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Abstract: In this article, we consider the velocity potential of water waves in the framework
of  linear theory. The circular plate lies on the free surface of water of finite depth with the
circular cracked–barrier near it. The problem is reduced to a system of dual integral equation.

In order to solve this dual integral equation, we convert it into a Fredholm’s integral equation
of second kind. Representations for far diffraction field and for kernels of Fredholm’s
integral equation of deep or shallow water and long wave are given.
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1. INTRODUCTION

The circular plate with the radius r located on the free surface of water with finite constant
depth d. Water waves are scattered by a partly immersed circular plate and uniform wave
train is incident on the plate.

This train can be written by a complex value potential [5, 11] as

�0 = 1 cos0 1

1

cos ( )

cos
ik rig h k z d

e
h k d

�� �
�

(1.1)

where �0 is amplitude of the wave train, g is gravitational constant, k is the wave number
and � the frequency, so that �2 = gk1 tan h (k1d).

The velocity potential can be determined through complex–valued potential as Re [�e
i�t].

We consider the solution of the problem in the form

� = 0
0( )

ig�
� � �

�
(1.2)

where �0, � are the dimensionless potential of the main and perturbed motion.

It can be noted that the distribution of the pressure in water p
ghp ��  (� is density of

fluid) can be expressed through the potential as

p— = �0 + � (1.3)
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velocity potential of this problem [DP ( dock-problem)] will be obtained through boundary
conditions on free surface and condition of scattering waves at infinity.

2. FORMULATION OF THE DP IN PRESENCE OF A BARRIER NEAR IT

By setting the cracked–barrier near the circular plate then, in cylindrical coordinate system
(r, �, z) in which (r, �)-plane coincides with the undisturbed free surface and z-axis is
oriented vertically upwards and center of the system is coincides with the center of the
plate.

By introducing parameter 
2

gv ��  and writing the Laplace’s equation in cylindrical
coordinates for 0 < r < �, –d < z < 0, 0 < � < � we have

2 2 2

2 2 2 2

1 1
0

r rr r z

� � �� � � � �
� � � �

�� �� �
(2.1)

Following conditions present the behavior of the waves on free surface and circular line
r = a and barrier r = b for 0 � � � �/2 – �, �/2 + � � � – �, 0 < � < �/2 (region. A)

z

��
�

 = – k1 tan h ((k1d) e
ik1r cos � 0 < r < a, z = 0 (2.2A)

z

��
�

 = – k2 tan h ((k2d) e
ik2r cos � a < r < b, z = 0 (2.3A)

z

��
�

 = k2 tan h (k2d) �, b < r < �, z = 0 (2.4A)

and for �/2 – � � � � �/2 + � (region. B)

z

��
�

 = – k1 tan h ((k1d) e
ik1r cos �, 0 < r < a, z = 0 (2.2B)

z

��
�

 = k1 tan h (k1d) �, a < r < �, z = 0 (2.3B)

Next condition shows no flow through the bottom of the plate

z

��
�

 = 0, z = – d (2.5)

The following conditions show finite potential in circular lines r = a, r = b and r = 0

� < �, r � a, b, z = 0 (2.6)

� < �, r � 0 (2.7)
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And sommerfeld radiation condition at infinity which indicates no flow of water at far
diffraction field.

��� �� � �� ��� �
2 0ikr

r
r � � For re.A (2.8A)

��� �� � �� ��� �
1 0ikr

r
r � � For re.B (2.8B)

Equations (2.2)-(2.8) indicate a mixed boundary value problem that has a solution with
following form.

Potential and Dual Integral Equation

We consider �, solution of the DP as a Fourier series [6, 7, 8] for region A:

� =
0

( , ) cosm m

m

f r z m
�

�
� �� (2.9)

f m =
1 0

2 1m

m

i m

���
�

���

where

�m =
*

0

cos [ ( )]
( ) ( ) ( )

cosm m
h z d

A s J r d
h d

� � �
� � � �

�� (2.10)

We need to obtain the function s (�) that satisfies in sommerfeld radiation condition and
asymptotic behavior as follows:

� �
� ���

�
( ) ( )

0,mA s
(2-11)

defining s (�) as

s (�) = 1 1 2 2

2 2

tan ( )(1 ( )) tan ( ) ( )

tan ( ) tan ( )

k h k d H a k h k d H a

k h k d h d

� � � � � �
� � �

(2-12A)

(where H (x) is unit step function).

