

Economics of Elephant Foot Yam (*Amorphophalluspaeoniifolius*dennst.) Under The Influence of Different Pre-planting Treatments with Organic and Inorganic Substances

Sarita Sahu¹ and Vijay Kumar²

ABSTRACT: The pre-planting treatment of minisetts with thiourea at 400 ppm resulted highest corm yield ($12.57 \text{ t } ha^{-1}$) and this treatment showed maximum increase in corm yield (31.07 per cent) over control treatment. The economics over the two years showed that among the different pre-planting treatments, the thiourea at 400 ppm stood best treatment which gave maximum net return of Rs. 91851 with a B:C ratio of 2.71 followed by thiourea at 300 ppm (net return Rs. 90651 and B:C ratio 2.69), thiourea at 200 ppm (net return Rs. 88951 and B:C ratio 2.66) and KNO₃ at 250 ppm (net return Rs. 88021 and B:C ratio 2.66).

INTRODUCTION

Elephant foot yam (*Amorphophalluspaeoniifolius* Dennst.) is one of the important tuber crops widely cultivated in sub-tropical regions for its underground food reserves. The tubers serve as a cheap source of energy especially for weaker sections of the society. Due to its high photosynthetic efficiency and high dry matter production capability per unit area, substantial yields may be obtained even under poor and marginal soils under harsh climatic conditions. The cultivation of this crop has gained momentum in India after the introduction of non-irritant smooth corm type cultivars like Gajendra.

Traditionally, elephant foot yam is propagated through corms and cormels. Whole corm or cut corm pieces weighing about 500 g to 750 g with a part of apical meristem is mainly used as planting material. A great portion (about 25 per cent) of the harvested produce is lost as source of planting material. These limitations could be overcome by adopting minisett technique. Through this technique multiplication ratio could be enhanced from 1:2 to 1:15 (George and Nedunchezhiyan, 2008). In the present study, find out the economics of the different pre-planting treatments with organic and inorganic substances.

MATERIALS AND METHODS

The experiment was conducted at Research and Instructional Farm of Department of Horticulture, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh during *Kharif* season of the years 2010-11 and 2011-12. The experiments were laid out in Randomized Block Design (RBD) with fifteen treatments and three replications. The treatment consisted of different concentrations of organic and inorganic substances which were applied as pre-planting soaking of corms for one hour. Minisetts of weight 100 g were planted vertically in the month of July at spacing of 60×60 cm in pits of size 30×30 × 30 cm at a depth of 10-15 cm after treating these minisetts with fungicide (Dithane M-45 @ 2.5 g L^{-1}) followed by pre-planting soaking for one hour in different organic and inorganic substances as per treatments. The farm yard manure (FYM) was incorporated in the soil @ 200 q ha⁻¹ before planting of minisetts. Recommended dose of nitrogen, phosphorus and potassium were applied @ 100:60:100 kg ha⁻¹ in the form of urea, single super phosphate and murate of potash, respectively. The entire quantity of phosphorus and one third dose of nitrogen and potassium were incorporated as basal applications. However, rest of two, one-third doses of each

^{*} Indira Gandhi Krishi Vishwavidyalaya, Raipur (C.G.)

¹ Scientist Horticulture, College of Agriculture & Research Station, Raigarh (C.G.)

² Professor, Dept. of Horticulture, College of Agriculture, Raipur (C. G.). *Email : sarita.sahu2124@gmail.com*, Contact No.: 08963916600

