wt).

Exercises 6.

Find the general solution to the differential equation.

1. y��  – 10y y�  + 25y = cos t �

2. y��  + 2 2y y�  + 2y = 10 �

3. y��  + 16y = 8t + 3t – 4 �

4. y��  + 2y = cos(5t) + sin(5t) �

5. y��  – 2y y�  + 2y = e �

6. y��  – 6y + 13 = 1 + 2t + e �

7. y��  + y y�  – 6y = e–3t �

8. y��  – 4y y�  + 3y = e �

9. y��  + 16y = cos(4t) �

10. y��  + 9y = 3 sin(3t) �

11. y��  + 12y y�  + 36y = 6e–6t �

12. y��  – 8y y�  + 16y = 2e4t �

13. y��  + 6y y�  + 5y = 4 �

14. y��  – y y�  – 12y = t �

15. y��  + 5y = 8 sin(2t) �

16. y��  – 4y = 4e �

Solve the initial value problem.

17. y��  – y = 3t + 5, y(0) = 0, y y�  (0) = 0 �

18. y��  + 9y = 4t, y(0) = 0, y y�  (0) = 0 �

19. y��  + 12y y�  + 37y = 10e, y(0) = 4, y y�  (0) = 0 �

20. y��  + 6y y�  + 18y = cos t – sin t, y(0) = 0, y y�  (0) = 2 �

21. Find the solution for the mass-spring equation y��  + 4y y�  + 29y = 689 cos(2t).  �
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22. Find the solution for the mass-spring equation 3 y��  + 12y y�  + 24y = 2 sin t. �

23. Consider the differential equation m y��  + by y�  + ky = cos(wt), with m, b, and k all
positive and b < 2mk; this equation is a model for a damped mass-spring system
with external driving force cos(wt).  Show that the steady state part of the solution
has amplitude

The method of the last section works only when the function f (t) in a y��  + by y�  +

cy = f (t) has a particularly nice form, namely, when the derivatives of f look much
like f itself.  In other cases we can try variation of parameters as we did in the first
order case.

Since as before a j= 0, we can always divide by a to make the coefficient of y��

equal to 1. Thus,  to simplify the discussion, we assume a = 1.  We know that the

differential equation y��  + byÙ + cy = 0 has a general solution Ay1 + By2 . As before,

we guess a particular solution to y��  + byÙ + cy = f (t); this time we use the guess y =

u(t)y1 + v(t)y2. Compute the derivatives:

y y�  = u y�  y1 + uy y� 1 + v y�  y2 + vy y� 2

y��  = u�� y1 + u y�  y y� 1 + u y�  y y� 1 + u y�� 1 + v��y2 + v y�  y y� 2 + v y�  y y� 2 + v y�� 2.

Now substituting:

y��  + by y�  + cy = u�� y1 + u y�  y y� 1 + u y�  y y� 1 + u y�� 1 + v��y2 + v y�  y y� 2 + v y�  y y� 2 + v y�� 2

+ bu y�  y1 + buy y� 1 + bv y�  y2 + bvy y� 2 + cuy1 + cvy2

= (u y�� 1 + buy y� 1 + cuy1) + (v y�� 2 + bvy y� 2 + cvy2)

+ b(u y�  y1 + v y�  y2) + ( u�� y1 + u y�  y y� 1 + v��y2 + v y�  y y� 2 ) + (u y�  y y� 1 + v y�  y y� 2)

= 0 + 0 + b(u y�  y1 + v y�  y2) + ( u�� y1 + u y�  y y� 1 + v��y2 + v y�  y y� 2) + (u y�  y y� 1 + v y�  y y� 2).

The first two terms in parentheses are zero because y1 and y2 are solutions to the
associated homogeneous equation.  Now we engage in some wishful thinking.  If uÙ

y1 + vÙ y2  = 0 then also u�� y1 + u y�  y y� 1 + v�� y2 + v y�  y y� 2 = 0, by taking derivatives

of both sides.  This reduces the entire expression to u y�  y y� 1 + v y�  y y� 2.  We want this

to be f (t), that is, we need u y�  y y� 1 + v y�  y y� 2  = f (t). So we would very much like

these equations to be true:

u y�  y1 + v y�  y2 = 0

u y�  y y� 1 + v y�  y y� 2 = f (t).
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This is a system of two equations in the two unknowns u y�  and v y� , so we can

solve as usual to get u y�  = g(t) and v y�  = h(t). Then we can find u and v by computing

antiderivatives.  This is of course the sticking point in the whole plan, since the
antiderivatives may be impossible to find. Nevertheless, this sometimes works out
and is worth a try.

EXAMPLE 1 : Consider the equation y��  – 5y y�  + 6y = sin t. We can solve this by

the method of undetermined coefficients, but we will use variation of parameters.
The solution to the homogeneous equation is Ae2t  + Be3t, so the simultaneous equations
to be solved

are

u y�  e2t + v y�  e3t = 0

2u y�  e2t + 3v y�  e3t = sin t.

If we multiply the first equation by 2 and subtract it from the second equation we get

v y�  e3t = sin t

v y� = e– sin t

v = – 1/10 (3 sin t + cos t)e
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