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Abstract. We calculate the probability density of perpetual integral func-
tionals of the form

∫∞
0 e−((σWs−µs)+x)1{(σWs−µs)+x≥0}ds, x ≥ 0, where

σ > 0 and µ > 0 are constants and {Wt, t ≥ 0} is a one-dimensional
Brownian motion; we achieve this by a direct computation of the potential
measure of Brownian motion with drift. By means of the functionals above

we obtain bounds for the blowup times of systems of the form dui(t, x) =

[−(−∆)α/2ui(t, x) + Gi(u3−i(t, x))] dt + κiui(t, x) dWt on a bounded do-
main with Dirichlet boundary condition and nonnegative initial values, where

0 < α ≤ 2, κi ≥ 0 is constant and Gi(z) ≥ z1+βi for z ≥ 0 with βi > 0,
i = 1, 2.

1. Introduction

Let D ⊂ Rd be a bounded smooth domain, and let κ1, κ2 ∈ R, be given con-
stants. Denote by {Wt, t ≥ 0} a one-dimensional standard Brownian motion
defined in some probability space (Ω,F ,P), and let f1, f2 ∈ C2(D) be two posi-
tive functions. In [6] lower and upper bounds for the explosion time of positive
solutions of the semilinear system of SPDEs

du1(t, x) = [(∆ + V1)u1 (t, x) + up2 (t, x)] dt+ κ1u1 (t, x) dWt,

du2(t, x) = [(∆ + V2)u2 (t, x) + uq1 (t, x)] dt+ κ2u2 (t, x) dWt, (1.1)

ui(0, x) = fi(x) ≥ 0, x ∈ D,

ui(t, x) = 0, t ≥ 0, x ∈ Rd \D, i = 1, 2,

were obtained in the case Vi = λ1 + κ2i /2, i = 1, 2, where λ1 > 0 is the first
eigenvalue of the Laplacian on D and p ≥ q > 1. It was shown that there exist
random times ϱ∗∗, ϱ

∗∗ such that ϱ∗∗ ≤ ϱ ≤ ϱ∗∗, where ϱ is the explosion time of
(1.1) and the laws of ϱ∗∗ and ϱ∗∗ are given, respectively, in terms of exponential
functionals of the forms∫ t

0

(
eaWr ∧ ebWr

)
dr and

∫ t

0

(
eaWr ∨ ebWr

)
dr, t ≥ 0, (1.2)
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for certain real constants a, b. Our aim in this article is to obtain lower and upper
bounds for the explosion time of positive solutions of the system of SPDEs

du1(t, x) = [∆αu1 (t, x) +G1(u2(t, x))] dt+ κ1u1 (t, x) dWt,

du2(t, x) = [∆αu2 (t, x) +G2 (u1(t, x))] dt+ κ2u2 (t, x) dWt, (1.3)

ui(0, x) = fi(x) ≥ 0, x ∈ D,

ui(t, x) = 0, t ≥ 0, x ∈ Rd \D, i = 1, 2.

Here, ∆α is the fractional power −(−∆)α/2 of the Laplacian, where 0 < α ≤ 2,
and Gi is a locally Lipschitz positive function such that

Gi(z) ≥ z1+βi , z ≥ 0, (1.4)

with βi > 0, i = 1, 2. We assume (1.4) in Section 3.1 only; it is replaced by (3.14)
in Section 3.2. We refer to [7] for definitions of blow-up times, and for types of
solutions of SPDEs. Equations and systems of the above kind arise as mathemati-
cal models describing processes of diffusion of heat and burning in two-component
continuous media, where the functions u1, u2 are treated as temperatures of in-
teracting components in a combustible mixture. Hence, it is natural and relevant
to investigate properties of positive solutions of such equations. Since we do not
assume Gi to be Lipschitz, i = 1, 2, blowup of the solution of (1.3) in finite time
cannot be left out. One of the main contributions of this work is to show that there
are random times τ∗∗ and τ∗∗ such that τ∗∗ ≤ τ ≤ τ∗∗, where τ is the explosion
time of (1.3). In this case, the distributions of the random times τ∗∗ and τ∗∗ are
given in terms of functionals of the form∫ t

0

(
eaWs ∧ ebWs

)
e−Msdr and

∫ t

0

(
eaWs ∨ ebWs

)
e−µsds (1.5)

for some positive constants a, b, M and µ, which depend on the parameters of the
system (1.3). Notice that the functionals (1.2) are a special case of (1.5), hence
the present paper can be considered as a generalization and an extension of [6].
Although the laws of the functionals (1.5) are not given explicitly in this paper,
we find random times τ′′ and τ

′′ such that τ′′ ≤ τ∗∗ and τ∗∗ ≤ τ ′′. The random
times τ ′′ and τ′′ are given in terms of random functionals of the form

F1(t) =

∫ t

0

e−(σWs−µs)1{σWs−µs≥0}dr and F2(t) =

∫ t

0

eσWs−µsds, t ≥ 0,

respectively, where σ and µ are certain constants. The function F2 is known
as Dufresne’s functional and the distribution of its perpetual version F2(∞) was
computed in [8] for µ > 0. The density function of F2(t) for 0 ≤ t < ∞ was
obtained by M. Yor using techniques based on hitting times of Bessel processes;
see [17], [3] and [13]. The function F1 is known as one-sided Dufresne’s functional.
We believe that the law of its perpetual version could be obtained by the method
of hitting times of Bessel processes as in the case of F2, or else using the method
of Pintoux and Privault [12]. In the present work we calculate the probability
density function of F1(∞) by a straight analytical approach based on the explicit
computation of the potential measure of the process Xt = σWt − µt, t ≥ 0. This
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allows us to obtain a related integral equation for the function

H (x, z) = E
[
exp

(
−z
∫ ∞

0

e−(Xs+x)1{Xs+x≥0}ds

)]
, x ≥ 0, z > 0,

(which gives as a special case the Laplace transform of F1(∞)), and upon solving
it we obtain an explicit expression for H. By inverting the transform H we get
the distribution of the perpetual functional F1(∞) which is needed further to
obtain a lower bound for the probability of explosion in finite time. This is the
subject of Section 2. With the aim of getting suitable sub- and supersolutions
of (1.3) –from which we will obtain upper and lower bounds for τ–, in Section
3 we transform system (1.3) into a related system of random partial differential
equations. This procedure is similar to the one performed in [6] and is inspired in
a classical result of Doss [5]. In Section 3 we also obtain upper and lower bounds
for the explosion time τ . In Section 4 we give explicit non-trivial bounds for the
probability of explosion in finite time of positive solutions of system (1.3), under
the assumptions that β1 = β2 and the initial values are of the form fi(x) = Liψ(x),
x ∈ D, with Li > 0, i = 1, 2, where ψ is the eigenfunction corresponding to the
first eigenvalue of ∆α on D. Such bounds depend on the functionals we found in
Section 3.