It is bounded on range (0, �), near zero and at infinity, so that

s (0) = 1 1

2 2

tan ( )

tan ( )

k h k d

k h k d
, s (�) = 0 and has a singular point � = k2.
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and for region B: the function has the following form

s (�) = 1 1

1 1

tan ( )

tan ( ) tan ( )

k h k d

k h k d h d� � �
(2.12B)

Also, s (�) is bounded on range (0. �) and has a singular point � = k1.

The symbol 
*

0

�
�  stands for the contour integration in �-complnex plane whose path of

integration must run beneath the pole of the integrand. It can be shown that equations (2.9),
(2.10) satisfy Laplace’s equation.

 Now, we need to obtain the function Am(�), by substitution of (2.9) into (2.2A), (2.3A)
and (2.4A) and using (A.1) that yields dual integral equation with Bessel kernel for region A.

*

0

1 2

2

( ) [1 ( )] ( )

( ) [1 ( )] ( ) ( )

( )

m m

m m

m

A s J r d

J k r H r a J k r H r a

V r

�
� � � � �

� � � � �

�

�
0 < r < b

0
( ) ( ) 0m mA J r d

�
� � � �� b < r < � (2.13 B)

In the same way, for the region B:

*

1 10
( )[1 ( )] ( ) ( ) ( )m m m mA s J r d J k r V r

�
� � � � � � �� 0 < r < a

0
( ) ( ) 0m mA J r d

�
� � � �� 0 < r < � (2.13 B)

3. FREDHOLM’S INTEGRAL EQUATION

Now, we introduce r1 = a, r2 = b = and setting i = 2 for region A and i = 1 for region B. The
method of solution (2.13) consists of finding a Fredholm’s integral equation for the auxiliary
function �m(�) relatred to the required function Am(�).

Am(�) = 1/ 20
( ) ( )

2
ir

m mJ d�
��

� � � �� �� (3.1)

It can be shown that the equation (3.1) is satisfied identically by homogeneous equation
(3.13). In order to prove this identity, we consider the following integral

I = 1/20 0 0

2
( ) ( ) ( ) ( ) ( )ir

m m m m mA J r d J r J d
� �

�� � � � � � � � � � �� �
� � � � (3.2)
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substitution of the representation for �Jm – 1/2 by (A.2) and integration (3.2) by parts yields

I = 
1 1/2

1/2 1/ 20 00
( ) ( ) ( ) [ ( )]( ) ir m m

m m m mm

d
J J dJ r d

d

� � �
� �

� ��� � �� � � �� � � � �� � �� ��� �
�� (3.3)

With (A.3) the quantity I is equal to zero identically.

Now, we transform the inhomogeneous equation (2.13), and introduce a new function
ˆ ( )mV r  as:

*

0
ˆ ( ) ( ) ( ) ( ) ( )m m

m mV r V r A s J r d
�

� � � � � �� (3.4)

inhomogeneous equation (2.13) takes the following form,

0
ˆ( ) ( ) ( ), 0m

m m iA J r d V r r r
�

� � � � � �� (3.5)

using inverse Hankel transform of (3.5), the function Am(l) can be expressed as ˆ ( )mV r .

0
ˆ( ) ( ) ( )ir m

m mA V r J r rdr� � � �� (3.6)

Now, we insert the integral representation (A.4) for Bessel kernel into (3.5) and interchange
the order of integration, we get

Am(�) =
1/ 2

1/20 0 2 2

2 1ˆ ( ) ( )i

m
r rm

mV r r r dr J d
r r

�

�
� �� �� �� �� �� � � � �
� �

= 1/2 1
1/20 2 2

2 1ˆ( ) ( )i ir rm m m
mJ d V r r d

r

� �
� �

�
� �� � � �

� � �
� � (3.7)

Comparison of formulas (3.1) and (3.7) yields expression for function ˆ ( )mV r .

