
A Hybrid ApproAcH for LemmAtizer for Hindi LAnguAge

Suman chaudhary1 and Kunal chakma2

1-2Computer Science & Engineering Department, NIT Agartala, Tripura, India.
Email: 1suman.the.sageh@gmail.com, 2kchakma@nita.ac.in

Abstract: Hindi is highly inflectional language. This makes the lemmatization process more complex and challenging. In
this paper we proposed a different approach for developing lemmatizer for Hindi language in Devanagari script. We will
break the inflected word into smallest units and then tried to form the root words from these units. Using this hybrid
approach for lemmatization, a system can also able to handle the inflected words with suffixes which are not known. Hence
increasing the efficiency and accuracy of the lemmatizer.

Keywords: Lemmatization, morphological analysis, Hindi, lemmatizer, hybrid, inflected.

iSSn: 0973-5704international Journal of computing and Applications
Volume 13, Number 1, (January-June 2018), pp 39-44

© Serials Publications, New Delhi (India)

where किरण(a ray) is noun/singular while किरणें (rays) is
noun/plural. In this case, the class remains same.

In NLP, stemming and lemmatization are used
to get the root form of a word. Though stemming is
an important and useful NLP task, it always does not
produce the correct root words for a morphologically
rich language like Hindi when written in the Devanagari
script. Stemming usually refers to a heuristic process
that chops off the ends of words and often includes
the removal of derivational affixes. For example if
following inputs will be given to stemmer the output
will be the corresponding words

Input Æ Output of stemmer
is Æ is
the going Æ the go
coming Æ com
On the other side, Lemmatization usually refers

to obtaining the root word properly with the use of
a vocabulary and morphological analysis of words
and to return the base or dictionary form of a word,
which is known as the lemma. For example the inputs
previously given to stemmer, will given to lemmatizer
the output will be following

Input Æ Output of Lemmatizer

is Æ be

introduction1.

Natural language processing, as the name reflects,
is processing of those language which are naturally
evolved in humans without any practice. It is a field
that comes under combination of computer science,
artificial intelligence, and computational linguistics. It
is concerned with the interactions between computers
and human (natural) languages.

For development of any natural language processing
system, first and foremost step is Morphological
analysis. The aim of this phase of language processing
is to separate strings of language input into tokens
sets corresponding to discrete words, sub-words
and punctuation forms. For example a word like
“uncomputable” can be broken into three sub-word
tokens as:

 un – compute - able.

Morphology could be either derivational or
inflectional. Derivational morphology processes the
words and form new lexemes from the existing ones.
For example, in गर्म + ई = गर्मी(Summer), the word
गर्म(hot) with a suffix ई has changed from adjective to
noun गरम्ी(summer). Inflectional morphology processes
the words by producing various inflections without
changing the word class. For example, किरण + ◌े ं= किरणे ं

40 Suman Chaudhary and Kunal Chakma

the going Æ the go

coming Æ come

The main disadvantage of stemmers is that they
do not give legitimate lemma in the result. Therefore,
lemmatizers are more appropriate than stemmers
for document processing tasks such as retrieval of
documents. Hence we mostly prefer lemmatizer over
stemmer.

Our main objective is to develop such approach that
will give a conceptual root form of the corresponding
word. This includes all the inflected words of th root
and derivational roots. Example

Inflected word Æ Root word

िशेषताएँ (Speciality) Æ विशेष (Special)

नकली (Fake) Æ नकल (copy)

रचनाए ँ(Composition) Æ रचना (Creation)

reLAted worK2.

