
I J C T A, 9(13) 2016, pp. 6183-6191
© International Science Press

1 Department of Computer Science and Engineering, Periyar Maniammai University, Thanjavur, E-mail: dhavakumar@pmu.edu
2 Department of Computer Application, National Institute of Technology, Tiruchirappalli, E-mail: npgopalan@nitt.edu

Enhancing Software Quality Using Fuzzy
Logic and Program Slicing
P. Dhavakumar1 and N. P. Gopalan2

ABSTRACT

In this paper a new program slicing metric is introduced. This metric makes use of the slicing information to
measure size, complexity and coupling cohesion properties of the program. Compared with traditional code metric,
slicing involves measures for program behaviours. As Reliability is one of the key parameters in estimating the
quality of the software, there is a considerable amount of increase in reliability and also there is an increase in the
quality of the software.

Index Terms: Fuzzy-Logic, Software Slicing, Software Metrics, Reliability Models

1. INTRODUCTION

The advent of fuzzy logic plays a vital role in estimating the reliability of the software products to an
unimaginable extent, but due to the increasing demand in software industry, fuzzy logic alone can’t make
software industry to succeed. Engineers and researchers have provided many new models to estimate the
reliability but as said earlier; as time flies the models fades. In this paper have designed a new software
reliability estimation model that not only depends on fuzzy logic but also involves program slicing. The
goal of this design is to achieve a minimum gain of 3-6% in reliability of the software. The question raised
is whether the program slicing can be used for identifying the faults in the software or not, and if so is it a
reliable or not. The answer for the above question is program slicing can be efficiently used in identifying
faults process in software and it is reliable too. The main use of program slicing is predicting fault-prone in
software components. The result for this process is well defined and promising [1]. Faults in the software
system are the major problem which is overlapped by using this program slicing. The problems are solved
by formulating hypotheses of the relationship between slice characteristics and faults in the software. Testing
hypotheses on samples of software components are also done by program slicing to identify faults. Program
slicing is done by java which is an object oriented programming language. Techniques of program slicing
are static slicing; quash static slicing, dynamic slicing and conditional slicing. More slicing techniques are
also used in the process. The main objective of program slicing is extracting parts of computer programs by
tracing the program, control and dataflow related to some data item. It is applicable in the fields like
debugging, program comprehension and understanding program integration, cohesion measurement, re-
engineering, maintenance and testing [5]. It also includes slicing methods like forward slicing, backward
slicing, syntactic slicing and semantic slicing to check errors on software.

Program slicing consists of many methods which focus on specific component of a program to check
errors from which all ambiguous methods a program can be made reliable and error. The methods of slicing
teachers us the statement deletion based methods for programs written in procedural languages. This also
included the large scale slicing research tools. And most of them are related to software testing or debugging.
The framework of statement deletion based slicing method can be extended with more powerful simplification



6184 P. Dhavakumar and N. P. Gopalan

rules. It can be computed by applying a broader range of transformation rules, including statement deletion
[25].In software slicing program, slice metrics is used. There has an advantage of DSL (Domain Specific
Language). The empirically collected data from system form the basis of a DSL. The analysed multiple
versions of the system are sliced and it functions in three separate ways such as input, output and global
variables. It is a potential slice based DSL. It will compromise for maximum expressive power and
effectiveness [6]. Data Analysis and Data Collection gives the description of three categories used to slice.
The categories of variable are formal ins(IP), formal outs(OP), Global Variables(GL). To integrate fault
analysis with program analysis by implementing the DSL based program slicing is the major metric. Software
reliability is defined as the probability of failure-free software operation for a specified period of time in a
specified environment. Software reliability is the key task for achieving the high reliability of any software
industry. The ability of a system or component to perform its required function under stated conditions for
a specified period of time [2]. Measuring the software reliability is a difficult problem because we don’t
have a good understanding about the nature of software. POFOD (Probability of Failure On Demand) is an
important measure for safety critical system. The utilities of Fuzzy logic techniques extends up to XGMML,
Web Services and the .NET framework future work is proposed to extend the system from the prototype
stage and overcome the problem by making of poor scores. In evaluation of current metrics visualisation,
there are many software packages available that provide visualisation of software metric. The decision
support system (DSS) offer a vast array of visualisation and techniques present metric data the boundary
definition is fuzzy logic. Fuzzy logic provides the ability for a machine to perceive the world as humans do
by representing vague and ambiguous knowledge [7].