�m(�) = 1

2 2

2 ˆ ( )irm m m d
V r �

�

�
� �

� � � �
� (3.8)

Now, we rewrite expression (3.4) into the following form

ˆ ( )mV �  = 
*

1/ 20 0
ˆ ( ) ( ) ( ) ( ) ( )

2
irm

m m mV s J d J d
�

�
�

� � � � � �� � � � � �� �� � (3.9)
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substitution of (3.9) into (3.8), yields Fredholm’s integral equation of the second kind [2, 3]
for the function �m.

�m(�) 
0

( , ) ( ) ( )ir

m m mK d F� � � � � � �� (3.10)

Representation of kernel of this equation has the following form

Km(�, �) = 
*

1/20

2
( ) ( ) ( , )m ms J L d

�
�� � � � �� � � �

� � (3.11)

where

Lm(�, �) = 
1

2 2
( )i

m
rm

mJ d
�

�

�
� �� �

� � �
�

the function Fm of the R.H.S is defined by

Fm(�) = 
1

2 2

2
( )i

m
rm m

iV d
�

�

�
� �� �

� � � �
� (3.12)

where, for region B, R.H.S has the following shape

Fm(�) = 1
2

( , )mL k �
�

Asymptotic Behavior of far Diffraction Field

Let’s determine asymptotic behavior of the diffraction field at infinity, now we apply
Cauchy’s theorem to the integral (2.10) and calculate it at singular point � = ki

��
m = (2) cos ( [ ])

( ) ( ) ( )
cos ( )

i
m i i m i

i

h k z d
A k U k H k r

h k d

�
(3.13)

where

U(k2) = 1 1 2 2 2 2
2

2 2 2

tan ( ) [1 ( )] tan ( ) ( )
2

tan ( ) (1 tan )

k h k d H k a k h k d H k a
i

h k d h K d k

� � � �
� �

� �
,

U(k1) = 1
1

1

1
2

1
sin (2 )

ik
k d

h k d

��
�
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the kernel of the integral equation (3.11), in this case the number wave is ki.

1/ 2
2

( , ) ( ) ( ) ( , )m
i i i m i m iK k k U k J k L k� �� � � � � � �

�
(3.14)

Substitution of the kernel into (3.10) yields the integral equation with separable kernel

1/20

2
( ) ( ) ( , ) ( ) ( ) ( )ir

m i i i m i m m i mk k U k L k J k d F� �
�� � � � � � � � � � �

� � (3.15)

for solving this equation, by multiplication of (3.15) by 1/ 22 ( )ik
i m ik J k�

�� �  and using
(3.1) and integration over the range � � [0, ri] gives the closed form for Am(ki).

Am(k2) = 2

2 2

ˆ ( )

2 ˆ1 ( ) ( )

m

m

F k

U k L k
� �
�� ��� �

(3.16A)

where

2
ˆ ( )mL k  = 2 2 2 1/ 2 20

2
( , ) ( )

b

m mk k L k J k d�� � � �
� �

2
ˆ ( )mF k  = 2

2 1/ 2 20
( ) ( )

2

b

m m
k

k F J k d�
�

� � � ��

and

Am(k1) =
1

1 1

ˆ ( )

2 ˆ1 ( ) ( )

m

m

L k

U k L k
� �
�� ��� �

(3.16B)

that is,

1
ˆ ( )mL k  = 1 1 1 1/ 2 10

2
( , ) ( )

a

m mk k L k J k d�� � � �
� �

4. TRANSFORMATION OF KERNEL

Let’s transform the kernel (3.10), in this case we have symmetric kernel. We use (A.4), the
integral representation for Bessel kernel in Lm(�, �) and interchange (r, �) � (�, �) in it and
introducing a new variable of integration y = �2 we obtain
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Lm(�, �) = 1/ 20

2
( , ) ( )ir

m mG J d�
�

� � �� � �
� � (4.1)

where

Gm(�, �) = 2
2 2

1
( )

2 ( ) ( )

irm

m

dy

y y y�
��

� � � �
�  ����� (4.2)

we have the following closed form representation for the function Gm (m = 0, 1, 2, ...)