Economics of elep	hant foot	yam cv. G	ajendra a	s influenc	ed by dif	I ferent pre	apie 1 ?-planting of two ves	treatment arc)	s of mini	sett corms	in one l	iectare ai	ea (2010-3	11, 2011-13	and
Treatments		Yield (t)		Gros	s return (R	(s)	Cost of	cultivation	(Rs)	Ne	t return (1	(s)		3:C ratio	
	2010-11	2011-12	Average	2010-11	2011-12	Average	2010-11	2011-12	Average	2010-11	2011-12	Average	2010-11	2011-12	Average
$\frac{\text{Cow dung slurry (50\%)}}{+ \max \exp (50\%)}$	11.21	11.03	11.12	112100	110300	111200	32328	34170	33249	79772	76130	77951	2.47	2.23	2.34
Cow urine (50%) +	11.43	11.77	11.60	114300	117700	116000	32628	34470	33549	81672	83230	82451	2.50	2.41	2.46
Cow dung (25%) + Cow urine (25%) + Water (50%)	11.70	11.80	11.75	117000	118000	117500	32478	34320	33399	84522	83680	84101	2.60	2.44	2.52
Cow dung (37.5%) + Cow urine (37.5%) + Water (25%)	11.17	10.68	10.92	111700	106800	109200	32653	34495	33574	79047	72305	75626	2.42	2.10	2.25
Cow dung (50%) + Cow urine (50%)	11.69	11.65	11.67	116900	116500	116700	32828	34670	33749	84072	81830	82951	2.56	2.36	2.46
Thiourea at 200 ppm	12.43	12.04	12.24	124300	120400	122400	32528	34370	33449	91772	86030	88951	2.82	2.50	2.66
Thiourea at 300 ppm	12.49	12.37	12.43	124900	123700	124300	32728	34570	33649	92172	89130	90651	2.82	2.58	2.69
Thiourea at 400 ppm	12.75	12.39	12.57	127500	123900	125700	32928	34770	33849	94572	89130	91851	2.87	2.56	2.71
KNO ₃ at 250 ppm	12.31	11.92	12.11	123100	119200	121100	32158	34000	33079	90942	85200	88021	2.83	2.51	2.66
KNO ₃ at 500 ppm	12.01	11.86	11.93	120100	118600	119300	32188	34030	33109	87912	84570	86191	2.73	2.49	2.60
KNO ₃ at 750 ppm	11.71	11.78	11.74	117100	117800	117400	32218	34060	33139	84882	83740	84261	2.63	2.46	2.54
GA ₃ at 100 ppm	10.54	10.60	10.57	105400	106000	105700	36128	37970	37049	69272	68030	68651	1.92	1.79	1.85
GA at 200 ppm	10.61	10.47	10.54	106100	104700	105400	40128	41970	41049	65972	62730	64351	1.64	1.49	1.57
GA, at 300 ppm	10.53	10.46	10.49	105300	104600	104900	44128	45970	45049	61172	58630	59851	1.39	1.28	1.33
Water (Control)	9.61	9.57	9.59	96100	95700	95900	32128	33970	33049	63972	61730	62851	1.99	1.82	1.90

nitrogen and potassium were applied in two equal splits at 60 and 90 days after planting (DAP).The crop was harvested in the month of February when leaves turn yellow and start drying. The corm yield per plot was recorded at the time of harvesting in kilograms and average yield per hectare was computed and expressed in tonnes. The first year (2010-11), second year (2011-12) and pooled data were analysed for economics. Total cost of cultivation and gross returns were calculated from the average input cost and average market price of the produce during the period of investigations. Based on these the net income and benefit: cost (B: C) ratio was computed as follows:

Net return (Rs ha⁻¹) = Gross return (Rs ha⁻¹)

- cost of cultivation (Rs ha⁻¹)

B: C ratio = $\frac{\text{Net return } (\text{Rs ha}^{-1})}{\text{Cost of cultivation } (\text{Rs ha}^{-1})}$

RESULTS AND DISCUSSION

The data on corm yield (t ha⁻¹) are presented in Table 1 and revealed that the pre-planting treatments of corm setts of elephant foot yam with different organic and inorganic substances registered an increased in average corm yield from 9.41 to 31.07 per cent over control treatment (soaking of minisetts in water) and the highest corm yield (12.24 to 12.57 t ha⁻¹, pooled data) was obtained with thiourea at all the concentrations (200, 300 and 400 ppm) which were found to be statistically equal in increasing the corm yield. These were closely followed by KNO₃ at 250 ppm (12.11 t ha⁻¹, pooled data). In general, all the cow dung based pre-planting treatments (T_1 to T_5) gave better response to productivity due to enhanced sprouting but were found comparatively less superior to rest of the treatments except GA₃.

Mondal *et al.* (2005) obtained the highest corm yield of elephant foot yam with cow dung slurry treatment because of improvement in sprouting and vegetative growth of the crop plant. In the present study the corm yield did not show much improvement under cow dung based treatment in comparison to rest of treatments which might probably be due to comparatively low percentage of sprouting.

The results in relation to thiourea and KNO_3 in increasing the corm yield are in conformity of Das *et al.* (1995) who reported outstanding performance of these substances in increasing the corm yield.