2. An Exponential Functional of Brownian Motion

Let {Wt, t ≥ 0} be a one-dimensional standard Brownian motion. Let σ and
µ be positive constants. It is well known (see e.g. [8]) that Dufresne’s functional∫∞
0
eσWs−µsds has the following distribution for all c ≥ 0 :

P
(∫ ∞

0

eσWs−µsds > c

)
=
γ
(
2µ
σ2 ,

2
σ2c

)
Γ
(
2µ
σ2

) , (2.1)

where γ (a, x) =
∫ x
0
e−ssa−1ds and Γ (a) = γ (a,∞) for all a > 0 and x ≥ 0.

Let Xt = σWt − µt, t ≥ 0. The motivation of this section is to study, from an
analytical point of view, some distributional properties of the exponential func-
tional ∫ ∞

0

e−(Xt+x)1{Xt+x≥0}dt, x ≥ 0.

This kind of functionals, also named one-sided variants of Dufresne’s functional,
emerges for instance in the problem of explosion in finite time of systems of SPDEs.
In particular we calculate explicitly its Laplace transform and its distribution at
x = 0. Recall (see [2]) that the potential measure of the process {Xt, t ≥ 0} is
the Borel measure U defined by

U (B) =

∫ ∞

0

P (Xt ∈ B) dt, B ∈ B (R) ,

where B (R) stands for the Borel σ-algebra in R = (−∞,∞).

Lemma 2.1. The measure U is absolutely continuous with respect to the Lebesgue
measure, and the density function of U is given by

u (x) =
1

µ
1(−∞,0) (x) +

1

µ
e−

2µ

σ2
x1[0,∞) (x) , x ∈ R. (2.2)



338 EUGENIO GUERRERO AND JOSÉ ALFREDO LÓPEZ-MIMBELA

Proof. First note that the transition probability of {Xt, t ≥ 0} is given by

p (t, x) =
1√

2πσ2t
exp

[
− (x+ µt)

2

2σ2t

]
, x ∈ R, t > 0.

From [14, page 242] we know that

u (x) =

∫ ∞

0

p (t, x) dt

=

√
2

πσ2µ

∫ ∞

0

exp

[
−
(√

µ

2σ2

x

s
+

√
µ

2σ2
s

)2
]
ds, x ∈ R,

where we have used the change of variables s =
√
µt to obtain the second equality.

Now we note that for all s > 0,√
2

πσ2µ
e−(

√
µ

2σ2
x
s+

√
µ

2σ2
s)

2

=
e−

µ

σ2
(|x|+x)

2µ

[
− 2√

π
e−(

√
µ

2σ2
|x|
s −

√
µ

2σ2
s)

2
(
−
√

µ

2σ2

|x|
s2

−
√

µ

2σ2

)
+ e

2µ

σ2
|x| 2√

π
e−(

√
µ

2σ2
|x|
s +

√
µ

2σ2
s)

2
(
−
√

µ

2σ2

|x|
s2

+

√
µ

2σ2

)]
. (2.3)

Integrating both sides of (2.3) with respect to s, we get for all x ∈ R,

u (x) =
e−

µ

σ2
(|x|+x)

2µ

[
− 2√

π

∫ ∞

0

e−(
√

µ

2σ2
|x|
s −

√
µ

2σ2
s)

2
(
−
√

µ

2σ2

|x|
s2

−
√

µ

2σ2

)
ds

+ e
2µ

σ2
|x| 2√

π

∫ ∞

0

e−(
√

µ

2σ2
|x|
s +

√
µ

2σ2
s)

2
(
−
√

µ

2σ2

|x|
s2

+

√
µ

2σ2

)
ds

]
.

Performing the change of variables

t =

√
µ

2σ2

|x|
s

−
√

µ

2σ2
s and t =

√
µ

2σ2

|x|
s

+

√
µ

2σ2
s

in the integrals of the right hand side renders

u (x) =
e−

µ

σ2
(|x|+x)

2µ

[
−erf

(√
µ

2σ2

|x|
s

−
√

µ

2σ2
s

)
+ e

2µ

σ2
|x|erf

(√
µ

2σ2

|x|
s

+

√
µ

2σ2
s

)]∣∣∣∣∞
0

,

where

erf (z) =
2√
π

∫ z

0

e−s
2

ds, z ∈ R,

is the error function. Since erf (∞) = 1 and erf (−∞) = −1, it follows that

u (x) =
e−

2µ

σ2
x

2µ

[
−erf (−∞) + e

2µ

σ2
xerf (∞) + erf (∞)− e

2µ

σ2
xerf (∞)

]
=

1

µ
e−

2µ

σ2
x,

for all x ≥ 0. Similarly, if x < 0 we conclude that u (x) = 1/µ and the result
follows. □
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Define

H (x, z) = E
[
exp

(
−z
∫ ∞

0

e−(Xs+x)1{Xs+x≥0} ds

)]
for all x ≥ 0, z ∈ C.

Lemma 2.2. For all x ≥ 0 and z ∈ C, H (x, z) satisfies the integral equation

H (x, z) = 1− µ−1ze
2µ

σ2
x

∫ ∞

x

e−(1+
2µ

σ2
)uH (u, z) du− µ−1z

∫ x

0

e−uH (u, z) du.

(2.4)

Proof. For simplicity of notation, for any fixed z ∈ C, let fz(x) = −ze−x1{x≥0},
x ∈ R. Define the function

vt (x, z) = E
[
exp

(∫ t

0

fz(Xs + x)ds

)]
, t ≥ 0, x ≥ 0.