G0(�, �) =
� �2 2 2 2

2 2

(
ln

i ir r� � � � �

� � �
, G1(�, �) = 

2 2 2 2

2 2

(
ln

i ir r� � � � � �

� � �

Gm(�, �) =
2 2 2 2 2 2

2
1 2

( )( ) (2 3) ( )
( ) ( 2)

2 2
i i m

m m

r r m
G m G�

� �

�� �� � � ��
� �� � � �

��
(4.3)

It is clear that the function Gm is symmetric with respect to the parameters where (�, �)   and
possesses a weak integrable singularity on the diagonal � = � of the square (�, �) �
[0, r] � [0, r].

The kernel of integral equation (3.11) can be expressed through the function Gm

20
( , ) ( , ) ( , , )ir

m m mK G k d� � � � � � � � �� (4.4)

where

*

2 1/2 1/20

2
( , , ) ( ) ( ) ( )m m mk s J J d

�
� �� � � � �� � � �� �� � �

� � (4.5)

The function �m is a symmetric with respect to the parameter �, � and reduce it as:

�m = �m
v + �m

p (4.6)

where �m
v is principle-value integral and �m

p is the pole of the integrand, and we have

�m
v = 2

1/2 1/20

2
. . ( ) ( ) ( )m mP V s J J d

�
� ��� � �� �� � �

� � (4.7)

�m
p =

2

1/ 2 1/2
2

( ) ( ) ( )i
i m i m i

k
U k J k J k� ��� � �

�
(4.8)

Also, we may note the quantity ˆ ( )m iL k  of the asymptotic representation (3.16) through Gm.

ˆ ( )m iL k  = 2
1/2 1/20

2
( , ) ( ) ( )ir

i m m i m ik G J k J k d d� �� � � � � � � �
� � � (4.9)
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In case 
0

1
m

� �
� � �
� �

 and using (A.5), the function ˆ ( )m iL k  can be expressed as two dimensional

Fourier transform for the functio Gm(�, �).

ˆ ( )m iL k  = 
2 0

cos cos4
( , )

sin sin
ir i i

i m
i i

k k
k G d d

k k

� �� � � �
� � � �� � � �� �� � � � �

� � (4.10)

5. DEEP WATER APPROXIMATION

Transformation of the Kernel

For this case k1d, k2d >> 1 and the functions s(�) and �s(�) take the following form In
region A:

s(�) = 1 2

2

[1 ( )] ( )k H a k H a

k

� � � � � �
� �

(5.1A)

�s(�) = 2
1 2

2

1{ [1 ( )] ( )}
k

k H a k H a
k

� ��� � � � � � � � �� �� �
(5.2A)

in region B:

s(�) = 1

1

k

k � �
(5.1B)

�s(�) = 1
1 1

k
k

k
� ��� � �� �� �

(5.2B)

and relation (4.7) yields

�m
v = 2

1 2 1/2 1/20
2

2
1( ) . . ( ) ( )m m

k
k k P V J J d

k
�

� �
� ��� �� � �� �� � �� �� �� � �

� (5.3A)

�m
v = 1

1 1/2 1/ 20
1

2
1. . ( ) ( )m m

k
k P V J J d

k
�

� �
� ��� �� �� �� �� �� �� � �

� (5.3B)

using �-function expansion for Hankel integral transform (A.7) for �m
v

�m
v (�, �) = 1 2 1 2 2 2

2
( ) ( ) ( ) ( , , )mk k k k k R k

�
� � � � � � � � � �
� �

(5.4A)
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�m
v (�, �, k1) = 2

1 1 1
2

( ) ( , , )mk k R k
�

� � � � � � � �
� �

(5.4B)

where

Rm(�, �, ki) = 1/2 1/ 20

2
. . ( ) ( )m m

i

P V J J d
k

�
� �

�
�� �� �� �

� � �� (5.5)

by considering (A.6) for components 
0

1
m

� �
� � �
� �

, the function Rm has the following form

2

4
( , , ) ( , , )m i m iR k T k� � � � �

�
(5.6)

where

0

cos cos
( , , ) . .

sin sinm i
i

d
T k P V

k

� �� ��� � � � �
� � � � � � ��� �� � �� � � �

� (5.7)

