IJCTA, 9(1), 2016, pp. 279-297
© International SciencePress

A Highly Chaotic System with Four
Quadratic Nonlinearities, its Analysis,
Control and Synchronization via Integral
Sliding Mode Control

Sundarapandian Vaidyanathan*

Abgtract: Firg, this paper announcesanine-term novel 3-D chaotic system with four quadratic nonlinearities. The phase
portraitsof the novel chaotic system are diplayed and the mathematical properties are discussed. We show that the novel
chaoti csysem hasthreeungabl eequilibrium points. Weshow that theequilibrium paint at theorigin isasaddle-point, while
the ather two equilibrium points are saddle-foci. The Lyapunov exponents of the novel 3-D chaatic system are obtained as
L, =10.45066, L,=0, and L, =-42.36623. Themaximal Lyapunov exponent (MLE) for thenovel chaotic systemisobtained
asL, =10.45056. Thelargevaueof L, showsthat thenovel chaotic system ishighly chaatic and exhibits highly complex
behaviour. Also, theLyapunov dimension of thenovel chaotic sysemisderived asD, = 2.2467. Next, wederivenew resuilts
for theglobal chaoscontrol of thenove highly chaotic system viaintegral diding modecontrol (ISMC). Wea so derivenew
resultsfor theglobal chaos synchronization design of theidentical novel highly chactic sysemsviaintegral diding mode
contral (ISMC). Thegloba chaoscontrol and synchronization resultsfor thenove highly chaotic sysem havebeen established
using Lyapunov gtahility theory. In contrast with conventiona diding mode contral (SMC), thesystem mation under integral
diding modehasadimension equal tothat of the state space. In ISMC, the system trajectory always startsfromthe diding
surface. Accordingly, the reaching phase is eiminated and robustness in the whole sate space is promised. Numerical
smulationswith MATLAB have been shown to validate and demongtrateall the new resultsderived in this paper for the
novel highly chaotic sysemusingintegra diding modecontrol.

Keywords: Chaos, chaotic systems, chaos control, chaos synchronization, sliding manifold, integral sliding mode
control, stability.

1. INTRODUCTION

A chaotic system is commonly defined as a nonlinear dissipative dynamical system that is highly sensitive
to even small perturbations in its initial conditions [1]. In other words, a chaotic system is a nonlinear
dynamical system with at least one positive Lyapunov exponent. Some paradigms of chaotic systems can
be listed asArneodo system [4], Sprott systems[5], Chen system [6], LU-Chen system [7], Liu system [8],
Ca system [9], Tigan system [10], etc.

In the last two decades, many new chaotic systems have been also discovered like Li system [11],
Sundarapandian systems [12-13], Vaidyanathan systems [14-33], Pehlivan systems [34-35], Pham systems
[36-37], Jafari system [38], etc.

Hyperchaotic systems are the chaotic systems with more than one positive Lyapunov exponent. They have
important gpplicationsin control and communication engineering. Some recently discovered 4-D hyperchaotic
systems are hyperchaotic Vaidyanathan systems[39-40], hyperchaotic Vaidyanathan-Azar system [41], etc. A
5-D hyperchaotic system with three positive Lyapunov exponents was also recently found [42].

Chaostheory has several applicationsin avariety of fields such as oscillators [43-44], chemical reactors
[45-58], biology [59-80], ecology [81-82], neural networks [83-84], robotics [85-86], memristors[87-89],
fuzzy systems [90-91], etc.
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The problem of control of achaotic systemisto find a state feedback control law to stabilize a chaotic
system around its unstable equilibrium [92-93]. Some popular methods for chaos control are active control
[94-98], adaptive control [99-100], diding mode control [101-103], etc.

Chaos synchronization problem can be stated as follows. If a particular chaotic system is called the
master or drive system and another chaotic system is called the dave or response system, then the idea of
the synchronization is to use the output of the master system to control the Save system so that the output
of the dave system tracks the output of the master system asymptotically.

The synchronization of chaotic systems has applications in secure communications [104-107],
cryptosystems [108-109], encryption [110-111], etc.

The chaos synchronization problem has been paid great attention in the literature and a variety of
impressive approaches have been proposed. Since the pioneering work by Pecoraand Carroll [112-113] for
the chaos synchronization problem, many different methods have been proposed in the control literature
such asactive control method [114-132], adaptive control method [ 133-149], sampled-data feedback control
method [150-151], time-delay feedback approach [152], backstepping method [153-164], sliding mode
control method [165-173], etc.