Using that∫ t

0

exp

(∫ t

s

fz(Xu + x)du

)
fz(Xs + x)ds

= −
∫ t

0

d

ds

[
exp

(∫ t

s

fz(Xu + x)du

)]
ds = exp

(∫ t

0

fz(Xu + x)du

)
− 1,

from the Dominated Convergence Theorem we get

vt(x, z) = 1 + E
[∫ t

0

exp

(∫ t

s

fz(Xu + x)du

)
fz(Xs + x)ds

]
= 1 +

∫ t

0

E
[
exp

(∫ t

s

fz(Xu + x)du

)
fz(Xs + x)

]
ds. (2.5)

Since fz(Xs + x) is measurable with respect to σ(Xr, 0 ≤ r ≤ s), 0 ≤ s ≤ t, then

E
[
exp

(∫ t

s

fz(Xu + x)du

)
fz(Xs + x)

]
= E

[
fz(Xs + x)E

[
exp

(∫ t

s

fz(Xu + x)du

)∣∣∣∣σ(Xr, 0 ≤ r ≤ s)

]]
. (2.6)

Due to the independence of increments property of {Xt, t ≥ 0} we get

E
[
exp

(∫ t

s

fz(Xu + x)du

)∣∣∣∣σ(Xr, 0 ≤ r ≤ s)

]
= E

[
exp

(∫ t

s

fz(Xu −Xs +Xs + x)du

)∣∣∣∣σ(Xr, 0 ≤ r ≤ s)

]
= h(Xs + x), (2.7)

where the function h is defined by

h(y) = E
[
exp

(∫ t

s

fz(Xu −Xs + y)du

)]
.
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Due to stationarity of increments of {Xt, t ≥ 0}, we obtain that

h(y) = E
[
exp

(∫ t−s

0

fz(Xu + y)du

)]
= vt−s(y, z). (2.8)

Plugging (2.6), (2.7) and (2.8) into (2.5) we finally get

vt(x, z) = 1 +

∫ t

0

E [fz(Xs + x)vt−s(Xs + x, z)] ds

= 1 + E
[∫ t

0

fz(Xs + x)vt−s(Xs + x, z)ds

]
= 1− z

∫
R
e−(x+y)1[0,∞) (x+ y)

(∫ t

0

vt−s (x+ y, z)P (Xs ∈ dy) ds

)
.

Since the improper integral
∫∞
0
e−(Xs+x)1{Xs+x≥0} ds is a.s. finite due to [9,

Theorem 1.4], using dominated convergence we get

vt (x, z) → H (x, z) as t→ ∞.

The fact that

0 ≤
∣∣vt−s (x+ y, z)1[0,t] (s)

∣∣ ≤ 1

for all s ≥ 0 implies, for all x ≥ 0,∣∣∣∣∫
R
e−(x+y)1[0,∞) (x+ y)

(∫ ∞

0

vt−s (x+ y, z)1[0,t] (s)P (Xs ∈ dy) ds

)∣∣∣∣
≤
∫
R
e−(x+y)1[0,∞) (x+ y)U (dy) =

1− e−x

µ
+

σ2e−x

µσ2 + 2µ2
≤ 1

µ
+

σ2

µσ2 + 2µ2
.

Using again dominated convergence we get that for every z ∈ C and every x ≥ 0
the function H(·, z) satisfies the integral equation

H (x, z) = 1− z

∫
R
e−(x+y)1[0,∞) (x+ y)H (x+ y, z)U (dy) . (2.9)

From (2.2) and (2.9) it follows that for every z ∈ C and every x ≥ 0

H (x, z) = 1− z

∫
R
e−(x+y)1[0,∞) (x+ y)H (x+ y, z)µ−11(−∞,0) (y) dy

− z

∫
R
e−(x+y)1[0,∞) (x+ y)H (x+ y, z)µ−1e−

2µ

σ2
y1[0,∞) (y) dy

= 1− µ−1z

∫ 0

−x
e−(x+y)H (x+ y, z) dy

− µ−1z

∫ ∞

0

e−(x+y)H (x+ y, z) e−
2µ

σ2
ydy

= 1− µ−1ze
2µ

σ2
x

∫ ∞

x

e−(1+
2µ

σ2
)uH (u, z) du− µ−1z

∫ x

0

e−uH (u, z) du.

□
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Theorem 2.3. Let θ ∈ C be such that |θ| < 1, and let

I (x, u) = e
2µ

σ2
xe−(1+

2µ

σ2
)u1[x,∞) (u) + e−u1[0,x) (u) , x, u ≥ 0.

Then the integral equation

g (x) = 1− θ

∫ ∞

0

I (x, u) g (u) du (2.10)

possesses a unique solution

g (x) =
∑
n≥0

(−θ)n ψn (x) ∈ Cb
(
R+
)
,

where

ψ0 (x) = 1, ψn+1 (x) =

∫ ∞

0

I (x, u)ψn (u) du, n ≥ 0, x ≥ 0.

Proof. Consider the Banach space (Cb (R+) , ∥·∥∞). We have that∫ ∞

0

I (x, u) du = 1− 2µ

σ2 + 2µ
e−x,

which implies that the function

h (x) := 1− θ

∫ ∞

0

I (x, u) g (u) du, x ∈ R+,

satisfies h ∈ Cb (R+) for all g ∈ Cb (R+). Now we prove that the operator T :
Cb (R+) → Cb (R+), defined by T (g) = h, is a contraction mapping. In fact, for
g1, g2 ∈ Cb (R+),

∥T (g1)− T (g2)∥∞ = |θ|
∥∥∥∥∫ ∞

0

I (·, u) g1 (u) du−
∫ ∞

0

I (·, u) g2 (u) du
∥∥∥∥
∞

≤ |θ|
∥∥∥∥∫ ∞

0

I (·, u) du
∥∥∥∥
∞

∥g1 − g2∥∞ = |θ| ∥g1 − g2∥∞ ,

i.e., T is a contraction mapping. From the Banach fixed point theorem it follows
that (2.10) has a unique solution. To prove the power series representation of
g first we note that ∥ψn∥∞ ≤ 1 for all n ≥ 0, which can be easily proved by
induction. Then under the assumption |θ| ∈ [0, 1), the series∑

n≥0

(−θ)n ψn

is absolutely and uniformly convergent. By Fubini’s theorem we finally get that

1− θ

∫ ∞

0

I (x, u)
∑
n≥0

(−θ)n ψn (u) du = 1 +
∑
n≥0

(−θ)n+1
∫ ∞

0

I (x, u)ψn (u) du

= 1 +
∑
n≥0

(−θ)n+1
ψn+1 (x) =

∑
n≥0

(−θ)n ψn (x) .