The ability of a system or component to perform its required functions under stated conditions for a
specified period of time. The terms errors, faults and failures are often used interchange able. In software,
an error is usually a programmer action or omission that results in a fault. This new model for software
quality is reliable. A software reliability management program requires the establishment of a balanced set
of user quality objectives and identification of informative quality objectives that will assist in achieving
the user quality objectives. By increasing the requirements it is easy to produce ambiguous terminology in
software metrics [24].The only way to help control defects and reduce high maintenance costs is to use
refactoring. The software metrics try to qualify particular characteristic of a software systems, such as
quality, maintainability or reliability. The coupling metrics provide insight into the interaction between the
modules in the system, while the cyclomatic complexity gives the insight into the complexity metric of
each individual module. The return on the investment in these refactoring forces can be measured in lower
error rates, fewer test cases for module and increased overall understand ability and maintainability. The
coupling, cohesion and cyclomatic complexity have because accepted metric in program slicing [13]. There
are some types of slicing approaches in which they depend on the program and the type of program slicing
namely static slicing and dynamic slicing [21]. The applications of slicing reside in debugging, regression
testing, software maintenance, and reverse engineering, software quality assurance. It can be applied in
many other problem areas. It performs the leading role in the advanced research topic in computer science
especially in software engineering.

2. COMPUTINGMETHODOLOGY

First, let us characterize Software Reliability. Software unwavering quality is altogether different from
equipment dependability.

Hardware Reliability: It is the capacity of equipment to perform its capacities for some timeframe
with no disappointment. The equipment dependability is portrayed on the premise of shower tub curve.

Software/Programming Reliability: Software Reliability is the likelihood of disappointment free
programming which works for a predefined timeframe in a predetermined situation. Programming Reliability



Enhancing Software Quality using Fuzzy Logic and Program Slicing 6185

is additionally a vital component influencing framework dependability. Programming unwavering quality
is not quite the same as equipment dependability in light of the fact that it characterizes the outline
flawlessness, as opposed to assembling flawlessness.

Reliability of Software is measured using its sub characteristics which are,

1) Maturity

2) Fault Tolerance

3) Recoverability

4) Reliability Compliance

Let P
f 
be the Probability of Failure of an software and R be the reliability, then by definition R can be

expressed as,

R = 1 – Pf (1)

The value of R is a discrete value that lies between 0 and 1. Practical Cases have shown that removing
60%of the faults will increase the reliability of the software by 3%. The reliability of the software is measured
using POFOD(Probability of Failure on Demand), ROCOF(Rate of Occurrence of Failure) and MTTF(Mean
Time To Failure). The relationship between cost and reliability is directly proportional. When reliability
increases the cost also increases. Figure 1 shows the relationship graph between Cost and Reliability.

2.1. Reliability Models

There are number of software reliability models which are used for different purposes. Some of the models
are explained below compared to the static and the dynamic slice performs the leading role.

(a) Jelinski Moranda Model: The Jelinski Moranda model is the earliest models in software reliability
and was founded in 1972.It is the time between failure models. It assumes N software faults at the start of
testing, and that assumes that the failure occur purely, at random and all the faults contribute equally to
cause a failure during testing. It also assumes the fix time is negligible and the fix for each failure is perfect.
The software products failure rate improves by the same amount at each fix.

(b) Littlewoods Model: It is similar to JelinskiMoranda Model but it assumes that different faults have
different size. Large sized defects tend to detected and fixed earlier. As the number of errors is driven down
with the progress in the test, so this model is the average error size causing a law of diminishing return in
debugging.