The function Tm is symmetric with respect to the parameter �, � and can be treated as

Hilbert transform. By considering (A.8) the function Tm for 
0

1
m

� �
� � �
� �

 can be expressed as

follows,

Tm(x, �) = � � � �� �1
( )

0

1
( 1) sin cos ( ) ( )

2
j m m

j ji i i j i j
j

E Ek si k k E ci k E�

�

� �� � � � �� �� (5.8)

where

Ej = � + (–1)j �

The functions �m
v, �m

p, Km can be re-written for 
0

1
m

� �
� � �
� �

 as following

�m
v
 (�, �, k2) = 1 2 2 1 2 22

2 3 4
( ) ( ) ( ) ( , , )mk k k k k T k� � � � � � � � � �

� � �
(5.9A)

�m
v
 (�, �, k1) =

�
� � � � � � � �
� � �

2
1 1 12

2 4
( ) ( , , )mk k T k (5.9B)

�m
p = 2

2 1 2 2 2 1/ 2 2 1/ 2 24 ( [1 ( )] ( )) ( ) ( )m mik k H k a k H k a J k j k� �� �� � � � � � � (5.10A)

�m
p = 3

1 1/2 1 1/2 12 ( ) ( )m mik J k j k� �� �� � � (5.10B)
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Km(�, �) = 1 2 2 1 22 0

2 4
( ) ( , ) ( ) ( , ) ( , , )

b

m m mk k G k k k G T k d� � � � � � � � � � �
� � �

2 2
2 1 2 2 2 0

2 2

cos cos8
[ (1 ( )) ( )] ( , )

sin sin

b

m

k k
k i k H k a k H k a G d

k k

� �� � � �
� � � � � � � �� � � �� �� � � � �

� (5.11A

Km(�, �) = 2
1 1 12 0

2 4
( , ) ( , ) ( , , )

a

m m mk G k G T k d� � � � � � � � �
� � �

1 12
1 0

1 1

cos cos4
( , )

sin sin

a

m

k k
k G d

k k

� �� � � �
� � � �� � � �� �� � � � �

� (5.11B)

Now, we want to obtain Km for m � 2 substituting (A.7) into (5.5) the function Rm can be
expressed in the following form

Rm(�, �, ki) = � �2 1

12 0 1

2 sin
. . ( )m

i

d
P V d P

k

�
��

� �� �
� ���

� � �� � � (5.12)

where

� = 2 2 2� � � � ���

calculating (5.12), Rm is reduced into the following relation

Rm(�, �, ki) = 2
ˆ( , ) ( , , )m m iR k R k� � � � � (5.13)

where

( , )mR � �  = 22

42 ( ) ( ) , ; 2 ;
( )( 1/2)( )

m

m

m m m mF
m

��� ��� �
� �� � �� �� � �� � � �

(5.14)

1
ˆ ( , , )mR k� �  =

1

1 12 1

2
( ) ( )d m

d
T k P ��

�
�� � �

�� � (5.15)

and

Td (ki �) = {cos ki � [� + si (ki �)] – sin (ki �) ci (ki �)}

F is the Hyper – geometric function and Pm – 1 is the Lergendre polynomials of the first
kind. In this case for m � 2, (5.4) and (4.4) lead to the following relations

�m
v
 (�, �) = 1 2 2 1 2

2
( ) ( ) ( ) ( , )mk k k k k R

�
� � � � � � � � � �
� �

2
2 1 2 2

ˆ( ) ( , , )mk k k R k� � � � (5.16A)



266 A. Aghili & A. Ansari

�m
v
 (�, �, k1) =

2 3
1 1 1 2

2 ˆ( ) ( , ) ( , , )m mk k R k R k
�

� � � � � � � � � � �
� �

(5.17B)

Km(�, �) = 1 2 2 2 1 0

2
( ) ( , ) ( ) ( , ) ( , )

b

m m mk k G k k k G R d� � � � � � � � � � �
� �

2 2
2 1 2 2 1 20

ˆ( ) ( , ) ( , , ) [ (1 ( ))
b

m mk k k G R k d k i k H k a� � � � � � � � � ��

2 2 1/2 1/20
( )] ( ) ( , ) ( )

b

m m mk H k a J k G J k d� �� � � � � � � � �� (5.17A)