Many Stemmers and lemmatizers have already been
developed especially for English and European
languages[9]. Huge improvemens have been achieved
in last few years. A well known algorithm for stemming
given by Martin Porter [10] is the foundation algorithm.
The basic rule based approach for lemmatization for
English language proposed by Plisson[2] is based on
the word endings where the suffix should be added or
removed based on word to get the normalized form.
It mainly emphasizes on two word lemmatization
algorithm which is based on simple if-then rules
and the ripple down approach. A context sensitive
lemmatizer for German language was developed
by Wolfgang Lezius, Reinhard Rapp and Manfred
Wettler[15]. Authors created an integrated tool for
German Morphology which involved POS taggers and
lemmatizer. In the first step, the morphology module
delivers all possible lemma corresponding to each word
form. Secondly, the tagger determines the grammatical
categories of the word forms. If, for any of the lemma,
the inflected form corresponding to the word form in
the text does not agree with this grammatical category,
the respective lemma is discarded. Many other
lemmatizer for languages like English, German, Arabic,

Spanish etc are available. In Stanford core NLP tool
[16], fully developed lemmatizer for English, Spanish,
Arabic, Chinese, French and German languages are
available with advance versions.

On the other hand, not much work has been
done regarding the development of lemmatizer for
South Asian languages. Nearly no reliable lemmatizers
available for Indian languages, particularly for Hindi
language as it does for national languages like English
language or other European languages. Hindi is
fourth most spoken language after std. M. Chinese,
Spanish and English. A rule based approach is used
by Snighdha Paul, Nisheeth Joshi and Iti Mathur[6]
in the development of Hindi Lemmatizer. Authors
concentrated on time optimization by creating a
database consisting of commonly used Hindi words.
Regarding Hindi Stemmer, there are number of
approaches used by authors. A rule based approach was
proposed by Ramanathan & Rao [1] for stemming in
Hindi. This proposed stemmer is both computationally
inexpensive and domain independent. The approach
is based on stripping off suffixes by generating rules
concentrating on noun, adjective and verb inflections
in Hindi language. Another stemmer named as
“Maulik” is proposed by Upendra Mishra and Chandra
Prakash[13] which is based on combination of brute
force and suffix removal approaches. The proposed
stemmer is light weight stemmer which is domain
independent and computationally inexpensive. It also
reduces the problem of under-stemming and over-
stemming.

There are another tools also proposed for the
morphological analysis of Hindi language. Nikhil K
VS[4] built a Hindi derivational analyzer by creating
a SVM classifier which he used to identify the
derivational variants. A different approach is used by
Shashi Pal Singh, Ajay kumar, Dr. Hemant Darbari
and Anshika Gupta[5]. They build a Rule based tense
synthesizer for Hindi which derived translated output
in correct tense using HMM tagging. A morphological
analyzer for Oriya language is proposed by TJena et.
al., [7] using the paradigm approach. Using various
paradigm tables, they classified nouns, adjectives and
finite verbs of Oriya language. The approach proposed

41A Hybrid Approach for Lemmatizer for Hindi Language

propoSed worK4.

Hindi language is highly inflectional language and hence
it is always difficult to develop a NLP tool for these
types of languages. In this paper a hybrid approach is
proposed using which will increase the accuracy of the
lemmatizer for Hindi language in Devanagari script.
From the dataset, we have observed that 85.7% of the
inflected words have suffixes and 19.04% of words
have prefixes and only 6% of the words have both
suffixes and prefixes.

Therefore, on the basis of above observations
from dataset a hybrid approach which is combination
of dictionary based and rule based approaches is
suggested for the lemmatization of Hindi language.
Proposed approach is present in form of following
Algorithm 0. Algorithm 0 is constitute of further 2
algorithms, Algorithm1 corresponding to dictionary
based approach and Algorithm2 corresponding to rule
based approach.

Algorithm 0 (string input word, string output
word)
Step 1: Break the input inflected word into
corresponding uni-codes (smallest units) and save it
in inflected word[].

Step 2: Execute Algorithm1 with inflected word []
as its input.

Step 3: If Algorithm1 gives output, then restart from
step 1 of this algorithm with next input word.

Step 4: Else execute Algorithm2 with inflected word
[] as its input.

Step 5: Restart from step 1 with next input word.