(c) Goel Okumoto Imperfect Model:Non Homogeneous Poisson Process Model: The NHHP model
was formulated in 1979. The J-M model assumes that the fix is negligible and that the fix for each failure
is perfect. It assumes perfect debugging .In practice this is not always the case. In the process of fixing a
defect new defects may be injected. This model proposed imperfect debugging model to overcome the
limitation of the assumption. In this model the hazard function during the interval between the (i-1)st and
the failure is given

Z(ti) = [N – p(i–1)] � (2)

where N is number of faults at start of testing

P is probability of imperfect debugging

� failure rate per fault

(d) The Delayed S and Inflection S Models: With the help of defect removal process Yamada said that
a testing process consists of not only a defect detection process but also defect isolation process because of



6186 P. Dhavakumar and N. P. Gopalan

the time needed for it is similar to Jelinski Moranda Model but it assumes that different faults have different
size. Large sized defects tend to be detected and fixed earlier. As the number of errors is driven down with
the progress in the test, so it is the average error size causing a law of diminishing return in debugging.

(e) GoelOkumoto Non Homogeneous Poisson Process Model: The NHHP model is given in 1979.It
is concerned with modelling the number of failures observed in given testing intervals. It defines the
cumulative number of failure observed at time t.N (t) can be modelled as a non-homogenous Poisson
process with the time dependent failure rate.

Failure analysis shows significant delay can occur between time of first failure observation and the
time of reporting. They offer the delayed S-shaped reliability growth model for such a process in which the
observed growth curve of cumulative number of detected defects is S-shaped. The model is based on the
non-homogeneous Poison process but with a different mean value function to reflect the delay in failure
reporting.

2.2. Fuzzy Logic

Fuzzy Logic is newly different from the traditional computational logic. In fuzzy logic the concept of
partial truthfulness was introduced i lies between 0s and 1s. Fuzzy Logic is very useful to react human like
thinking on the machine. Fuzzy logic involves two factors, Approximation (Granulation) and Degree
(Graduation). The main process involved in using fuzzy logic to compute the metrics is fuzzication.
Fuzzication is the process of translating the measured numerical values into fuzzy linguistic values. During
fuzzication membership functions are applied and the degree of membership is determined. There are three
types of fuzziers available, they are:

• Singleton Fuzzifiers

• Gaussian Fuzzifiers

• Trapezoidal Fuzzifiers

Steps Involved In Fuzzy Approach

1) Deciding Membership Function

Figure 1: Cost Vs Reliability



Enhancing Software Quality using Fuzzy Logic and Program Slicing 6187

2) Optimized selection of initial rule based fuzzy interference system

3) Perform the Inference

4) Calculate the % accuracy of the results

2.3. Program Slicing

Program slicing is a method used for abstracting from programs (i.e) Start with a subset of a program’s
behaviour and reduces it to a minimal form that still produces the behaviour. The reduced program is called
a slice. It is helpful to find what all codes could influence a variable in a statement and is data flow analysis.
To find slices the program is sliced backwards finding all possible influences on a variable. Two types of
slicing techniques are available Static and Dynamic slicing. In Static slicing slices are computed statically
using a dependence graph, while in case of dynamic slicing statements that affect the value of a variable for
one specific input are taken. In this technique we use limited pre-processing (LP) algorithms that strikes
a balance between pre-processing and slicing costs. The LP algorithm for program slicing is given in
Algorithm 1.

2.4. Program Slicing Metrics

PS metrics indicate the size, complexity, coupling and cohesion of C programs. PS metrics are based on
program slice information, which is of finer-granularity. Program slices have the additional advantage of
capturing program behaviour, and hence metrics based slices are more directly related to these behaviours.
We explain each of the PS metric items as follows.