In this paper, we derive a nine-term novel 3-D chaotic system with four quadratic nonlinearities. We
show that the novel chaotic system has three unstable equilibrium points. We show that the equilibrium
point at the origin is a saddle-point, while the other two equilibrium points are saddle-foci. The Lyapunov
exponents of the novel 3-D chaotic system are obtained as L, = 10.45056, L, = 0, and L, =—42.36623. The
maximal Lyapunov exponent (MLE) for the novel chaotic system is obtained as L, = 10.45056. The large
value of L, shows that the novel chaotic system is highly chaotic and exhibits highly complex behaviour.
Also, the Lyapunov dimension of the novel chaotic system is derived as D, = 2.2467.

Next, we derive new results for the global chaos control of the novel highly chaotic system viaintegral
diding mode control (ISMC). We also derive new results for the global chaos synchronization design of the
identical novel highly chaotic systems via integral dliding mode control (ISMC).

The global chaos control and synchronization results for the novel highly chaotic system have been
established using Lyapunov stability theory. In contrast with conventional siding mode control (SMC), the
system motion under integral diding mode has a dimension equal to that of the state space. In ISMC, the
system trajectory always starts from the diding surface. Accordingly, the reaching phase is eliminated and
robustness in the whole state space is promised. Numerical simulations with MATLAB have been shown
to validate and demonstrate all the new results derived in this paper for the novel highly chaotic system
using integral diding mode control.

2. ANOVEL HIGHLY CHAOTIC SYSTEM

In this section, we propose a novel highly chaotic system modelled by the dynamics
% = a(% — %)~ XX,
X, = X, — X, +CX, %, 1)
Xy ==XX, =X = X,
where x,, X,, X, are the states and a, b, ¢ are constant, positive parameters of the system.
The system (1) is a nine-term polynomial chaotic system with four quadratic nonlinearities.

The system (1) describes a strange chaotic attractor for the parameter values

a=30, b=1600, c =50 )
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For numerical smulations, we take the initial values of the system (1) as

%(0)=0.6, x,(0)=1.8, x,(0)=1.2 ©)]
The Lyapunov exponents of the novel system (1) are numerically obtained as
L, =10.45056, L,=0, L,=-42.36623 4)

Thus, the maximum Lyapunov exponent (MLE) of the novel chaotic systemisobtained as L, = 10.45056,
which is a very large value. This shows that the novel chaotic system (1) is highly chaotic and it exhibits
complex chaotic behaviour.

Since the sum of the Lyapunov exponentsin (4) isnegative, it followsthat the highly chaotic system (1)
is a dissipative system.

Figure 1 shows the strange chaotic attractor of the highly chaotic system (1).

Figures 2-4 show the 2-D view of the strange attractor of the highly chaotic system (1) in (X, X,),
(X, X)), and (x,, X;) planes respectively.
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Figure 3: 2-D view of the novel highly chaoctic system in
(x,» X;) plane

Figure 4: 2-D view of the novel highly chaotic system in
(X, X,) plane



282 Sundarapandian Vaidyanathan

3. PROPERTIES OF THE NOVEL 3-D CHAOTIC SYSTEM

Inthis section, we detail the qualitative properties of the novel highly chaotic system (1), which is described
in Section 2.

3.1. Dissipativity
We write the system (1) in vector notation as

f1 (%, %, %)
X=F(x)=| f,(,%,%) (5)
fa(%, %2, %)
where
f1(% %, %) = 8%, = X,) — %X
f2 (3,5, %) = bx, — X, +Cx, X (6)
F3 (%, X, %) = =X % = X, — X,
We take the parameter values as
a=30, b=1600, c=50 (7)
The divergence of the vector field f on R® is obtained as
: of, of, of
div f :8—X1l+a—xz+a—xz:—a—1—1:—y, (8)
where
p=a+2=32>0 ©)

Let Q be any region in R® having a smooth boundary.
Let Q(t) = @, (©2), where @ isthe flow of f.

Let V(t) denote the volume of Q(t).

By Liouville's theorem, it follows that

dv :
—= [ (divf)dx dx, dg= [ () dx dx, d=—uV (10)
dt Q(t) Q(t)
Integrating the linear differential equation (10), we get the solution as
V(t) = V(0) exp(—t) (11)
From Eq. (10), it follows that the volume V/(t) shrinks to zero exponentialy ast — .
Thus, the novel highly chaotic system (1) is dissipative.

Hence, the asymptotic motion of the system (1) settles exponentially onto a set of measure zero, i.e. a
strange attractor.