Algorithm 1 (inflected word [char], string output
word)
Step 1: Merge two sequential unicodes from inflected
word [] to form a unigram.

Step 2: Check whether it form a root form.

Step 3: If yes then save it to the Root Word List
corresponding to the input word.

Step 4: If it do not form any root then again start
from step 1 of Algorithm 1 by merging next sequential
unigram of input inflected word [] array to form bigram

by Goyal et. al., [3] concentrates on the creation of a
morphological analyzer and generator that translate
from Hindi to Punjabi. Their main objective was to
develop a translation system especially from Hindi to
Punjabi.

corpuS3.

Standard data set is taken which is available as Hindi
Corpora at Center for Indian Language Technology.
9000 unique words were extracted from 20000
sentences and then cleaning process was applied on the
corpus collected so far. Cleaning process is a process
of manually removal of words from the dataset which
are not required for the analysis and development of
the project. Following types of words were removed
in cleaning process

 1. Root words with same inflections

 2. Stop words

 3. Words already in their dictionary form.

 4. Words in Unstructured form like “समापनकरजारह”े
(are going after concluding). This type of words
are manually corrected and then stored in the
list. For example correct form the given words
is समापन कर जा रह े(are going after end of function).
Thus we got four different words that are समापन
(concluding), कर (after), जा (going) and रह.े These
words were stored separately.

Above types of words were removed from the
dataset. The number of words decreased to 5000 after
cleaning process. Out of them, 3500 words are in their
unique inflected form We break the inflected words
into their root form, prefixes and suffixes as shown
in Table 1.

table 1
Structure of data set

शब्द
(inflected word)

मूल शब्द
(root word)

उपसर्ग
(prefix)

प्रत्य
(suffix)

पाठक (reader) पाठ (lesson) अक

सफल (successful) फल (result) स

अंग्रेजी (English) अंग्रेज (English men) ई

समझदार (understanding) समझ (understand) दार

वेदों (Vedas) वेद (Veda) ओं

42 Suman Chaudhary and Kunal Chakma

and further more by merging N-grams to form n +
1-grams until the longest syllable does not form.

Step 5: If words are present in the Root Word List
corresponding to input word then, from the list, word
with longest sequence will be returned as an output.

Step 6: If there is no word present in Root Word List,
then Algorithm 2 will be executed.

Algorithm 2 (inflected word [char], string Stripped
word)
Step 1: Merge two sequential unicodes from the end
of the unicode list of the input word.

Step 2: Check whether it form any suffix from the
list.

Step 3: If yes then chop the suffix and perform
corresponding normalization process to the input
word according to the specified rules and save it as
Stripped word.

Step 4: Now break the Stripped word into corresponding
unicode and save unicodes to inflected word [] array.
Go back to step1. This is to check if than one suffix
are present in the inflected word.

Step 5: If it does not form any suffix then we again
start from step 1 of this algorithm by merging next
sequential unigram, from the end, to form bigram and
further more by merging bi-grams to form tri-grams.

Step 6: Stripped word will be given as output.

Now apply the proposed algorithm on some
examples to get better illustration of these algorithms.
Whenever any words is given to the systems, firstly
Algorithm 0 will be executed. It breaks the input
word and save the corresponding unicodes into the
array so that it can be further used by Algorithm1 and
Algorithm2 to Suppose the input word is

 input word = मैदानों (Fields)

Then following steps will be performed to get the
lemma:

Algorithm 0 will be executed as following:
 Æ Break the input word into corresponding

unicodes i.e.,

 inflected word [] = म, ै, द, ा, न, ो, ं

Now Algorithm 1 will be executed for inflected
word [] array. Every time the word formed by merging
will be matched to root words and if it will successfully
matched then the merged word will be stored in
corresponding Root Word List as illustrated below:

 (a) म ैÆ This is not any root word

 (b) मैद Æ This is not any root word

 (c) मदैा Æ This can be a root word. It will be added
to Root Word List of input word.