Therefore
g (x) =

∑
n≥0

(−θ)n ψn (x)

for all x ≥ 0. □
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From Lemma 2.2 and Theorem 2.3 we deduce one of the main results of this
section.

Theorem 2.4. For all x ≥ 0 and all z ∈ C such that |z|µ−1 < 1, the function
H (x, z) is the unique solution of the integral equation

F (x, z) = 1− µ−1ze
2µ

σ2
x

∫ ∞

x

e−(1+
2µ

σ2
)uF (u, z) du− µ−1z

∫ x

0

e−uF (u, z) du.

(2.11)

In order to get a closed expression for H, we proceed by induction over n ≥ 0
to prove that

ψn+1 (x) =

n∑
k=1

Bkψn+1−k (x) +Bn+1

(
1−

2µ
σ2

n+ 1 + 2µ
σ2

e−(n+1)x

)
, (2.12)

where

Bk :=
(−1)

k−1
Γ
(
2µ
σ2

) (
2µ
σ2

)k
k!Γ

(
k + 2µ

σ2

) , k ∈ N.

For n = 0, under the convention
∑0
k=1 ≡ 0 and the fact that B1 = 1, we get

ψ1 (x) =

∫ ∞

0

(
e

2µ

σ2
xe−(1+

2µ

σ2
)u1[x,∞) (u) + e−u1[0,x) (u)

)
du = 1−

2µ
σ2

1 + 2µ
σ2

e−x,

which shows that (2.12) holds for n = 0. Assume that (2.12) is true for some
n ≥ 0. Then

ψn+1 (x) =

∫ ∞

0

I (x, u)ψn (u) du

=

∫ ∞

0

I (x, u)

(
n−1∑
k=1

Bkψn−k (u) +Bn

(
1−

2µ
σ2

n+ 2µ
σ2

e−nu

))
du

=
n−1∑
k=1

Bk

∫ ∞

0

I (x, u)ψn−k (u) du

+Bn

(∫ ∞

0

I (x, u) du−
2µ
σ2

n+ 2µ
σ2

∫ ∞

0

I (x, u) e−nudu

)

=
n−1∑
k=1

Bkψn+1−k (x) +Bnψ1 (x)

−
2µ
σ2

n+ 2µ
σ2

Bn

(
1

n+ 1
−

2µ
σ2

(n+ 1)
(
n+ 1 + 2µ

σ2

)e−(n+1)x

)

=

n∑
k=1

Bkψn+1−k (x) +Bn+1

(
1−

2µ
σ2

n+ 1 + 2µ
σ2

e−(n+1)x

)
,
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where in the second equality we have used the induction hypothesis, the definition
of ψn for the fourth one and the fact that

Bn+1 = −
2µ
σ2

(n+ 1)
(
n+ 2µ

σ2

)Bn
for the last equality. This proves (2.12). Moreover, notice that∑

n≥1

(
−µ−1z

)n
ψn (x)

=
∑
n≥1

(
−µ−1z

)n(n−1∑
k=1

Bkψn−k (x)

+ Bn

(
1−

2µ
σ2

n+ 2µ
σ2

e−nx

))
=

∑
k≥1

Bk
∑

n≥k+1

(
−µ−1z

)n
ψn−k (x)

+
∑
n≥1

(
−µ−1z

)n
Bn

(
1−

2µ
σ2

n+ 2µ
σ2

e−nx

)
=

∑
k≥1

Bk
∑
j≥1

(
−µ−1z

)j+k
ψj (x)

+
∑
n≥1

(
−µ−1z

)n
Bn

(
1−

2µ
σ2

n+ 2µ
σ2

e−nx

)
=

∑
k≥1

Bk
(
−µ−1z

)k∑
j≥1

(
−µ−1z

)j
ψj (x)

+
∑
n≥1

(
−µ−1z

)n
Bn

(
1−

2µ
σ2

n+ 2µ
σ2

e−nx

)
,

from which we conclude that∑
n≥1

(
−µ−1z

)n
ψn (x)

=

∑
n≥1

(
−µ−1z

)n
Bn

(
1−

2µ

σ2

n+ 2µ

σ2

e−nx
)

1−
∑
n≥1 (−µ−1z)

n
Bn

,

and therefore we get

H (x, z) =

1−
∑
n≥1

(
−µ−1z

)n
Bn

(
2µ

σ2

n+ 2µ

σ2

)
e−nx

1−
∑
n≥1 (−µ−1z)

n
Bn

. (2.13)
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From the definition of Bn,∑
n≥1

(
−µ−1z

)n
Bn

(
2µ
σ2

n+ 2µ
σ2

)
e−nx (2.14)

=
∑
n≥1

(
−µ−1ze−x

)n (−1)
n−1

Γ
(
2µ
σ2

) (
2µ
σ2

)n
n!Γ

(
n+ 2µ

σ2

) (
2µ
σ2

n+ 2µ
σ2

)

= 1− 2µ

σ2
Γ

(
2µ

σ2

)∑
n≥0

(
2z
σ2 e

−x)n
n!Γ

(
n+ 1 + 2µ

σ2

)

= 1− 2µ

σ2

(
2z

σ2
e−x

)− µ

σ2

Γ

(
2µ

σ2

)∑
n≥0

(
2( 2z
σ2
e−x)

1/2

2

)2n+ 2µ

σ2

n!Γ
(
n+ 1 + 2µ

σ2

)
= 1− 2µ

σ2

(
2z

σ2
e−x

)− µ

σ2

Γ

(
2µ

σ2

)
I 2µ

σ2

(
2

(
2z

σ2
e−x

)1/2
)
, (2.15)

where

Iν (z) :=
∑
k≥0

(
z
2

)2k+ν
k!Γ (k + 1 + ν)