The number of slices is a function that contains UC metrics, but slice count considers the global variables
modified through the dereferencing of pointer variables. To achieve this, pointer analysis is used in the
implementation. The number of vertices in a function program dependence graph use vertices Count. This
metric is similar to Count Line Code in the UC metrics, but vertices Count are more fine-grained. For
example, it treats the statement a = b () as two statements: one function call and one assignment. It additionally
counts implicit vertices, such as global-formal-out vertices and edges Count. The number of dependence
edges is a function program dependence graph. In contrast to the vertices Count metric, which weighs each
statement evenly, edges Count is based on the control or flow dependence relationships of each statement
with other statements.PS metrics indicate the size, complexity, coupling and cohesion of C programs. PS
metrics are based on program slice information, which is of final granularity. Slice count isthe number of
slices a function contains. To achieve this, pointer analysis is used in the implementation. Vertices count.
The number of vertices in a functions program dependence graph. It treats the statement a = b() as two
statements: one function call and one assignment. The number of dependence edges in a functions program
dependence graph. Edges to vertices ratio is the ratio of the number of dependence edges to the number of
vertices. A high Edges to vertices ratio indicates more logically complex code. Slice vertices sum is the
sum of the vertices contained in each slice in a function. Max slice vertices is the number of vertices of the
slice that have the maximum vertices in all the slices of a function. Global input is the number of function
parameters and non-local variables used in a function. Global output. The number of non-local variables
modified in a function. Direct fan out is the sum of function slices in the other module files whose output
variables are directly modified in them and used in this function. Indirect fan out is the sum of function
slices in the other module files whose output variables are indirectly modified in them and used in this
function. Lack of cohesion metric indicates the cohesion of function slices and how much the slices in a
function share the same vertices. The PS metrics listed above are computed at the function level of granularity.
We have also developed a set of metrics at the file level corresponding to those at function level. The file
level metrics are the sum of the function-level metrics for all the functions a file contains, except for lack
Of Cohesion and max Slice Vertices, which are the average of the function-level metrics for all the functions



6188 P. Dhavakumar and N. P. Gopalan

in the file, and edges To Vertices Ratio, which is the ratio of sum of edges in a file to the sum of vertices in
the file. We determine lack Of Cohesion by the overlap ratio of function slices, i.e. how much the slices in
a function share the same vertices. But, since it is expensive to compute the ratio of shared vertices among
a number of function slices, we calculate an approximate ratio of slice overlap by computing the ratio of the
program lines each slice covers to the total number of lines in the function.

The PS metrics listed above are computed at the function level of granularity. We have also developed
a set of metrics at the file level corresponding to those at function level. The file level metrics are the sum
of the function-level metrics for all the functions a file contains, except for lack Of Cohesion and max Slice
Vertices, which are the average of the function-level metrics for all the functions in the file, and edges To
Vertices Ratio, which is the ratio of sum of edges in a file to the sum of vertices in the file. Note that, in
practical computation of the program slices for functions, some normalization will be performed for complex
statements. So, the actual PS metrics will take into account additional vertices and edges generated by
normalization.

2.4. Metrics Computation Procedure

The procedure involved in computing the reliability metrics has two stages. Stage1 shows performance
of program slicing using LP slicing algorithm. Stage2 involves the actual computation of the reliability
metrics. The entire procedure is repeated for a set of benchmark programs and the readings are tabulated.
The benchmark programs used are written in C language, the file linpack.c is used to obtain
rolled source BLAS. Add -DROLL to the command lines and obtain unrolled source BLAS and add
DUNROLL to the command lines. The other benchmark used is the Whetstone Double Precision
Benchmark.