Km(�, �) = 2
1 1 0

2
( , ) ( , ) ( , )

a

m m mk G k G R d� � � � � � � � �
� �

3
1 10

ˆ( , ) ( , , )
a

m mk G R k d� � � � � ��
3
1 1/ 2 1 1/ 2 10

2 ( ) ( , ) ( )
a

m m mk i J k G J k d� �� � � � � � � �� (5.17B)

Approximation of the Kernel in Long Wave Region

Now, we need to obtain an asymptotic solution of integral equation (3.10) in the region

ki << 1. Upon substituting (A.8) into (5.8) the function Tm for 
0

1
m

� �
� � �
� �

 can be expressed as

a power-logarithmic series

Tm = � �
�

�

� �

� �� ��� �� �
1

( )

0 0

ˆ( 1) lnln
nj m m n

j ji nn n i
j n

E Ek BB B k (5.18)

where ˆ
n nB B  are as following

0 5B̂ �  = – 0,2886; – 1,5718; – 0,2307; 0,2618; – 0,04675; – 0,0262

nB  = 

1( 1)
, 2

0, 1, 2, ...2( )!

0 2 1

m

n m
mn

n m

�� �
�� ��

� � ��

(5.19)

Also, (5.18) can be represented as:

Tm = � �
1

( )

0 0 0

ˆ( 1) ( 1) lnln
n

n j m m j n
ji n nn n i

n j

Ek c BB B k
�

� � � �� �

� � ��

� �� � � � ��� �� � � (5.20)

where cn
� are binomial coefficients.
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Substituting (5.20) into (5.11) Km for 
0

1
m

� �
� � �
� �

 leads to the following

Km(�, �) =
1

( )
1 2 2 1 2 22

0 0 0

2 4
( ) ( , ) ( ) ( 1) ( 1)n j m m j n

m n
n j

k k G k k k k c
� �

� � � ��

� � ��
� � � � � � � � �
� �

� � �

� �,
2 1 22

8ˆ [ (1 ( ))( ln ) ( ) ( , )j
n n m n m k k H k aB B k G B G� �� � � � �� � � � �

�

�
� �

� �

� ��� �
� �� � � �
� ��

�� �� �� �� �

�

2
0

2( ) 2
2 2 2 2

, 0 2 12
1

1
( )

(2 )!(2 )!
( )] ( 1)

( )
(2 1)!(2 1)!

n

n l n l l

n l n

G
n l

k H k a i k
k

G
n l

(5.21A)

Km(�, �) =
1

2 ( )
1 1 12

0 0 0

2 4
( , ) ( 1) ( 1)n j m m j n

m n
n j

k G k k c
� �

� � � ��

� � ��
� � � � � � �
� �

� � �

� �� �� � � � � �,
1

ˆ( ln ) ( ) ( , )j
n n m n mB B k G B G

2
0

2 2( ) 2
1 1

, 0 2 1
1

1
( )

(2 )!(2 )!4
( 1)

1
( )

(2 1)!(2 1)!

n

n l n l l

n l n

G
n l

k i k

G
n l

�
� �

� �

� ��� �
� �� � �
� ��

�� �� �� �

� (5.21B)

where

Gm
j
 (�) = 0

( , )ir j
mG d� � � ��

Gm
j, � (�, �) = ,

0
( , )ir j

jm EG lm d� �� � � ��
In order to obtain Km for m � 2, by substituting (A.8) into we get

Td (ki �) =
0

ˆ( ) ln ( )n
i n n i

n

k D D k
�

�

� �� � �� �� (5.22)

ˆ ,n nD D , are known numerical coefficients of the expansion, and substituting (5.22) into

(5.15) the function ˆ
mR  can be obtained.