, z ∈ C,

is the modified Bessel function of the first kind of order ν ∈ R. Similarly, it can
be shown that∑

n≥1

(
−µ−1z

)n
Bn = 1− Γ

(
2µ

σ2

)(
2z

σ2

) 1
2−

µ

σ2

I 2µ

σ2
−1

(
2

(
2z

σ2

)1/2
)
. (2.16)

Plugging (2.15) and (2.16) into (2.13) we get

H (x, z) = 2µσ−1 (2z)
−1/2

e
µ

σ2
x
I 2µ

σ2

(
2σ−1 (2z)

1/2
e−

x
2

)
I 2µ

σ2
−1

(
2σ−1 (2z)

1/2
) , (2.17)

for all x ≥ 0 and z ∈ C such that |z|µ−1 < 1. In particular we obtain

Theorem 2.5. The equality

E
[
exp

(
−z
∫ ∞

0

e−Xt1{Xt≥0}dt

)]
=

4µI 2µ

σ2

(√
8z
σ

)
σ
√
8zI 2µ

σ2
−1

(√
8z
σ

) (2.18)

holds for every z ∈ C such that |z|µ−1 < 1.

Let F be the distribution function of the random variable∫ ∞

0

e−Xt1{Xt≥0} dt.
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Let
{
j 2µ

σ2
−1,n

}
n≥1

be the increasing sequence of all positive zeros of the Bessel

function of the first kind of order 2µ
σ2 − 1 > −1, and let

J 2µ

σ2
−1 (z) :=

∑
m≥0

(−1)
m ( z

2

)2m+ 2µ

σ2
−1

m!Γ
(
m+ 2µ

σ2

) , z ∈ C.

From the fact that

J 2µ

σ2
(z)

J 2µ

σ2
−1 (z)

= −2z
∑
n≥1

(
z2 − j22µ

σ2
−1,n

)−1

, z ∈ C \
{
±j 2µ

σ2
−1,n

}
n≥1

,

(see [10, formula 7.9(3)]) and the relation Jν (zi) = iνIν (z), which holds for all
ν, z ∈ R, it follows that

z−1/2
I 2µ

σ2

(
z1/2

)
I 2µ

σ2
−1

(
z1/2

) = 2
∑
n≥1

1

z + j22µ
σ2

−1,n

, z ∈ C \
{
−j22µ

σ2
−1,n

}
n≥1

. (2.19)

Notice that the function

z 7→ z−1/2 I2µ/σ2(z1/2)

I2µ/σ2−1(z1/2)
, z ∈ C,

has no poles in the region

{w ∈ C : Re w > 0, |w| < µ} .
Using an analytic continuation argument we conclude that

E
[
exp

(
−z
∫ ∞

0

e−Xt1{Xt≥0}dt

)]
=

4µI 2µ

σ2

(√
8z
σ

)
σ
√
8zI 2µ

σ2
−1

(√
8z
σ

) ,
for all z ∈ {w ∈ C : Re w > 0}. In particular we get that the Laplace transform
of the random variable ∫ ∞

0

e−Xt1{Xt≥0}dt

is given, for all z ≥ 0, by

E
[
exp

(
−z
∫ ∞

0

e−Xt1{Xt≥0}dt

)]
=

8µ

σ2

∑
n≥1

1
8z
σ2 + j22µ

σ2
−1,n

=
8µ

σ2

∑
n≥1

∫ ∞

0

e−zy

σ2

8
e
−
(
σ2

8 j
2
2µ

σ2
−1,n

)
y

 dy
=

∫ ∞

0

e−zy

µ∑
n≥1

e
−
(
σ2

8 j
2
2µ

σ2
−1,n

)
y

 dy,
where we used the fact that ∑

n≥1

1

j2ν,n
=

1

4(ν + 1)



346 EUGENIO GUERRERO AND JOSÉ ALFREDO LÓPEZ-MIMBELA

for any ν > −1 (see [4, formula (32)]). In this way we have proved the following
result.

Theorem 2.6. F is absolutely continuous with respect to the Lebesgue measure.
Furthermore, if y ≥ 0 then

F (dy) = µ

∑
n≥1

exp

{
−
(
σ2

8
j22µ
σ2

−1,n

)
y

} dy. (2.20)

3. Bounds for the Explosion Time

In this section we obtain upper and lower bounds for the explosion time of the
semilinear system (1.3). For this, we first construct a suitable subsolution of (1.3)
by means of the change of variables

vi (t, x) := exp {−κiWt}ui (t, x) , t ≥ 0, x ∈ D, i = 1, 2,

which transforms a weak solution (u1, u2) of (1.3) into a weak solution of a system
of random parabolic PDEs. Proceeding as in [6] (see also [5]) one can see that the
function (v1 (t, x) , v2 (t, x)) is a weak solution of the system of RPDEs

∂

∂t
v1 (t, x) =

(
∆αv1 (t, x)−

κ21
2
v1 (t, x)

)
+ e−κ1WtG1

(
eκ2Wtv2 (t, x)

)
,

∂

∂t
v2 (t, x) =

(
∆αv2 (t, x)−

κ22
2
v2 (t, x)

)
+ e−κ2WtG2

(
eκ1Wtv1 (t, x)

)
, (3.1)

vi (0, x) = fi (x) ≥ 0, x ∈ D,

vi (t, x) = 0, t ≥ 0, x ∈ Rd \D, i = 1, 2,

with the same assumptions as in (1.3). Notice that vi(t, ·) is non-negative on D
for each t ≥ 0 and i = 1, 2, which follows from the Feynman-Kac representation
of (3.1); see e.g. [1]. Hence

ui(t, ·) = exp{κiWt}vi(t, ·)
is also non-negative on D for each t ≥ 0 and i = 1, 2. Moreover, it is clear that
if τ is the blowup time of system (1.3), then τ is also the blowup time of system
(3.1). Let λ and ψ be, respectively, the first eigenvalue and eigenfunction of ∆α

in D, with ψ normalized so that
∫
D
ψ (x) dx = 1.