Algorithm for Limited Pre-processing Algorithm

Input: � Program(P),Variable(V ),Input
D
ata(I) Output: � Slices(S)

Process: LP(P,V,I)

Begin

Perform LP

Add summary information to trace

Divide Trace(T) � Trace Blocks(B
t
)

End of Trace Block=Summary of downward exposed definitions

Perform: Backward Traversal if Definition == ’Found’ then

Traverse Trace Block else

Skip to Start of Trace Block end if End

3. COMPARISON TECHNIQUE IN TERMS OF SOFTWARE RELIABILITY MODELS

The procedure is repeated twenty times by the traditional approach and the new approach. The values are
recorded and the readings are tabulated as given in table. By plotting the readings we conclude that, this
technique is very efficient method to enhance the quality through increased reliability. In the figure 2
source code has been converted into small piece of program using slicing techniques and figure 3 is used to
compute the reliability based on the fuzzy logic.

4. RESULTS

The readings values of traditional methods and proposed method success rates are tabulated below. From
this table the differences between the above two methods values are at peak most of the times for the
proposed framework when compared with the traditional method for metrics computation.



Enhancing Software Quality using Fuzzy Logic and Program Slicing 6189

Figure 3: Reliability Computation

Figure 2: Program Slicing

Table of Success Rates (SR)

Traditional Methods SR Proposed Framework SR Difference in SR

0.153 0.263 0.110

0.961 0.259 -0.702

0.876 0.677 -0.199

0.488 0.519 0.031

0.407 0.076 -0.331

0.126 0.055 -0.071

0.925 0.258 -0.667

0.005 0.439 0.434

0.186 0.284 0.098

0.324 0.678 0.354

0.050 0.949 0.899

0.144 0.773 0.629

contd. table



6190 P. Dhavakumar and N. P. Gopalan

Traditional Methods SR Proposed Framework SR Difference in SR

0.482 0.753 0.271

0.338 0.746 0.408

0.236 0.586 0.35

0.450 0.773 0.323

0.185 0.392 0.207

0.324 0.605 0.281

0.263 0.247 -0.016

0.830 0.290 -0.54

0.696 0.019 -0.677

0.333 0.347 0.014

0.580 0.141 -0.439

0.287 0.411 0.124

Figure 4: Traditional vs PS Metrics

5. CONCLUSION

Figure 4, the graph plots it is found that the success rate of the benchmark programs in traditional and PS
metrics, the blue line indicate traditional methods success rate and red line indicate PS metric success rates.
From the above graph has a high peak value on applying the proposed framework that involves program
slicing and fuzzy logic. Thus we can conclude that applying program slicing to compute the metrics increases
the reliability as the rate of success is directly proportional to the reliability of the software.

REFERENCES
[1] Singh, Pradeep Kumar, Om Prakash Sangwan, Amar Pal Singh, and Amrendra Pratap. “A Framework forAssessing the

Software Reusability using FuzzyLogic Approach for Aspect OrientedSoftware”, International Journal of Information
Technology and Computer Science, 2015

[2] Gurpreet Kaur, Kailash Bahl, “Software Reliability, Metrics, Reliability Improvement Using Agile Process”, International
Journal of Innovative Science, Engineering & Technology, Vol. 1 Issue 3, May 2014.

[3] Chiu, Kuei-Chen. “An improved model of software reliability growth under timedependent learning effects” , 2011 IEEE
International Conference onQuality and Reliability, 2011.



Enhancing Software Quality using Fuzzy Logic and Program Slicing 6191

[4] Wang, Shuanqi, Yumei Wu, Minyan Lu, and Haifeng Li. “Software reliability modeling based on test coverage”, The
Proceedings of 2011 9th International Conference on Reliability Maintainability and Safety, 2011.

[5] N.Sasirekha, A.Edwin Robert and Dr.M.Hemalatha, “PROGRAM SLICING TECHNIQUES AND ITS APPLICATIONS”,
International Journal of Software Engineering & Applications (IJSEA), Vol.2, No.3, July 2011.

[6] Steve Counsell, Tracy Hall1, David Bowes, Sue Black, “Program Slice Metrics and Their Potential Role in DSL Design”,
Submitted to KISS 2009, Brisbane, 2009.

[7] Senior, Allison & Tepper, “Automated Software Quality Visualisation Using Fuzzy Logic Techniques” Communications
of the IIMA, 2007 Volume 7 Issue1.