 (d) मदैान Æ This can be a root word. It will be added
to Root Word List of input word.

 (e) मैदानो Æ This is not any root word.

 (f) मैदानों Æ This is not any root word.

Now the Root Word List of input word मैदानों
contains two roots मैदा (flour) and मैदान (field). But मैदान
(Field) is having longer sequence of unicodes, therefore
it will be given as output. Since output is given by
Algorithm 1 it will not execute Algorithm 2.

Now let us take such example for which Algorithm 1
will failed to generate output and the input word will
be then given to Algorithm 2. Let us suppose the word
विशेष is not present in our data structure.

विशेषताए ँ(Specialities)

Note that to elaborate every step of Algorithm 2,
word with more than one suffix is taken as an example.

Following steps will be performed to get the
lemma:

Algorithm 0 will be executed as following:

 Æ Break the input word into corresponding
unicodes i.e.,

 inflected word [] = व, ि, श, े, ष, त, ा, ए, ँ

Algorithm1 will be executed for the above word
taking inflected word [] array as input but it will failed
as the word is not present in our root words. Therefore,
input will be send to Algorithm2 to execute.

Now Algorithm 2 will be executed as following:

 (a) Merge the last two unicodes to form a unigram
from inflected word [] array. It will be ए.ँ

 (b) Check the suffix list, if ए ँis present.

43A Hybrid Approach for Lemmatizer for Hindi Language

 (c) Yes the suffix is present hence apply the
corresponding rule. That is, in case of ए,ँ simply
chop the suffix and give the remaining words
as an output.

 (d) Now the Stripped word = विशेषता.

 Again break it into corresponding unicodes
and save it to the input array i.e.

 inflected word [] = व, ि, श, े, ष, त, ा

 (e) Go to step 1.

 (f) Again performing step 1 that is merging last
two unicodes to form unigram. It will be ता.

 (g) Checking if ता is suffix or not.

 (h) Yes, it is suffix and as per rule, it will be
chopped and remaining word will be given as
output.

 (i) Stipped word = विशेष

 Again break Stripped word विशेष into
corresponding unicodes and save it into input
array i.e.

 inflected word [] = व, ि, श, े, ष.

 (j) Go back to step 1.

 (k) Merge last two unicodes े ष.

 (l) Checking if this is suffix or not.

 (m) No this is not suffix.

 (n) Merge last last three unicodes शेष.

 (o) Checking if it is suffix or not.

 (p) No, it is not a suffix.

Therefore the output will be the last stripped word
which is विशेष(Special).

Hence in this way if any inflected word with the
suffix for which rules are not defined, can also handled
by system and chances are high to get the correct
lemma for the input.

concLuSion5.

The proposed approach is purely based on the
observations from the standard dataset Using this
approach for development of lemmatizer for Hindi
language in Devanagari script, more accuracy can

be achieve as compared to rule based lemmatizer. It
includes not only those words with predefines prefixes
and suffixes but also those words that are having
unknown suffixes and are present in out data structure
used for the storage scheme.

This approach emphasized on word level
lemmatization. The lemmatizer can further be improved
by applying the sentences level lemmatization process
which include context based comparisons to give the
correct lemma as an output.

Many inflected words have more than one word
present in corresponding Root Word List. In the
proposed algorithm, the word with longest sequence
of unicodes will be given as output. It may not always
give the correct lemma corresponding to the input
inflected word. But if sentence level lemmatization will
be applied, it will consider the neighboring words of
the given input in sentence and based on that output
will be given. In sentence level lemmatization, using
probability models, it will check the probability of the
words in the list with the neighboring words and output
will be the word having highest probability.

Consider the following example with word मैदानों

बच्च ेमैदानों मै ंखेल रह ेह ै|
(Children are playing in the fields.)
In above sentence, for inflected word मैदानों as an

output, there are two words मैदा (flour) and मैदान (field)
in Root Word List.