3.2. Symmetry
The novel highly chaotic system (1) is invariant under the coordinates transformation
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(X %p0 X5) B2 (=X =%, %) (12)

Since the transformation (12) persists for al values of the system parameters, the novel 3-D chaotic
system (1) has rotation symmetry about the x*-axis and that any non-trivia trgjectory must have a twin
trgectory.

3.3. Invariance

The x*-axis (x, = 0, x,= 0, x, = 0) isinvariant for the system (1). Hence, all orbits of the system (1) starting
on the x3—axis stay in the x*—axis for all values of time.

Also, this invariant motion is governed by the scalar differential equation

which is globally exponentialy stable.

3.4. Equilibrium Points

The equilibrium points of the novel 3-D chaotic system (1) are obtained by solving the following nonlinear
system of equations

fL(%0 %0 %) = a(%, = %) = X%, = 0
£, (X, %, %) =X, — X, +Cx X, =0 (14)
f3 (4, %50 X5) = =X X, = X; —%; =0
We take the parameter values as in the chaotic case, viz
a=30, b=1600, c=50 (15)
Solving the equations (14) using the values (15), we obtain three equilibrium points:

0 6.6742 —6.6742
E,=|0|, E =| 32300 |, E,=| —3.2300 (16)
0 —-31.9903 —-31.9903
The Jacobian matrix of the novel chaotic system (1) at any point XeR®is obtained as
—-a a-% -X -30 30-% =X
J(X)=|b+cx -1 cx, |=|1600+ 50x, -1 50x, (17)
% —%—2% -1 =% -x-2% -1
The Jacobian of the system (1) at Eis obtained as
-30 30 O
O 0 -1

The eigenvalues of J are numerically obtained as

A =-1 1,=-2350683 4,=204.0683 (19)
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This shows that the equilibrium E_ is a saddle point, which is unstable.
The Jacobian of the system (1) at E, is obtained as

~30 61.9903 -3.23
J=J(E)=|04850 -1  333.71
~323 -131342 -1

(20)

The eigenvalues of J, are numerically obtained as

A, =-41.3798, A,,=4.6899+69.0627i (22)
This shows that the equilibrium E, is a saddle-focus, which is unstable.
The Jacobian of the system (1) at E, is obtained as

~30 619903 3.23
J,=J(E,)=| 04850 -1 -333.71
323 131342 -1

(22)

The eigenvalues of J, are numerically obtained as

A =-41.3798, 4,,=4.6899+69.0627i (23)
This shows that the equilibrium E, is a saddle-focus, which is unstable.
Thus, all the three equilibrium points of the novel 3-D chaotic system (1) are unstable.

3.5. Lyapunov Exponents and Lyapunov
Dimension
We take the parameter values of the novel system (1) as
a=30, b=1600, c=50 (24)
We take the initial conditions of the novel system (1) as
x(0)=0.6, X, (0)=18 x,(0)=1.2 (25)
The Lyapunov exponents of the system (1) are numerically obtained with MATLAB as
L, =10.45056, L,=0, L,=-42.36623 (26)
Thus, the system (1) is highly chaotic, since it has a large positive Lyapunov exponent.
Sincel, + L, + L, =-31.9157 <0, it isimmediate that the system (1) is dissipative.
The Lyapunov dimension of the chaotic system (1) is determined as
D, =2+ 57k _ 20467 @7
|Ls |
which is fractional.

The MATLAB plot of the Lyapunov exponents of the novel highly chaotic system (1) is depicted in
Figure 5.
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Figure 5: Lyapunov exponents of the novel highly chactic system

4. GLOBAL CHAOSCONTROL OF THE NOVEL HIGHLY CHAOTIC SYSTEM
VIA INTEGRAL SLIDING MODE CONTROL

In this section, we design new results for the global chaos control of the novel highly chaotic system via
integral diding mode control [174]. The main control result in this section is established using Lyapunov
stability theory [175].

Thus, we consider the novel highly chaotic system with controls given by

Xlza(xz_xl)_xzxs"'ul
X, =X, — X, +Cx X, + U, (28)
)'(3=—X1X2—X22—X3+u3

where x,, X,, X, are state variables, a, b, ¢ are constant, positive, parameters of the sysemand u,, u,, u,are
integral sliding mode controls to be designed.

