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Abstract: First, this paper announces a nine-term novel 3-D chaotic system with four quadratic nonlinearities. The phase
portraits of the novel chaotic system are displayed and the mathematical properties are discussed. We show that the novel
chaotic system has three unstable equilibrium points. We show that the equilibrium point at the origin is a saddle-point, while
the other two equilibrium points are saddle-foci. The Lyapunov exponents of the novel 3-D chaotic system are obtained as
L

1
 = 10.45056, L

2
 = 0, and L

3
 = –42.36623. The maximal Lyapunov exponent (MLE) for the novel chaotic system is obtained

as L
1
 = 10.45056. The large value of  L

1
 shows that the novel chaotic system is highly chaotic and exhibits highly complex

behaviour. Also, the Lyapunov dimension of the novel chaotic system is derived as D
L
 = 2.2467. Next, we derive new results

for the global chaos control of the novel highly chaotic system via integral sliding mode control (ISMC). We also derive new
results for the global chaos synchronization design of the identical novel highly chaotic systems via integral sliding mode
control (ISMC). The global chaos control and synchronization results for the novel highly chaotic system have been established
using Lyapunov stability theory. In contrast with conventional sliding mode control (SMC), the system motion under integral
sliding mode has a dimension equal to that of the state space. In ISMC, the system trajectory always starts from the sliding
surface. Accordingly, the reaching phase is eliminated and robustness in the whole state space is promised. Numerical
simulations with MATLAB have been shown to validate and demonstrate all the new results derived in this paper for the
novel highly chaotic system using integral sliding mode control.

Keywords: Chaos, chaotic systems, chaos control, chaos synchronization, sliding manifold, integral sliding mode
control, stability.

1. INTRODUCTION

A chaotic system is commonly defined as a nonlinear dissipative dynamical system that is highly sensitive
to even small perturbations in its initial conditions [1]. In other words, a chaotic system is a nonlinear
dynamical system with at least one positive Lyapunov exponent. Some paradigms of chaotic systems can
be listed as Arneodo system [4], Sprott systems [5], Chen system [6], Lü-Chen system [7], Liu system [8],
Cai system [9], Tigan system [10], etc.

In the last two decades, many new chaotic systems have been also discovered like Li system [11],
Sundarapandian systems [12-13], Vaidyanathan systems [14-33], Pehlivan systems [34-35], Pham systems
[36-37], Jafari system [38], etc.

Hyperchaotic systems are the chaotic systems with more than one positive Lyapunov exponent. They have
important applications in control and communication engineering. Some recently discovered 4-D hyperchaotic
systems are hyperchaotic Vaidyanathan systems [39-40], hyperchaotic Vaidyanathan-Azar system [41], etc. A
5-D hyperchaotic system with three positive Lyapunov exponents was also recently found [42].

Chaos theory has several applications in a variety of fields such as oscillators [43-44], chemical reactors
[45-58], biology [59-80], ecology [81-82], neural networks [83-84], robotics [85-86], memristors [87-89],
fuzzy systems [90-91], etc.
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The problem of control of a chaotic system is to find a state feedback control law to stabilize a chaotic
system around its unstable equilibrium [92-93]. Some popular methods for chaos control are active control
[94-98], adaptive control [99-100], sliding mode control [101-103], etc.

Chaos synchronization problem can be stated as follows. If a particular chaotic system is called the
master or drive system and another chaotic system is called the slave or response system, then the idea of
the synchronization is to use the output of the master system to control the slave system so that the output
of the slave system tracks the output of the master system asymptotically.

The synchronization of chaotic systems has applications in secure communications [104-107],
cryptosystems [108-109], encryption [110-111], etc.

The chaos synchronization problem has been paid great attention in the literature and a variety of
impressive approaches have been proposed. Since the pioneering work by Pecora and Carroll [112-113] for
the chaos synchronization problem, many different methods have been proposed in the control literature
such as active control method [114-132], adaptive control method [133-149], sampled-data feedback control
method [150-151], time-delay feedback approach [152], backstepping method [153-164], sliding mode
control method [165-173], etc.