[8] Toolworks, “Maintenance, Understanding, Metrics and Documentation Tools for Ada, C, C++, Java, and FORTRAN,”
2006.

[9] Krinke, Jens. “Program Slicing”, Handbook Of Software Engineering And Knowledge Engineering Vol 3 Recent Advances,
2005.

[10] Sliwerski, T. Zimmermann, and A. Zeller, “When Do Changes Induce Fixes?” In Proceedings of Int’l Workshop on
Mining Software Repositories (MSR 2005), Saint Louis, Missouri, 2005, I. H. Witten and E. Frank, Data Mining: Practical
machine learning tools and techniques (Second Edition), Morgan Kaufmann, 2005.

[11] Gyimothy, R. Ferenc, and I. Siket, “Empirical Validation of ObjectOriented Metrics on Open Source Software for Fault
Prediction,” Transactions on Software Engineering, vol. 31, no., pp. 897-910, 2005.

[12] M. Meyers and D. Binkley, “Slice-Based Cohesion Metrics and Software Intervention,” In Proceedings of the 11th Working
Conference on ReverseEngineering (WCRE’04), Delft, the Netherlands, 2004, pp. 256-265.

[13] Dr. Ricky E. Sward, Dr. A.T. Chamillard, Dr. David A. Cook “Using Software Metrics and Program Slicing for Refactoring”
The Journal of DefenceSoftware Engineering, July 2004.

[14] Li, “A Hierarchical Slice-Based Framework for ObjectOriented Coupling Measurement”, TUCS Technical Report No.415,
Turku Center for Computer Science, Abo Akademi University, 2001.

[15] M. Khoshgoftaar and E. B. Allen, “Predicting the Order of Fault-prone Modules in Legacy Software,” In Proceedings of
the Ninth International Symposium on Software Reliability Engineering, Paderborn, Germany, 1998, pp. 344-353.

[16] J. McCabe and A. H. Watson, “Software Complexity,” Crosstalk, vol. 7, no. 12, pp. 5-9, 1994.

[17] M. Bieman and L. M. Ott, “Measuring Functional Cohesion,” IEEE Transactions on Software Engineering, vol. 20, no.8,
pp. 644-657, 1994.

[18] M. Khoshgoftaar and E. B. Allen, “Ordering Fault-Prone Software Modules,” Software Quality Journal, vol. 11, no. 1, pp.
19-37, 2003.

[19] L. Ott and J. Thuss, “Slice Based Metrics for Estimating Cohesion,” In Proceedings of the First International Software
Metrics Symposium, 1993.

[20] Horwitz, T. Reps, and D. Binkley, “Inter-procedural Slicing Using Dependence Graphs,” ACM Transactions on Programming
Languages and Systems, vol.12, no. 1, pp. 2660, 1990.

[21] Ferrante, K. J. Ottenstein, and J. D. Warren, “The Program Dependence Graph and its Use in Optimization,” ACM
Transactions on Programming Languages and Systems, vol. 9, no. 3, pp. 319-349, 1987.

[22] M. Weiser, “Program Slicing,”IEEE Transactions on Software Engineering, vol. 10, no. 4, pp. 352-357, 1984.

[23] Kai Pan, Sunghun Kim, E. James Whitehead, Jr, “Bug Classification Using Program Slicing Metrics”, Dept. of Computer
Science University of California, Santa Cruz Santa Cruz, CA 95064 USA.

[24] Sonakshi Rana, Rahul Kumar Yadav, “A Fuzzy Improved Association Mining Approach to Estimate Software Quality”

[25] Dr. Linda Rosenberg, Ted Hammer, Jack Shaw “SOFTWARE METRICS AND RELIABILITY” NASA GSFC.

[26] Andrea De Lucia, “Program Slicing: Methods and Applications”.

[27] Sue Black, Steve Counsell, Tracy Hall, Paul Wernick, “Using Program Slicing to Identify Faults in Software”