ˆ ( , , )m iR k� �  = 
2

0

2 ˆˆ( ) ( ln ) ( , ) ( , )n n n
i n n i m n m

n

k D D k D
�

�

� ��� � � � � � � � �� ��
�

�
(5.23)
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where

ˆ ( , )n
m� � �  =

1 1
11
( )n

mP d�
��

� � ��

( , )n
m� � �
�

 =
1 1

11
ln ( )n

mP d�
��

� � � ��
Also, substitution of (5.23) into (5.17) and using (A.9) and introducing transformation of
Gm, we get Km for m � 2

Km(�, �) = 1 2 2 2 1
2

( ) ( , ) ( ) ( , )m mk k G k k k G� � � � � � � �
�

2
2 1 2 2 22

0

2 ˆˆ( ) ( ln ) ( , ) ( , )n n n
n n m n m

n

k k k k D D k G D G
�

�

� �� � � � � � � � �� ��
�

�

2
2 1 2 2 24 [ (1 ( )) ( )]ik k H k a k H k a� � � � � �

2 2( ) 1 2 1/2 2 1/ 2
1

2 2( ) 1
, 0

( 1) ( )

2 ! ( 1/2) ( 1/2)

n l m n l m n m l
m

m n l
n l

k G

n l n m l n

� � � � � � � ��

� � �
�

� � �
� � � � � �

� (5.24A)

Km(�, �) = 2
1 1

2
( , ) ( , )m mk G k G� � � � � �

�

3
1 1 12

0

2 ˆˆ( ln ) ( , ) ( , )n n n
n n m n m

n

k k D D k G D G
�

�

� �� � � � � � � �� ��
�

�

2 2( ) 1 2 1/ 2 2 1/2
3 1
1 2 2( ) 1

, 0

( 1) ( )

2 ! ( 1/2) ( 1/2)

n l m n l m n m l
m

m n l
n l

k G
ik

n l n m l n

� � � � � � � ��

� � �
�

� � �
� �

� � � � � �
� (5.24B)

that

mG  =
0

( , ) ( , )ir

m mG R d� � � � ��

ˆ ( , )n
mG � �  =

0
ˆ( , ) ( , )ir n

m mG d� � � � � � ��

� �
�

( , )n
mG  =

0
( , ) ( , )ir n

m mG d� � � � � � ��
�

Relations (5.21) and (5.24) indicate Km can be expressed as a power-logarithmic series
with respect to the wave number k2.
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Km(�, �) = 
0

[ ( , ) ( , ) ln ]n n n
i m m i i

n

k M N k k
�

�
� � � � �� (5.25)

where Mm
n, Nm

n are known function that can be determined from (5.21) and (5.24). Also for
we have Nm

n = 0, n = 1, 3, 5, ...

6. SHALLOW WATER APPROXIMATIN

In this case, we have k2d, k1d << 1 and the functions s(�) and �s(�) have the following
representation

s(�) =
2 2
1 2

2 2
2

[1 ( )] ( )k H a k H a

k

� � � � � �
� �

(6.1A)

�s(�) =
2 2
1 2

2 2

1 1[1 ( )] ( )
2

k H a k H a
k k

� �� � � � � � �� �� � � �� �
(6.1B)

s(�) =
2
1

2 2
1

k

k � �
(6.2A)

�s(�) =
2
1

2 2

1 1

2
k

k k
� ��� �� � � �� �

(6.2B)

for �m
v , (4.7), in this case we have

�m
v = 2 2

1 2 1/2 1/20
2 2

1 11
( ) . . ( ) ( )m mk k P V J J d

k k
�

� �
� ��� �� � �� �� � �� �� � � �� � �

�

 = – (k1
2 + k2

2) Rm (6.3A)

�m
v = – k1

2Rm (6.3B)

where

Rm (�, �, ki) =
2

1/2 1/2 2 20

2
. . ( ) ( )m m

i

P V J J d
k

�
� �

�
�� �� �� �

� � �� (6.4)

for 
0

1
m

� �
� � �
� �

, Rm has the following form

Rm = 
2 2 20

cos cos4
. .

sin sin i

P V d
k

� �� ��� � � � �
�� � � ��� ��� � �� � � �

� (6.5)
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by considering

2 2
ik

�
� �

 = 
1 11

2 i ik k
� ��� �� � � �� �

relation (6.5) can be expressed as Hilbert and Siltjes transform of cos �Ej. as a result for Rm

we have

Rm = � � � �� �1
( )