In this paper, we derive a nine-term novel 3-D chaotic system with four quadratic nonlinearities. We
show that the novel chaotic system has three unstable equilibrium points. We show that the equilibrium
point at the origin is a saddle-point, while the other two equilibrium points are saddle-foci. The Lyapunov
exponents of the novel 3-D chaotic system are obtained as L

1
 = 10.45056, L

2
 = 0, and L

3
 = –42.36623. The

maximal Lyapunov exponent (MLE) for the novel chaotic system is obtained as L
1
 = 10.45056. The large

value of L
1
 shows that the novel chaotic system is highly chaotic and exhibits highly complex behaviour.

Also, the Lyapunov dimension of the novel chaotic system is derived as D
L
 = 2.2467.

Next, we derive new results for the global chaos control of the novel highly chaotic system via integral
sliding mode control (ISMC). We also derive new results for the global chaos synchronization design of the
identical novel highly chaotic systems via integral sliding mode control (ISMC).

The global chaos control and synchronization results for the novel highly chaotic system have been
established using Lyapunov stability theory. In contrast with conventional sliding mode control (SMC), the
system motion under integral sliding mode has a dimension equal to that of the state space. In ISMC, the
system trajectory always starts from the sliding surface. Accordingly, the reaching phase is eliminated and
robustness in the whole state space is promised. Numerical simulations with MATLAB have been shown
to validate and demonstrate all the new results derived in this paper for the novel highly chaotic system
using integral sliding mode control.

2. A NOVEL HIGHLY CHAOTIC SYSTEM

In this section, we propose a novel highly chaotic system modelled by the dynamics

1 2 1 2 3

2 1 2 1 3

2
3 1 2 2 3

( )x a x x x x

x bx x cx x

x x x x x

� � � �
� � � ��
� � � � ��

�

�

�
(1)

where x
1
, x

2
, x

3
 are the states and a, b, c are constant, positive parameters of the system.

The system (1) is a nine-term polynomial chaotic system with four quadratic nonlinearities.

The system (1) describes a strange chaotic attractor for the parameter values

30,  1600,  50a b c� � � (2)
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For numerical simulations, we take the initial values of the system (1) as

1 2 3(0) 0.6,   (0) 1.8,   (0) 1.2x x x� � � (3)

The Lyapunov exponents of the novel system (1) are numerically obtained as

1 2 310.45056,   0,   42.36623L L L� � � � (4)

Thus, the maximum Lyapunov exponent (MLE) of the novel chaotic system is obtained as L
1
 = 10.45056,

which is a very large value. This shows that the novel chaotic system (1) is highly chaotic and it exhibits
complex chaotic behaviour.

Since the sum of the Lyapunov exponents in (4) is negative, it follows that the highly chaotic system (1)
is a dissipative system.

Figure 1 shows the strange chaotic attractor of the highly chaotic system (1).

Figures 2-4 show the 2-D view of the strange attractor of the highly chaotic system (1) in (x
1
, x

2
),

(x
2
, x

3
), and (x

1
, x

3
) planes respectively.

Figure 4: 2-D view of the novel highly chaotic system in
(x

1
, x

3
) plane

Figure 3: 2-D view of the novel highly chaotic system in
(x

2
, x

3
) plane

Figure 2: 2-D view of the novel highly chaotic system in
(x

1
, x

2
) plane

Figure 1: Strange attractor of the novel highly
chaotic system
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3. PROPERTIES OF THE NOVEL 3-D CHAOTIC SYSTEM

In this section, we detail the qualitative properties of the novel highly chaotic system (1), which is described
in Section 2.

3.1. Dissipativity

We write the system (1) in vector notation as

1 1 2 3

2 1 2 3

3 1 2 3

( , , )

( ) ( , , )

( , , )

f x x x

x f x f x x x

f x x x

� �
� �� � � �
� �� �

�
(5)

where

1 1 2 3 2 1 2 3

2 1 2 3 1 2 1 3

2
3 1 2 3 1 2 2 3

( , , ) ( )

( , , )

( , , )

f x x x a x x x x

f x x x bx x cx x

f x x x x x x x

� � � �
� � � ��
� � � � ��

(6)

We take the parameter values as

30,   1600,   50a b c� � � (7)

The divergence of the vector field f on R3 is obtained as

31 2

1 2 3

div 1 1 ,
ff f

f a
x x x

�
�� �

� � � � � � � � �
� � � (8)

where

2 32 0a� � � � � (9)

Let � be any region in R3 having a smooth boundary.

Let �(t) = �
t
 (�), where �

t
 is the flow of f.

Let V(t) denote the volume of �(t).