The economics of the crop under experimentations were worked out as per the treatment of the experiment during both the years (2010-11 and

Market rate of elephant foot yam @ 10 kg⁻

		T_{15}		700 0 1050	525	0 6000 8 1098 0 1260 0 1260	625	00 12400	5 1875	625	625	380	5 1875	625	28 32128	
		3 T ₁₄)0 700)50 105	25 525	000 600 198 109 260 126 1050 105	25 625	2400 124	375 187	25 625	25 625	30 380 20 420	375 187	25 625	2128 321	
		12 T ₁		00 7(050 10	25 52	000 6(098 1(260 12 050 1(25 62	2400 13	875 18	25 62	25 62	80 38 20 42	875 18	25 62	000 1(2128 32	
[0-11		T ₁₁ T		700 7 1050 1	525 5	6000 6 1098 1 1260 1 1050 1	625 6	12400 1	1875 1	625 6	625 6	380 3 420 4	1875 1	625 6	1000 1 32128 3	
g year 201		T_{10}		700 1050	525	6000 1098 1260 1050	625	12400	1875	625	625	380 420	1875	625	1000 32128	
(a) Ira in one hectare area durin	ost (Rs)	T_g		700 1050	525	6000 1098 1260 1050	625	12400	1875	625	625	380 420	1875	625	1000 32128	
	ŭ	$T_{_{\mathcal{B}}}$		700 1050	525	6000 1098 1260 1050	625	12400	1875	625	625	380 420	1875	625	1000 32128	
		$T_{_{7}}$		700 1050	525	6000 1098 1260 1050	625	0 12400	1875	625	625	380 420	1875	625	1000 3 32128	
sendix (a Gajendra		$T_{_{\theta}}$		700 700 1050	525) 6000 3 1098) 1260) 1250	625	0 1240	5 1875	625	625	380 420	5 1875	625) 1000 28 3212	
Api t yam cv.		T_5		700 700 1050	525	0 6000 8 1098 0 1260 0. 1050	625	00 1240	5 1875	625	625	380 420	5 1875	625	0 1000 28 3212	
hant fool		T_4		0 700 50 105	525	00 600 88 109 60 126 60 105	625	00 124	5 187	625	625) 380) 420	5 187	625	00 100 28 321	
n of elep		T_3		0 700 50 105	5 525	00 600 98 109 60 126 50 105	5 625	400 124	75 187	5 625	5 625	0 38(0 42(75 187	5 625	00 100 128 321	
Cost of cultivatic		1 T ₂		00 70 050 10	25 52	000 60 098 10 260 12 050 10	25 62	2400 12	875 18	25 62	25 62	80 38 20 42	875 18	25 62	000 10 2128 32	
	Quantity	L		2 hr 7 3 hr 1	2.5 kg per 5 1000 litre	200 q 6 217.39 kg 1 375 kg 1 166.67 kg 1	5	15.50 q 1	15 1	ى ب	5 6	2 litre 3 2 kg 4	15 1	5 6	33	
	Rate (Rs)			ion 350 hr ⁻¹ 350 hr ⁻¹	<i>t</i> 210 kg ⁻¹	rtilizer 30 q ⁻¹ 5.05 kg ⁻¹ 3.36 kg ⁻¹ 6.30 kg ⁻¹	125 man ⁻¹	800 q ⁻¹	125 man ⁻¹	125 man ⁻¹	125 man ⁻¹	n 190 L ⁻¹ 210 kg ⁻¹	125 man ⁻¹	125 man ⁻¹	s 1000	
	Operations		Fixed cost	Field preparatı tractor Ploughing Harrowing	Seed Treatmen Dithane M-45	Manure and fe FYM Urea SSP MOP	Manure and fertilizer	Planting Material	Planting Cost	Intercultural practices including Earthing up and weeding	Irrigation	Plant protectic (a) Rogor (b) Dithane M-45	Harvesting	Grading	Miscellaneou: Total fixed cost	Variable cost
	S. No.		Α.		5.	3.	4.	5.	6.		8.	9.	10.	11.	12.	Α.