2
0

2
( 1) sin sin cos

2
j m m

j j j j ji i i i i
j

E E E E Ek k si k k ci k�

�

� � �� � � �� ��
� (6.6)

In this case Km, (4.4) has the following form

Km(�, �) = 2 2
1 2 0

( ) ( , ) ( , , )
b

m mk k G R k d� � � � � � ��

2 2
2 21 2 2 2

2 02 22 2 2
2 2

cos cos[1 ( )] ( )8
( , )

sin sin(1 )

b

m

k kk H k a k H k a
k i G d

k k kk k d
d

� �� � � �� � � �
� � � �� � � �� �� � � � �� �

� (6.7A)

Km(�, �) = 1 12 2
1 1 10 0

1 1

cos cos2
( , ) ( , , ) ( , )

sin sin

a a

m m m

k k
k G R k d k i G d

k k
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� � � � � �� � � �� � � �� �� � � � �
� � (6.7B)

At this point, we need to obtain Km for m � 2, upon substituting (A.7) into (6.3) we get

Rm = ˆ
m i mR k R� (6.8)

where

( , )mR � �  = 22

42 ( ) ( ) , ; 2 ;
( )( 1/2)( )

m

m

m m m mF
m

��� ��� �
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(6.9)

ˆ
mR  =

1

12 1

2
( ) ( )i i m

d
T k P ��

�� �
� �

�� � (6.10)

and

Ts (ki�) = cos ( ) cos ( ) ( ) sin ( ) ( )
2 i i i i ik k si k k ci k
�

� � � � � � � �



Water Waves Diffraction by a Circular Plate  in the Presence of Cracked – Barrier Near It 271

in this case for m � 2, and (4.4) leads to

Km(�, �) = 2 2 2 2
1 2 2 1 20 0

ˆ( ) ( , ) ( , ) ( ) ( , ) ( , , )
b b

m m m mk k G R d k k k G R k d� � � � � � � � � � � � � �� �

2 2
2 1 2 2 2
2 1/2 1/ 202 22

2 2

[1 ( )] ( )
4 ( ) ( , ) ( )

(1 )

b

m m m
k H k a k H k a

ik J k G J k d
k

k k d
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� �
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(6.11A)

Km(�, �) = 2 3
1 1 10 0

ˆ( , ) ( , ) ( , ) ( , , )
a a

m m m mk G R d k G R k d� � � � � � � � � � � �� �

3
1 1/ 2 1 1/ 2 10

( ) ( , ) ( )
a

m m mik J k G J k d� �� � � � � � � �� (6.11B)

7. CONCLUDING REMARKS

In this article, we have presented an extension of dual integral equation for the Dock –
Problem in presence of cracked – barrier near the plate. For solving, we reduce dual integral
equation into Fredholm’s integral equation and approximate the kernel of integral equation
for deep (shallow) water and long wave region. Also, we can extend this problem for two,
three barriers with the specified boundary conditions.

APPENDIX

1. A Fourier series with Bessel function components

eikr cos � =
0

( ) cosm
m

m

f J kr m
�

�
��

f m = {1, m = 0; 2im, m � 1}

2. An integral representation for Bessel functions

1
2
( )mJ �� ��  = 

1 1
2 2

1
2
( )

m m
m

d
J

d
� � �

�
� �� � ��� ��

3. A integral relation for a multiplication of the Bessel function [1, 9]

1
20
( ) ( )mmJ J r d

�

� �� � � ��  = 
1
2 2 2

2 ( )m

m

r H r

r�

� �
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4. Integral representation for Bessel functions

Jm (�r) = 
1
2

1
20 2 2

2
( )i

m
rm

mr J d
r

�
�

�
� �

�� �
� � �

�

5. 1
2
( )J x�  = 

2
sin( )

2
cos( )

x
x

x
x

� �
� �

�� �
� �
� �
� ��� �

6. A representation of the Dirac delta function through Hankel transform [1, 9]

0
( ) ( )m mJ J d

�
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1
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�

7. An integral representation for multiplication of Bessel function

1 1
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8. Series and integral representations for sine and cosine integral
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9. Series representation for Bessel function
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