By Liouville’s theorem, it follows that

1 2 3 1 2 3

( ) ( )

(div )   ( )    
t t

dV
f dx dx dx dx dx dx V

dt
� �

� �

� � � � �� � (10)

Integrating the linear differential equation (10), we get the solution as

V(t) = V(0) exp(–�t) (11)

From Eq. (10), it follows that the volume V(t) shrinks to zero exponentially as t � �.

Thus, the novel highly chaotic system (1) is dissipative.

Hence, the asymptotic motion of the system (1) settles exponentially onto a set of measure zero, i.e. a
strange attractor.

3.2. Symmetry

The novel highly chaotic system (1) is invariant under the coordinates transformation
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1 2 3 1 2 3( , , ) ( , , )x x x x x x� �� (12)

Since the transformation (12) persists for all values of the system parameters, the novel 3-D chaotic
system (1) has rotation symmetry about the x3–axis and that any non-trivial trajectory must have a twin
trajectory.

3.3. Invariance

The  x3–axis (x
1
 = 0, x

2
 = 0, x

4
 = 0) is invariant for the system (1). Hence, all orbits of the system (1) starting

on the x3–axis stay in the x3–axis for all values of time.

Also, this invariant motion is governed by the scalar differential equation

3 3x x� �� (13)

which is globally exponentially stable.

3.4. Equilibrium Points

The equilibrium points of the novel 3-D chaotic system (1) are obtained by solving the following nonlinear
system of equations

1 1 2 3 2 1 2 3

2 1 2 3 1 2 1 3

2
3 1 2 3 1 2 2 3

( , , ) ( ) 0

( , , ) 0

( , , ) 0

f x x x a x x x x

f x x x bx x cx x

f x x x x x x x

� � � � �
� � � � ��
� � � � � ��

(14)

We take the parameter values as in the chaotic case, viz.

30,   1600,   50a b c� � � (15)

Solving the equations (14) using the values (15), we obtain three equilibrium points:

0 1 2

0 6.6742 6.6742

0 ,   3.2300 ,  3.2300

0 31.9903 31.9903

E E E

�� � � � � �
� � � � � �� � � �� � � � � �
� � � � � �� �� � � � � �

(16)

The Jacobian matrix of the novel chaotic system (1) at any point X�R3 is obtained as

3 2 3 2

3 1 3 1

2 1 2 2 1 2

30 30

( ) 1 1600 50 1 50

2 1 2 1

a a x x x x

J x b cx cx x x

x x x x x x

� � � � � �� � � �
� � � �� � � � � �� � � �
� � � �� � � � � � � �� � � �

(17)

The Jacobian of the system (1) at E
0 
is obtained as

0 0

30 30 0

( ) 1600 1 0

0 0 1

J J E

�� �
� �� � �� �
� ��� �

(18)

The eigenvalues of J
0 
are numerically obtained as

1 2 31,   235.0683,   204.0683� � �� � � � � (19)
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This shows that the equilibrium E
0
 is a saddle point, which is unstable.

The Jacobian of the system (1) at E
1
 is obtained as

1 1

30 61.9903 3.23

( ) 0.4850 1 333.71

3.23 13.1342 1

J J E

� �� �
� �� � �� �
� �� � �� �

(20)

The eigenvalues of J
1 
are numerically obtained as

1 2,341.3798,   4.6899 69.0627i� �� � � � (21)

This shows that the equilibrium E
1 
is a saddle-focus, which is unstable.

The Jacobian of the system (1) at E
2
 is obtained as

2 2

30 61.9903 3.23

( ) 0.4850 1 333.71

3.23 13.1342 1

J J E

�� �
� �� � � �� �
� ��� �

(22)

The eigenvalues of J
3 
are numerically obtained as

1 2,341.3798,   4.6899 69.0627i� �� � � � (23)

This shows that the equilibrium E
2 
is a saddle-focus, which is unstable.

Thus, all the three equilibrium points of the novel 3-D chaotic system (1) are unstable.

3.5. Lyapunov Exponents and Lyapunov
Dimension

We take the parameter values of the novel system (1) as

30,   1600,   50a b c� � � (24)

We take the initial conditions of the novel system (1) as

1 2 3(0) 0.6,    (0) 1.8,    (0) 1.2x x x� � � (25)

The Lyapunov exponents of the system (1) are numerically obtained with MATLAB as

1 2 310.45056,    0,    42.36623L L L� � � � (26)

Thus, the system (1) is highly chaotic, since it has a large positive Lyapunov exponent.