Vol. 33, No. 4, October-December 2015

	1. Pre-planting			200	500	350	525	700	400	600	800	30	60	06	4000	8000	12000	I
	Total cost (A+B)			32328	32628	32478	32653	32828	32528	32728	32928	32158	32188	32218	36128	40128	44128	32128
	Note: cost of thio Γ_1 : Cow dung Γ_4 : Cow dung $+ W_{ater} (2)$	urea Rs 2 g ⁻¹ , slurry (50%) (37.5%) + Co	, KNO ₃ Rs 12 + Water (50 ⁵ w urine (37.5	20 kg ⁻¹ an %) T ₂ : 5%) T ₅ :	d GA ₃ R ⁱ : Cow u : Cow d	s 40 g ⁻¹ trine (50% lung (50%	6) + Wate 6) + Cow	er (50%) urine (50	13 1%) T ₆	: Cow : Thio	dung (2 ¹ urea at 2	5%) + Co 00 ppm	w urine	$(25\%) + T_7$:	Water (5(Thiourea	0%) at 300 p	md	
	T_8 : Thiourea a T_{12} : GA_3 at 100	t 400 ppm ppm		T_9	: KNO ₃ : GA ₃ at	at 250 p. t 200 ppr	u u		ц Ц Ц	$_{0}$: KNC $_{4}$: GA $_{3}$	3 ₃ at 500 at 300 F	mqt mqt		${ m T}_{ m _{15}}$: ${ m T}_{ m _{15}}$:	KNO ₃ at Water (C	750 ppn ontrol)	c	
			Cost	of cultive	ation of 4	elephant	foot yan	Append n cv. Gaj	lix (b) endra in	1 one hec	tare are.	a during	year 201	11-12				
	S. Operations No.	Rate (Rs)	Quantity								Cosi	t (Rs)						
				$T_{_{1}}$	T_2	T_{3}	T_4	T_5	$T_{_{\theta}}$	$T_{_{7}}$	T_s	T_g	T_{10}	T_{11}	T_{12}	T_{13}	T_{14}	T_{15}
	 A. Fixed cost D1 Field prepara tractor Ploughing Harrowing 	ttion 350 hr ⁻¹ 350 hr ⁻¹	2 hr 3 hr	700 1050	700 1050	700 1050	700 105	700 1050	700 1050	700 1050	700 1050	700 1050	700 1050	700 1050	700 1050	700 1050	700 1050	700 1050
	 Seed Treatme Dithane M-45 	ent 210 kg ⁻¹	2.5 kg per 1000 litre	525	525	525	525	525	525	525	525	525	525	525	525	525	525	525
.,	3. Manure and fe FYM Urea SSP MOP	rttilizer 30 q ⁻¹ 5.63 kg ⁻¹ 5.45 kg ⁻¹ 11.87 kg ⁻¹	200 q 217.39 kg 375 kg 166.67 kg	6000 1224 2044 1977	6000 1224 2044 1977	6000 1224 2044 1977	6000 1224 2044 1977	6000 1224 2044 1977	6000 1224 2044 1977	6000 1224 2044 1977	6000 1224 2044 1977	6000 1224 2044 1977	6000 1224 2044 1977	6000 1224 2044 1977	6000 1224 2044 1977	6000 1224 2044 1977	6000 1224 2044 1977	6000 1224 2044 1977
м. П	 Manure and fertilizer application 	125 man ⁻¹	Ŋ	625	625	625	625	625	625	625	625	625	625	625	625	625	625	625
	5. Planting Material	800 q ⁻¹	15.50 q	12400	12400	12400	12400	12400	12400	12400	12400	12400	12400	12400	12400	12400	12400	12400
5	5. Planting Cost	t 125 man ⁻¹	15	1875	1875	1875	1875	1875	1875	1875	1875	1875	1875	1875	1875	1875	1875	1875
	7. Intercultural practices including Earthing up and weeding	125 man ⁻¹	IJ	625	625	625	625	625	625	625	625	625	625	625	625	625	625	625
	8. Irrigation	125 man ⁻¹	5	625	625	625	625	625	625	625	625	625	625	625	625	625	625	625
5	 Plant protect. 	ion																

Sarita Sahu and Vijay Kumar

3774

International Journal of Tropical Agriculture © Serials Publications, ISSN: 0254-8755