The probability of मैदा (flour) and मैदान(field) with
बच्च े(Chidlren) may be nearly same but the probability
of मैदान (field) with खेल (play) will always be higher than
the probability of मदैा(flour) with खले(play). Hence in this
way always correct lemma will be given as an output.

References
A. Ramnathan, D Rao, “A lightweight Stemmer for [1]
Hindi,” In Proceedings of Workshop on Computational
Linguistics for South Asian Languages, 10 th
Conference of the European Chapter of Association
of Computational Linguistcs. Pp 42-48. 2003.

Plisson, J, Larc, N, Mladenic, “A Rule based approach [2]
to word lemmatization,” Proceedings of the 7 th
International Multiconference Information Society,

44 Suman Chaudhary and Kunal Chakma

IS-2004, Institute Jozef Stefan, Ljubljana, pp.83- 86,
2008.

Vishal Goyal and Gurpreet Singh Lehal, “Hindi [3]
Morphological and Generator,” IEEE Computer
Society Press California USA, pp. 1156- 1159, 2008.

Vishal Goyal and Gurpreet Singh Lehal, “Hindi [4]
Morphological and Generator,” IEEE Computer
Society Press California USA, pp. 1156- 1159, 2008.

Nikhil K V S, “Hindi derivational morphological [5]
analyzer,” Language Technologies Research Center,
IIIT Hyderabad, 2012.

Shashi Pal Singh, Ajai Kumar, Dr. Hemant Darbari and [6]
Anshika Gupta, “Improving the quality of Machine
Translation using Rule Based Tense Synthesizer for
Hindi,” IEEE International Advance Computing
Conference (IACC), 2015.

Snigdha Paul, Nisheeth Joshi and Iti Mathur, [7]
“Development of a Hindi Lemmatizer,” Vol. 2
International Journal of Computational Linguistics
and Natural Language Processing, Issue 5, 2013.

Itisree Jena, Sriram Chaudhary, Himani Chaudhary [8]
and Dipti M.Sarma,”Developing Oriya Morphological
Analyzer Using Lt-toolbox,” ICISIL 2011, CCIS 139,
pp. 124-129, 2011.

John goldsmith, 2001, Unsupervised learning of the [9]
morphology of a Natural language, Computational
Linguistics, Volume 27, No. 2 pp. 153198, 2001

Martin F. Porter, An algorithm for suffix stripping, [10]
Program, Vol. 14, No. 3, pp 130-137, 1980.

Deepa Gupta, Rahul Kumar Yadav, Nidhi Sajan, [11]
“Improving Unsupervised Stemming by using Partial
Lemmatization Coupled with Data-Based Heuristics
for Hindi, ” International Journal of Computer
Application(0975-8887), Vol. 38, No. 8, January
2012.

Mohd. Shahid Hussain, “An unsupervised approach [12]
to develop stemmer,” International Journal on Natural
Language Computing, Vol. 1, No. 2, August 2012.

Upendra Mishra, Chandra Prakash, “MAULIK: An [13]
Effective Stemmer for Hindi Language”, International
Journal on Computer Science and Engineering
(IJCSE), ISSN: 0975-3397, Vol. 4 No. 05 May 2012.

Julie Beth Lovins, Development of stemming [14]
Algorithm, Mechanical Translation and Computational
Linguistics, Vol. 11, No. 1, pp 22-23, 1968.

Wolfgang Lezius, Reinhard Rapp, Manfred Wettler, “A [15]
freely available morphological analyzer, disambiguator
and context sensitive lemmatizer for German”,
COLING ‘98 Proceedings of the 17th international
conference on Computational linguistics - Volume
2, Association for Computational Linguistics
Stroudsburg, PA, USA ©1998.

http://stanfordnlp.github.io/CoreNLP/[16]

https://en.wikipedia.org/wiki/Hindi[17]