Since L
1
 + L

2
 + L

3
 = –31.9157 < 0, it is immediate that the system (1) is dissipative.

The Lyapunov dimension of the chaotic system (1) is determined as

1 2

3

2 2.2467
| |L

L L
D

L

�
� � � (27)

which is fractional.

The MATLAB plot of the Lyapunov exponents of the novel highly chaotic system (1) is depicted in
Figure 5.
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4. GLOBAL CHAOS CONTROL OF THE NOVEL HIGHLY CHAOTIC SYSTEM
VIA INTEGRAL SLIDING MODE CONTROL

In this section, we design new results for the global chaos control of the novel highly chaotic system via
integral sliding mode control [174]. The main control result in this section is established using Lyapunov
stability theory [175].

Thus, we consider the novel highly chaotic system with controls given by

1 2 1 2 3 1

2 1 2 1 3 2

2
3 1 2 2 3 3

( )x a x x x x u

x bx x cx x u

x x x x x u

� � � � �
� � � � ��
� � � � � ��

�

�

�
(28)

where x
1
, x

2
, x

3 
are state variables, a, b, c are constant, positive, parameters of the system and u

1
, u

2
, u

3 
are

integral sliding mode controls to be designed.

Based on the sliding mode control theory [174], the integral sliding surface of each state variable
x

i
, (i = 1, 2, 3) is defined as follows:

0 0

( ) ( ) ,
t t

i i i i i i

d
s x d x x d

dt
� � � � � �

� �� �� � � �� �� �� � � �
� �  ( 1, 2,3)i � (29)

The derivative of each equation in (29) yields

,    ( 1, 2,3)i i i is x x i�� � �� � (30)

The Hurwitz condition is satisfied if �
i
 > 0 for i = 1, 2, 3.

Based on the exponential reaching law [217], we set

sgn( ) ,    ( 1,2,3)i i i i is s k s i�� � � �� (31)

Figure 5: Lyapunov exponents of the novel highly chaotic system
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where sgn(.) is the sign function and �
i
, k

i
, (i = 1, 2, 3) are positive constants.

Comparing the equations (30) and (31), we get

1 1 1 1 1 1 1

2 2 2 2 2 2 2

3 3 3 3 3 3 3

sgn( )

sgn( )

sgn( )

x x s k s

x x s k s

x x s k s

� �
� �
� �

� � � ��
� � � � ��
� � � � ��

�

�

�
(32)

Using (28), we can rewrite the equations (32) as follows. S
1
, S

2
, S

3

2 1 2 3 1 1 1 1 1 1 1

1 2 1 3 2 2 2 2 2 2 2

2
1 2 2 3 3 3 3 3 3 3 3

( ) sgn( )

sgn( )

sgn( )

a x x x x u x s k s

bx x cx x u x s k s

x x x x u x s k s

� �
� �

� �

� � � � � � � �
� � � � � � � ��
�� � � � � � � ��

(33)

From (33), the control laws are obtained as follows.

1 2 1 2 3 1 1 1 1 1 1

2 1 2 1 3 2 2 2 2 2 2

2
3 1 2 2 3 3 3 3 3 3 3

( ) sgn( )

sgn( )

sgn( )

u a x x x x x s k s

u bx x cx x x s k s

u x x x x x s k s

� �
� �

� �

� � � � � � � �
� � � � � � � ��
� � � � � � ��

(34)

Next, we state and prove the main result of this section.

Theorem 1. The novel highly chaotic system (28) with constant system parameters is globally and
asymptotically stabilized for all initial conditions x(0)�R3 by the integral sliding mode control law (34),
where the constants �

i
, �

i
, k

i
 are positive for i = 1, 2, 3.

Proof. The result is proved using Lyapunov stability theory [175].

We consider the following quadratic Lyapunov function

� �2 2 2
1 2 3 1 2 3

1
( , , ) ,

2
V s s s s s s� � � (35)

where S
1
, S

2
, S

3 
are as defined in Eq. (29).