0 0	75	5	00 970		970	
38 421	18,	62	10(339	I	336	
380 420	1875	625	$\begin{array}{c} 1000\\ 33970 \end{array}$	12000	45970	c
380 420	1875	625	$\begin{array}{c} 1000\\ 33970 \end{array}$	8000	41970	%) 750 ppn ontrol)
380 420	1875	625	$\begin{array}{c} 1000\\ 33970 \end{array}$	4000	37970	/ater (50' KNO ₃ at Water (C
380 420	1875	625	$\begin{array}{c} 1000\\ 33970 \end{array}$	06	34060	$\begin{array}{c} { m 55\%) + W} \\ { m 60\%)} \\ { m 07} \\ { m T}_{11} : \\ { m T}_{15} : \end{array}$
380 420	1875	625	$\begin{array}{c} 1000\\ 33970 \end{array}$	60	34030	7 urine (2 7 urine (5
380 420	1875	625	$\begin{array}{c} 1000\\ 33970 \end{array}$	30	34000	%) + Cow %) + Cow min
380 420	1875	625	$\begin{array}{c} 1000\\ 33970 \end{array}$	800	34770	lung (25% lung (50% at 500 p at 300 pp
380 420	1875	625	$\begin{array}{c} 1000\\ 33970 \end{array}$	600	34570	Cow d Cow d Cow d Cow d Cow d Cow d
380 420	1875	625	$\begin{array}{c} 1000\\ 33970 \end{array}$	400	34370	$\mathbf{T}_{1_{5}}^{1_{3}}$
380 420	1875	625	$\begin{array}{c} 1000\\ 33970 \end{array}$	700	34670	er (50%)
380 420	1875	625	$\begin{array}{c} 1000\\ 33970 \end{array}$	525	34495	%) + Wat 0 ppm m
380 420	1875	625	$\begin{array}{c} 1000\\ 33970 \end{array}$	350	34320	40 g^{-1} urine (50°) rea at 300 at 250 pp t 200 pp
380 420	1875	625	$\begin{array}{c} 1000\\ 33970 \end{array}$	500	34470	l GA ₃ Rs : Cow u ater (25 % : Thiou : KNO ₃ a
380 420	1875	625	$\begin{array}{c} 1000\\ 33970 \end{array}$	200	34170	$\begin{array}{c} 0 \text{ kg}^{1} \text{ and} \\ \end{array} \\ \begin{array}{c} \% \\ \% \\ 5\% \\ + W^{t} \\ T_{7} \\ T_{9} \\ T_{13} \end{array} \\ \end{array}$
litre kg						IO ₃ Rs 12 Vater (50' urine (37.
0 0	1 15	⁻¹ 5				1, KN) + W Cow L
190 L ⁻¹ 210 kg ⁻¹	125 man ⁻	125 man ⁻	it		-B)	ea Rs 2 g lurry (50% 37.5%) + (200 ppm 400 ppm >pm
(c) Rogor (d) Dithane M-45	10. Harvesting	11. Grading	 Miscellaneous Total fixed cos 	A. Variable cost01 Pre-plantingtreatments	Total cost (A+	Note: cost of thiou T_1 : Cow dung sl T_4 : Cow dung (ζ T_6 : Thiourea at T_8 : Thiourea at T_8 T_{12} : GA ₃ at 100 r

2011-12) as well as in pooled data which is presented in Table 1. The economics over the two years showed that among the different pre-planting treatments, the T_8 (thiourea at 400 ppm) stood best treatment which gave maximum net return of Rs. 91851 with a B:C ratio of 2.71 followed by $T_7 i.e.$ thiourea at 300 ppm (net return Rs. 90651 and B:C ratio 2.69), $T_6 i.e.$ thiourea at 200 ppm (net return Rs. 88951 and B:C ratio 2.66) and T₉ *i.e.* KNO₃ at 250 ppm (net return Rs. 88021 and B:C ratio 2.66). However, minimum net return of Rs. 59851 with a B:C ratio of 1.33 was obtained under the $T_{\rm 14}$ (GA $_{\rm 3}$ at 300 ppm) followed by T₁₅ *i.e.* control (net return Rs. 62851 and B:C ratio 1.90), T₁₃ *i.e.* GA₃ at 200 ppm (net return Rs. 64351 and B:C ratio 1.57) and T₁₂ i.e. GA₃ at 100 ppm (net return Rs. 68651 and B:C ratio 1.85) in case of pooled data. [Appendix II (a) and (b)]

CONCLUSION

Among the different pre-planting treatments, maximum values of corm yield (t ha⁻¹) being under thiourea at 400 ppm and there was also increase in per cent corm yield under this treatment over control treatment and these treatment (thiourea at 400 ppm) stood best treatment in crop economy which gave maximum net return of Rs. 91851 with a B:C ratio of 2.71.

ACKNOWLEDGEMENT

I am grateful to Head, Department of Horticulture, College of Agriculture, Raipur and Director Research Services, Indira Gandhi Krishi Vishwavidyalaya, Raipur (C.G.) for proving necessary facilities and infrastructure for this study.

REFERENCES

- Das, P. K., Sen, H., Banerjee, N. C. and Panda, P. K. (1995), Sprouting, growth and whole seed corm production of elephant foot yam as affected by soaking of bottom corm setts in chemicals. *Indian Agriculturist*, **39**(3): 179-185.
- George, James and Nedunchezhiyan, M. (2008), Rapid propagation techniques in tuber crops. In: Nedunchezhiyan, M. (eds.). Advance techniques in quality planting material production and commercial cultivation of tropical tuber crops. Regional Centre, Central Tuber Crops Research Institute, ICAR, Bhubaneshwar, Orissa. p.75.
- Mondal, Soumik, Sen, H., Tarafdar, J. and Chattopadhyay, A. 2005. Whole seed corm production of elephant foot yam through mini bottom corm setts soaked with growth substances and cow dung slurry. *The Hort. J.*, **18**(2): 102-105.