3.1. An upper bound for the explosion time. In order to get an upper bound
for the explosion time τ , we first show that the function

t 7→
∫
D

v (t, x)ψ (x) dx, t > 0,

satisfies the differential inequality

d

dt

∫
D

vi (t, x)ψ (x) dx ≥ −
(
λ+

κ2i
2

)∫
D

vi (t, x)ψ (x) dx

+ e((1+βi)κ3−i−κi)Wt

(∫
D

v3−i (t, x)ψ (x) dx

)1+βi

,

(3.2)
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for i = 1, 2 and t > 0. In fact, since vi (t, x) is a weak solution of (3.1) and

Gi(z) ≥ z1+βi , z ≥ 0,

then in particular we have∫
D

vi (t, x)ψ (x) dx ≥
∫
D

fi (x)ψ (x) dx+

∫ t

0

∫
D

vi (s, x)∆αψ (x) dx ds

− κ2i
2

∫ t

0

∫
D

vi (s, x)ψ (x) dx ds (3.3)

+

∫ t

0

∫
D

e((1+βi)κ3−i−κi)Wsv1+βi3−i (s, x)ψ (x) dx ds.

Since vi and ψ are non-negative in D, by Hölder’s inequality we get that∫
D

v3−i (s, x)ψ (x) dx =

∫
D

v3−i (s, x)ψ
1

1+βi (x)ψ
βi

1+βi (x) dx

≤
(∫

D

v1+βi3−i (s, x)ψ (x) dx

) 1
1+βi

. (3.4)

Using the fact that

∆αψ (x) = −λψ (x) on D,

we finally obtain∫
D

vi (t, x)ψ (x) dx ≥
∫
D

fi (x)ψ (x) dx−
(
λ+

κ2i
2

)∫ t

0

∫
D

vi (s, x)ψ (x) dxds

+

∫ t

0

e((1+βi)κ3−i−κi)Ws

(∫
D

v3−i (s, x)ψ (x) dx

)1+βi

ds,

whose differential form is (3.2). Using now (3.2) and a comparison theorem (see
e.g. [16, Lemma 1.2]), we deduce that the function hi determined by the equation

d

dt
hi (t) = −

(
λ+

κ2i
2

)
hi (t) + e((1+βi)κ3−i−κi)Wth1+βi3−i (t) ,

hi (0) =

∫
D

fi (x)ψ (x) dx,

is a subsolution of vi, i = 1, 2. We define

m = λ+ max
i=1,2

{
κ2i
2

}
, Mt = min

i=1,2

{
e((1+βi)κ3−i−κi)Wt

}
, t ≥ 0,

and consider the system of random ODEs

d

dt
zi (t) = −mzi (t) +Mtz

1+βi
3−i (t) , zi (0) = hi (0) , i = 1, 2.

By the transformation

yi (t) := emtzi (t) , t ≥ 0, i = 1, 2,

it follows that

d

dt
yi (t) = e−mβitMty

1+βi
3−i (t) , yi (0) = hi (0) , i = 1, 2. (3.5)
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By a comparison argument it follows that

hi (t) ≥ zi (t) , t ≥ 0, i = 1, 2.

For t ≥ 0 we define

E (t) = y1 (t) + y2 (t) with E (0) =

2∑
i=1

∫
D

fi (x)ψ (x) dx.

We present the main result of this section, where

A := min
i=1,2

{(1 + βi)κ3−i − κi} .

Theorem 3.1. Assume that A > 0 and let τ be the blow-up time of system (1.3).

(1) If β1 = β2, then τ ≤ τ ′, where

τ ′ = inf

{
t ≥ 0 :

∫ t

0

e−(AWs−mβ1s)1{AWs−mβ1s≥0}ds ≥ 2β1β−1
1 (E (0))

−β1

}
.

(3.6)
(2) Suppose β1 > β2 > 0. Let

ϵ0 = min

1,

(
h2 (0)

A
1/(1+β2)
0

)β1−β2

,

(
2−(1+β2) (E (0))

1+β2

A0

) β1−β2
1+β2

 ,

with

A0 =

(
1 + β1
1 + β2

)− 1+β2
β1−β2 β1 − β2

1 + β1
.

Assume that

2−β2ϵ0 (E (0))
1+β2 − ϵ

1+β1
β1−β2
0 A0 > 0, (3.7)

and let

C0 = 2−β2ϵ0 −
ϵ

1+β1
β1−β2
0 A0

(E (0))
1+β2

.

Then τ ≤ τ ′′, where

τ ′′ = inf

{
t ≥ 0 :

∫ t

0

e−(AWs−mβ2s)1{AWs−mβ2s≥0}ds ≥ C−1
0 β−1

2 (E (0))
−β2

}
.

(3.8)

Proof. Recall that

x1+β1 + y1+β1 ≥ 2−β1 (x+ y)
1+β1

for all x, y ∈ [0,∞). Therefore, from (3.5) we get

d

dt
E (t) ≥ 2−β1e−mβ1tMtE

1+β1 (t) .

Using a comparison argument as before, it is clear that I is a subsolution of E,
where

d

dt
I (t) = 2−β1e−mβ1tMtI

1+β1 (t) , I (0) = E (0) .
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The solution of this equation is given by

I (t) =

(
I−β1 (0)− 2−β1β1

∫ t

0

e−mβ1sMsds

)− 1
β1

, t ∈ [0, τ∗) ,

with

τ∗ := inf

{
t ≥ 0 :

∫ t

0

e−mβ1sMsds ≥ 2β1β−1
1 I−β1 (0)

}
. (3.9)

The inequality τ ≤ τ∗ is clear since I is a subsolution of v1+ v2. There remains to
show the inequality τ∗ ≤ τ ′, where τ ′ is defined in (3.6). This follows easily from
the fact that

e−mβ1sMs ≥ e−mβ1seAWs1{Ws≥0}

and
{AWs −mβ1 ≥ 0} ⊆ {Ws ≥ 0}

for all s ≥ 0. We conclude that∫ t

0

e−mβ1sMsds ≥
∫ t

0

e−(AWs−mβ1s)1{AWs−mβ1s≥0}ds,

and the assertion follows. Therefore τ ≤ τ ′.
We now prove part (2) of the theorem. According to Young’s inequality,

xy ≤ δ−pxp

p
+
δqyq

q
(3.10)

for all x, y ∈ [0,∞), δ > 0 and p, q ∈ (1,∞) such that 1
p +

1
q = 1. Taking A0 as in

the statement and setting

x = ϵ, y = y1+β2

2 (t) , δ =

(
1 + β1
1 + β2

) 1+β2
1+β1

and q =
1 + β1
1 + β2

in (3.10), it follows that for all ϵ > 0,

y1+β1

2 (t) ≥ ϵy1+β2

2 (t)− ϵ
1+β1
β1−β2A0, t ≥ 0.