The time-derivative of V is obtained as

1 1 2 2 3 3V s s s s s s� � �� � � � (36)

Substituting from Eq. (31) into (36), we obtain

� � � � � �1 1 1 1 1 2 2 2 2 2 3 3 3 3 3sgn( ) sgn( ) sgn( )V s s k s s s k s s s k s� � �� � � � � � � � �� (37)

Simplifying Eq. (37), we obtain
2 2 2

1 1 1 1 2 2 2 2 3 3 3 3V s k s s k s s k s� � �� � � � � � �� (38)

Since �
i 
> 0 and k

i 
> 0 for i = 1, 2, 3 it is immediate that x

i
 � 0 (i = 1, 2, 3) as t � � for all initial

conditions x(0)�R3.

This completes the proof. �

4.1. Numerical Results

We use classical fourth-order Runge-Kutta method in MATLAB with step-size h = 10–8 for solving the
system of differential equations (28) when the integral sliding mode controller (34) is implemented.
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For the novel chaotic system (28), the parameter values are taken as in the chaotic case (2), i.e.

30,   1600,   50a b c� � � (39)

We take the sliding constants as

0.1,   25,   ( 1, 2,3)i i ik i� �� � � � (40)

The initial values of the chaotic system (28) are taken as

1 2 3(0) 17.1,  (0) 26.4,  (0) 34.8x x x� � � (41)

Figure 6 depicts the time-history of the controlled novel chaotic system.

Figure 6: Time history of the controlled novel chaotic system

5. GLOBAL CHAOS SYNCHRONIZATION OF THE NOVEL HIGHLY CHAOTIC
SYSTEMS VIA INTEGRAL SLIDING MODE CONTROL

In this section, we derive new results for the global chaos synchronization of the identical novel chaotic
systems with unknown parameters.

As the master system, we take the novel highly chaotic system

1 2 1 2 3

2 1 2 1 3

2
3 1 2 2 3

( )x a x x x x

x bx x cx x

x x x x x

� � � �
� � � ��
� � � � ��

�

�

�
(42)

where x
1
, x

2
, x

3
 are state variables and a, b, c are constant, positive, parameters of the system.

As the slave system, we take the controlled novel highly chaotic system

1 2 1 2 3 1

2 1 2 1 3 2

2
3 1 2 2 3 3

( )y a y y y y u

y by y cy y u

y y y y y u

� � � � �
� � � � ��
� � � � � ��

�

�

�
(43)
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where y
1
, y

2
, y

3
 are state variables and u

1
, u

2
, u

3
 are nonlinear controllers to be designed.

The synchronization error is defined by

1 1 1

2 2 2

3 3 3

e y x

e y x

e y x

� ��
� � ��
� � ��

(44)

The error dynamics is easily obtained as

1 2 1 2 3 2 3 1

2 1 2 1 3 1 3 2

2 2
3 1 2 1 2 2 2 3 3

( )

( )

e a e e y y x x u

e be e c y y x x u

e y y x x y x e u

� � � � � �
� � � � � ��
� � � � � � � ��

�

�

�
(45)

Based on the sliding mode control theory [174], the integral sliding surface of each error variable
e

i
, (i = 1, 2, 3) is defined as follows:

0 0

( ) ( ) ,
t t

i i i i i i

d
s e d e e d

dt
� � � � � �

� �� �� � � �� �� �� � � �
� �  ( 1, 2,3)i � (46)

The derivative of each equation in (46) yields

,    ( 1,2,3)i i i is e e i�� � �� � (47)

The Hurwitz condition is satisfied if �
i
 > 0 for i = 1, 2, 3.

Based on the exponential reaching law [174], we set

sgn( ) ,    ( 1,2,3)i i i i is s k s i�� � � �� (48)

where sgn(.) is the sign function and �
i 
, k

i
, (i = 1, 2, 3) are positive constants.

Comparing the equations (47) and (48), we get

1 1 1 1 1 1 1

2 2 2 2 2 2 2

3 3 3 3 3 3 3

sgn( )

sgn( )

sgn( )

e e s k s

e e s k s

e e s k s

� �
� �
� �

� � � ��
� � � � ��
� � � � ��

�

�

�
(49)

Using (45), we can rewrite the equations (48) as follows. S
1
, S

2
, S

3

2 1 2 3 2 3 1 1 1 1 1 1 1

1 2 1 3 1 3 2 2 2 2 2 2 2

2 2
1 2 1 2 2 2 3 3 3 3 3 3 3 3

( ) sgn( )

( ) sgn( )

sgn( )

a e e y y x x u e s k s

be e c y y x x u e s k s

y y x x y x e u e s k s

� �
� �

� �

� � � � � � � � �
� � � � � � � � ��
�� � � � � � � � � ��

(50)

From (50), the control laws are obtained as follows.