Based on the dliding mode control theory [174], the integra dliding surface of each state variable
X, (i =1, 2, 3) is defined as follows:

d t t
s{Fﬂ{jx(r)dr}:xm.h(r)dr, (=123 (29)
0 0
The derivative of each equation in (29) yields
§=%+4x, (=123 (30)
The Hurwitz condition is satisfied if A, >0fori =1, 2, 3.
Based on the exponentia reaching law [217], we set

§ =-ns9n(s)-ks, (=123 (31)
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where sgn(’) isthe sign function and n,, k, (i = 1, 2, 3) are positive constants.
Comparing the equations (30) and (31), we get
X+ A% =-1,99n(s) - ks,
X, + A%, = =17, SON(S,) — K;S, (32)
Xs + AsXg = —175 SON(S;) — K;S;
Using (28), we can rewrite the equations (32) asfollows. S, S, S,
a(X, —X) = XX + U + 4% = —17,59N0(s) — kS
bX, =%, +CX X + U, + 1%, = =77, SYN(S,) — kS, (33)
=X X, = X5 = Xg + Uy + A% = —775 SYN(S;) — Ky,

From (33), the control laws are obtained as follows.

Uy = —a(X, — %) + %X — 4% — 17, S9N(S,) — kS,
U, =—bX, + X, — € X; = 1,X, =77, SYN(S,) — K,S, (34)
Us = XX, + X22+ X3 = A%y =17, SYN(S;) — K;S,

Next, we state and prove the main result of this section.

Theorem 1. The novel highly chaotic system (28) with constant system parameters is globally and
asymptotically stabilized for al initial conditions x(0) eR® by the integral diding mode control law (34),
where the constants A, n,, k are positivefor i = 1, 2, 3.

Proof. The result is proved using Lyapunov stability theory [175].
We consider the following quadratic Lyapunov function

V(8,5.8)=5(§ +5+$), (@)

where S, S, S,are as defined in Eq. (29).
The time-derivative of V is obtained as

V=5§+58 +85 (36)
Substituting from Eqg. (31) into (36), we obtain
V =5 [-m50n(s) - ks ]+ S, [-7,50n(s,) ~ ko8, ]+ 5 [ -7 50n(s,) — ks, ] (37)
Simplifying Eg. (37), we obtain
V=-n|s|-kS ~7,[s,| - kS ~ 18| - ksS] (38)

Sincen,>0and k> O0fori =1, 2, 3itisimmediate that x — 0 (i = 1, 2, 3) ast — oo for all initial
conditions x(0) e R3.

This completes the proof. m

4.1. Numerical Results

We use classical fourth-order Runge-Kutta method in MATLAB with step-size h = 108 for solving the
system of differential equations (28) when the integral diding mode controller (34) is implemented.
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For the novel chaotic system (28), the parameter values are taken as in the chaotic case (2), i.e.

a=30, b=1600, c=50 (39)
We take the diding constants as
n,=4=01 k=25 (=123 (40)
The initial values of the chaotic system (28) are taken as
x,(0) =17.1, x,(0) = 26.4, x,(0) =34.8 (41)

Figure 6 depicts the time-history of the controlled novel chaotic system.
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Figure 6: Time history of the controlled novel chaotic system

5. GLOBAL CHAOSSYNCHRONIZATION OF THE NOVEL HIGHLY CHAOQOTIC
SYSTEMSVIA INTEGRAL SLIDING MODE CONTROL

In this section, we derive new results for the global chaos synchronization of the identical novel chaotic
systems with unknown parameters.

As the master system, we take the novel highly chaotic system

)'(1 = a(xz - X1) — X%
X, = le =X, +CX X (42)
X = XX =X = X
where x,, X,, X, are state variables and a, b, ¢ are constant, positive, parameters of the system.
As the dave system, we take the controlled novel highly chaotic system

Yi=alY,— Y1) = Yo Y5+ Uy
yZ = bY1 =Y, +Cy Y, + U, (43)

Va=—YiYo— Yo — Y5+ U,
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wherey,, y,, Y, are state variables and u,, u,, u, are nonlinear controllers to be designed
The synchronization error is defined by

(44)
&=Y;—%
The error dynamics is easily obtained as

élza(eQ_el)_yzys"'Xsz"'ul
E:'2=bel—%+c(yly32— Xl)zs)"‘uz (45)
&E="VY,t XX Y, + X, —€+U;

Based on the dliding mode control theory [174], the integral sliding surface of each error variable
e, (i =1, 2, 3) isdefined as follows:

S :EM,Mq@)M}a +A.£e(r)dr, (i=123)

(46)
The derivative of each equation in (46) yields

§=¢+48, (=123 (47)
The Hurwitz condition is satisfied if ki >0fori=1, 2, 3.