Using (3.5) we get

d

dt
E (t) ≥ e−mβ1tMt

(
y1+β2

1 (t) + ϵy1+β2

2 (t)− ϵ
1+β1
β1−β2A0

)
. (3.11)

Suppose ϵ ∈ (0, 1]. Using Jensen’s inequality we conclude that

y1+β2

1 (t) + ϵy1+β2

2 (t) ≥ 2−β2

[
y1 (t) + ϵ

1
1+β2 y2 (t)

]1+β2

≥ 2−β2ϵ [y1 (t) + y2 (t)]
1+β2 = 2−β2ϵE1+β2 (t) ,

hence
d

dt
E (t) ≥ e−mβ1tMt

(
2−β2ϵE1+β2 (t)− ϵ

1+β1
β1−β2A0

)
.

Take ϵ0 as in the statement. We claim that

E (t) ≥ E (0) > 0 for all t ≥ 0.

In fact, let J be the solution of the differential equation

J ′ (t) = e−mβ1tMtf (J (t)) , J (0) = E (0) ,
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where

f (x) := 2−β2ϵ0x
1+β2 − ϵ

1+β1
β1−β2
0 A0, x ≥ 0.

By comparison E(t) ≥ J(t) for all t ≥ 0, and therefore it suffices to show that

J(t) ≥ E(0), t ≥ 0.

Notice that f is increasing and has only one zero at

x0 = (2β2ϵ
1+β2
β1−β2
0 A0)

1
1+β2 > 0,

with x0 < E(0) due to (3.7). Let

T = inf {t > 0 : J(t) < E(0)} .

Then T > 0 because J is strictly increasing around 0, and J(t) ≥ E(0) for all
t ∈ (0, T ). Suppose that T <∞. Being J continuous on [0, T ] and differentiable on
(0, T ), Rolle’s theorem yields that J ′(c) = 0 for some c ∈ (0, T ). Hence J(c) = x0
which implies that x0 ≥ E(0). This contradiction says that T = ∞ and

E(t) ≥ E(0) for all t ≥ 0,

which proves the claim. Therefore,

d

dt
E (t) ≥ e−mβ1tMtE

1+β2 (t)

2−β2ϵ0 −
ϵ

1+β1
β1−β2
0 A0

(E (0))
1+β2

 .
Let C0 be as in the statement and let I be the solution of the equation

d

dt
I (t) = e−mβ1tMtI

1+β2 (t)C0, t ∈ [0, τ∗∗) ; I (0) = E (0) ,

where τ∗∗ will be defined below. Then I(t) ≤ E(t). The expression for I is given
in this case by

I (t) =

(
I−β2 (0)− C0β2

∫ t

0

e−mβ1sMsds

)− 1
β2

,

for all t ∈ [0, τ∗∗), with τ∗∗ given by

τ∗∗ = inf

{
t ≥ 0 :

∫ t

0

e−mβ1sMsds ≥ C−1
0 β−1

2 I−β2 (0)

}
. (3.12)

Taking τ ′′ as in (3.8) and proceeding as in the proof of Part 1, we get τ ≤ τ∗∗ ≤
τ ′′. □
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Remark 3.2. When κ1 = κ2 = 0 and β1 = β2 > 0, from the inequality τ ≤ τ∗ it
follows that

P (τ <∞) ≥ P
(
1

λ
> 2β1I−β1 (0)

)
≥ P

(
1

λ
>

(
min
i=1,2

{∫
D

fi (x)ψ (x) dx

})−β1
)

=

1 if λ
1
β1 < min

i=1,2

{∫
D

fi (x)ψ (x) dx

}
,

0 otherwise,

which is the deterministic result given in [11].

3.2. A lower bound for the explosion time. Suppose that {Yt, t ≥ 0} is a
spherically symmetric α-stable process with infinitesimal generator ∆α. Let

τD := inf {t > 0 : Yt /∈ D}
and consider the killed process

{
Y Dt , t ≥ 0

}
given by

Y Dt =

{
Yt if t < τD

∂ if t ≥ τD,

where ∂ is a cemetery point. Let T ≥ 0 be a random time. Recall that a pair of
Ft-adapted random fields

(v1 (t, x) , v2 (t, x)) , x ∈ D, t ≥ 0, i = 1, 2,

is a mild solution of (3.1) in the interval [0, T ] if

vi (t, x) = e−
κ2i
2 tPDt fi (x) +

∫ t

0

e−κiWre−
κ2i
2 (t−r)PDt−r

[
Gi
(
eκ3−iWrv3−i (r, x)

)]
dr,

(3.13)
P-a.s. for all t ∈ (0, T ], i = 1, 2, where

{
PDt , t ≥ 0

}
is the semigroup of the process{

Y Dt , t ≥ 0
}
. In what follows we will assume that Gi is a locally Lipschitz positive

function such that
Gi(z) ≤ z1+βi , z ≥ 0, i = 1, 2. (3.14)

Moreover, we set

A = min
i=1,2

{(1 + βi)κ3−i − κi} and B = max
i=1,2

{(1 + βi)κ3−i − κi} .

Theorem 3.3. Let β = max
i=1,2

{βi} and

ϕ(t) = e−(κ1∧κ2)
2t/2 max

i=1,2

{
sup
s∈[0,t]

∥∥PDs fi∥∥∞
}
, t ≥ 0.