1 2 1 2 3 2 3 1 1 1 1 1 1

2 1 2 1 3 1 3 2 2 2 2 2 2

2 2
3 1 2 1 2 2 2 3 3 3 3 3 3 3

( ) sgn( )

( ) sgn( )

sgn( )

u a e e y y x x e s k s

u be e c y y x x e s k s

u y y x x y x e e s k s

� �
� �

� �

� � � � � � � � �
� � � � � � � � ��
� � � � � � � � ��

(51)
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Next, we state and prove the main result of this section.

Theorem 2. The novel highly chaotic system (42) and (43) with constant system parameters is globally
and asymptotically synchronized for all initial conditions x(0), y(0) �R3 by the integral sliding mode control
law (51), where the constants �

i
, �

i 
, k

i
 are positive for i = 1, 2, 3.

Proof. The result is proved using Lyapunov stability theory [175].

We consider the following quadratic Lyapunov function

� �2 2 2
1 2 3 1 2 3

1
( , , ) ,

2
V s s s s s s� � � (52)

where S
1
, S

2
, S

3 
are as defined in Eq. (46).

The time-derivative of V is obtained as

1 1 2 2 3 3V s s s s s s� � �� � � � (53)

Substituting from Eq. (48) into (53), we obtain

� � � � � �1 1 1 1 1 2 2 2 2 2 3 3 3 3 3sgn( ) sgn( ) sgn( )V s s k s s s k s s s k s� � �� � � � � � � � �� (54)

Simplifying Eq. (54), we obtain

2 2 2
1 1 1 1 2 2 2 2 3 3 3 3V s k s s k s s k s� � �� � � � � � �� (55)

Since �
i 
> 0 and k

i 
> 0 for i = 1, 2, 3, it is immediate that e

i
 � 0 (i = 1, 2, 3) as t � � for all initial

conditions e(0)�R3.

This completes the proof. �

4.2. Numerical Results

We use classical fourth-order Runge-Kutta method in MATLAB with step-size h = 10–8 for solving the
system of differential equations (42) and (43) when the integral sliding mode controller (51) is
implemented.

For the novel highly chaotic systems (42) and (43), the parameter values are taken as in the chaotic case
(2), i.e.

30,   1600,   50a b c� � � (56)

We take the sliding constants as

0.1,   25,   ( 1, 2,3)i i ik i� �� � � � (57)

The initial values of the chaotic system (42) are taken as

1 2 3(0) 12.1,  (0) 6.9,  (0) 20.5x x x� � � (58)

The initial values of the chaotic system (43) are taken as

1 2 3(0) 9.5,  (0) 15.3,  (0) 7.2y y y� � � (59)

Figures 7-9 depict the complete synchronization of the highly chaotic systems (42) and
(43).

Figure 10 depicts the time-history of the synchronization errors e
1
, e

2
, e

3
.
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6. CONCLUSIONS

In this paper, we have described a nine-term novel 3-D chaotic system with four quadratic nonlinearities.
The phase portraits of the novel chaotic system were displayed and the qualitative properties were described
in detail. The Lyapunov exponents of the novel 3-D chaotic system have been obtained as and The maximal
Lyapunov exponent (MLE) for the novel chaotic system is obtained as The large value of shows that the
novel chaotic system is highly chaotic and exhibits highly complex behaviour. Also, the Lyapunov dimension
of the novel chaotic system is derived as Next, we derived new results for the global chaos control of the
novel highly chaotic system via integral sliding mode control (ISMC). We also derived new results for the
global chaos synchronization design of the identical novel highly chaotic systems via integral sliding mode
control (ISMC). The global chaos control and synchronization results for the novel highly chaotic system
have been established using Lyapunov stability theory. In contrast with conventional sliding mode control
(SMC), the system motion under integral sliding mode has a dimension equal to that of the state space. In
ISMC, the system trajectory always starts from the sliding surface. Accordingly, the reaching phase is
eliminated and robustness in the whole state space is promised. Numerical simulations with MATLAB
were shown to validate and demonstrate all the new results derived in this paper for the novel highly
chaotic system using integral sliding mode control.

Figure 8: Complete synchronization of the states x
2
 and y

2
Figure 7: Complete synchronization of the states x

1
 and y

1

Figure 10: Time history of the chaos synchronization errors
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Figure 9: Complete synchronization of the states
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