Based on the exponentia reaching law [174], we set

§ =-n59n(s)-ks, (=123 (48)
where sgn(’) isthe sign functionand n,, k, (i = 1, 2, 3) are positive constants.
Comparing the equations (47) and (48), we get

& +4,8 =—1759n(s) - ks
& + 4,8 =17, 99N(S;) — K38, (49)
& + 438 = —175S9N(S;) — KsS,s
Using (45), we can rewrite the equations (48) asfollows. S, S, S,

a(6, — &)~ Vo Y3 + XX + Uy + 48 =7, 59N(S) - kS
be1 -+ C(Y1Y3 - X1X3) +U, + 4,6, = -77, Sgn(sz) - kzsz

(50)
—YiYo + X% — yz2 + Xz2 — € +U; + 4,8 = -1, 59N(s;) — kS,
From (50), the control laws are obtained as follows.

U =-a(e, —€)+Y,Ys— %X — 48 -7, 59n(s) — kS,
u, = _bel +€ - C(y1Y3 - X1X3) -1,6, -1, Sgn(sz) - kz%

(51)
U; = V1Y, = X% + yg_x;"‘%_ﬂe%_%s@n(ss)_ksss
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Next, we state and prove the main result of this section.

Theorem 2. The novel highly chaotic system (42) and (43) with constant system parametersis globally
and asymptotically synchronized for al initial conditions x(0), y(0) e R®by the integral sliding mode control
law (51), where the constants A, n,, k are positivefor i =1, 2, 3.

Proof. The result is proved using Lyapunov stability theory [175].
We consider the following quadratic Lyapunov function

1
Vigss)=5(S+$+5), (52)
where S, S, S,are as defined in Eq. (46).
The time-derivative of V is obtained as
V=5§+588 +85, (53)
Substituting from Eqg. (48) into (53), we obtain

V =5 [-7,500(s) — kS |+ S, [-77, 59N(S,) — K, S, | + 5, [ 77, 59N(S;) — koS, ] (54)
Simplifying Eq. (54), we obtain

v=_771|51|_k1512_772|52|_k235_773|Ss|_k3532 (55)

Sincen,>0andk>0fori=1,2, 3, itisimmediate that € — 0 (i = 1, 2, 3) ast — oo for all initial
conditions e(0) eR3.

This completes the proof. m

4.2. Numerical Results

We use classical fourth-order Runge-Kutta method in MATLAB with step-size h = 1072 for solving the
system of differential equations (42) and (43) when the integral sliding mode controller (51) is
implemented.

For the novel highly chaotic systems (42) and (43), the parameter values are taken asin the chaotic case
(2),i.e

a=30, b=1600, c=50 (56)
We take the diding constants as
n,=4=01 k=25 (i=123) (57)
The initial values of the chaotic system (42) are taken as
x,(0) =12.1, x,(0) =6.9, x,(0) =20.5 (58)
The initial values of the chaotic system (43) are taken as
y,(0)=9.5, y,(0) =15.3, y,(0) = 7.2 (59)

Figures 7-9 depict the complete synchronization of the highly chaotic systems (42) and
(43).

Figure 10 depicts the time-history of the synchronization errors e, e,, €.,
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6. CONCLUSIONS

In this paper, we have described a nine-term novel 3-D chaotic system with four quadratic nonlinearities.
The phase portraits of the novel chaotic system were displayed and the qualitative properties were described
in detail. The Lyapunov exponents of the novel 3-D chaotic system have been obtained as and The maximal
Lyapunov exponent (MLE) for the novel chaotic system is obtained as The large value of shows that the
novel chaotic systemis highly chaotic and exhibits highly complex behaviour. Also, the Lyapunov dimension
of the novel chaotic system is derived as Next, we derived new results for the global chaos control of the
novel highly chaotic system viaintegral sliding mode control (ISMC). We aso derived new results for the
global chaos synchronization design of the identical novel highly chaotic systems via integral siding mode
control (ISMC). The global chaos control and synchronization results for the novel highly chaotic system
have been established using Lyapunov stability theory. In contrast with conventional sliding mode control
(SMC), the system motion under integral siding mode has a dimension equal to that of the state space. In
ISMC, the system trgjectory always starts from the diding surface. Accordingly, the reaching phase is
eliminated and robustness in the whole state space is promised. Numerical simulations with MATLAB
were shown to validate and demonstrate al the new results derived in this paper for the novel highly
chaotic system using integral dliding mode control.
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