Assume that A > 0. Then
vi(t, x) ≤ ϕ(t)B(t)

for all 0 ≤ t < τ∗, x ∈ D and i = 1, 2, where

B (t) =

(
1− β

∫ t

0

(
eAWr ∨ eBWr

)
max
i=1,2

{
ϕβi (r)

}
dr

)− 1
β

.
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and

τ∗ = inf

{
t ≥ 0 :

∫ t

0

(
eAWr ∨ eBWr

)
max
i=1,2

{
ϕβi (r)

}
dr ≥ 1

β

}
. (3.15)

Proof. Notice that B (0) = 1 and

d

dt
B (t) =

(
eAWt ∨ eBWt

)
max
i=1,2

{
ϕβi (t)

}
B1+β (t) , t > 0,

hence

B (t) = 1 +

∫ t

0

(
eAWr ∨ eBWr

)
max
i=1,2

{
ϕβi (r)

}
B1+β (r) dr.

Now let V : [0,∞)×D → R be a non-negative continuous function such that

V (t, ·) ∈ C0 (D) , t ≥ 0,

and satisfying

V (t, x) ≤ ϕ(t)B (t) , t ∈ [0, τ∗) , x ∈ D. (3.16)

Define the operator Fi by

Fi (V (t, x)) := e−
κ2i
2 tPDt fi (x)+

∫ t

0

e−κiWre−
κ2i
2 (t−r)PDt−r

[
Gi
(
eκ3−iWrV (r, x)

)]
dr,

for i = 1, 2. Using (3.14) and that the semigroup
{
PDt , t ≥ 0

}
preserves positivity

we get

Fi (V (t, x)) ≤ ϕ(t) +

∫ t

0

e((1+βi)κ3−i−κi)Wre−
(κ1∧κ2)2

2 (t−r)PDt−r
[
V 1+βi (r, x)

]
dr

≤ ϕ(t) +

∫ t

0

e((1+βi)κ3−i−κi)Wre−
(κ1∧κ2)2

2 (t−r)ϕ1+βi (r)B1+βi (r) dr,

where we have used (3.16) to obtain the last inequality. Notice that if t ∈ [0, τ∗)
and r ∈ [0, t] then

e−
(κ1∧κ2)2

2 (t−r)ϕ (r) ≤ ϕ(t),

and since B(t) ≥ 1,

B1+βi (r) ≤ B1+β(r), 0 ≤ r ≤ t.

Therefore, for all t ∈ [0, τ∗) and x ∈ D,

Fi (V (t, x)) ≤ ϕ(t)

[
1 +

∫ t

0

(
eAWr ∨ eBWr

)
max
i=1,2

{
ϕβi (r)

}
B1+β (r) dr

]
= ϕ(t)B(t).

Now we will define increasing sequences which will converge to the mild solution
of (3.1). Let

v1,0 (t, x) = e−
κ21
2 tPDt f1 (x) , v2,0 (t, x) = e−

κ22
2 tPDt f2 (x) , (t, x) ∈ [0, τ∗)×D,

and for any n ≥ 0 define

v1,n+1 (t, x) = F1 (v2,n (t, x)) , v2,n+1 (t, x) = F2 (v1,n (t, x)) ,
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for (t, x) ∈ [0, τ∗) × D. To prove that (v1,n (t, x))n≥0 and (v2,n (t, x))n≥0 are

increasing for all t ∈ [0, τ∗) and x ∈ D, note that

vi, (t, x) ≤ e−
κ2i
2 tPDt fi (x) +

∫ t

0

e−κiWre−
κ2i
2 (t−r)PDt−r

[
Gi
(
eκ3−iWrv3−i,0 (r, x)

)]
dr

= v1i (t, x) , i = 1, 2.

Suppose that, for some n ≥ 0,

vi,n ≥ vi,n−1, i = 1, 2.

Then

vi,n+1(t, x) = Fi (v3−i,n(t, x)) ≥ Fi (v3−i,n−1(t, x)) = vi,n(t, x)

for all (t, x) ∈ [0, τ∗)×D, where we have used the monotonicity of Fi, i = 1, 2. By
induction, this shows that both sequences (v1,n (t, x))n≥0 and (v2,n (t, x))n≥0 are

increasing. Therefore the limits

v1 (t, x) := lim
n→∞

vn1 (t, x) and v2 (t, x) := lim
n→∞

vn2 (t, x)

exist for all t ∈ [0, τ∗) and x ∈ D. From the Monotone Convergence Theorem we
conclude that

vi (t, x) = Fiv3−i (t, x) , i = 1, 2,

for all t ∈ [0, τ∗) and x ∈ D. Moreover,

vi (t, x) ≤ ϕ(t)B(t), i = 1, 2,

for all t ∈ [0, τ∗) and x ∈ D, and the result follows. □

Corollary 3.4. Under the assumptions of Theorem 3.3, if

β

∫ ∞

0

(
eAWr ∨ eBWr

)
max
i=1,2

{
ϕβi (r)

}
dr ≤ 1,

then the mild solution of (3.1) is global.

4. Bounds for the Probability of Explosion in Finite Time

Throughout this section we make the following assumptions:

(1) β1 = β2 > 0,
(2) the initial values in (1.3) are of the form

fi(x) = Liψ(x), x ∈ D, i = 1, 2,

where L1 and L2 are positive constants,
(3) G(z) = z1+β1 , z ≥ 0.

As above we denote

A = min
i=1,2

{(1 + β1)κ3−i − κi} , B = max
i=1,2

{(1 + β1)κ3−i − κi} ,

and assume that A > 0. We also abbreviate Λ := (κ1∧κ2)
2

2 .



354 EUGENIO GUERRERO AND JOSÉ ALFREDO LÓPEZ-MIMBELA

4.1. An upper bound for the probability of blowup in finite time. Con-
sider the random variable τ∗∗ defined by

τ∗∗ := inf

{
t ≥ 0 :

∫ t

0

(
eAWr ∨ eBWr

)
e−Λβ1rdr ≥ 1

β1 ∥ψ∥β1

∞
min
i=1,2

{
1

Lβ1

i

}}
.

It is easy to see that τ∗∗ ≤ τ∗. Furthermore, noticing that∫ t

0

(
eAWr ∨ eBWr

)
e−Λβ1rdr

=

∫ t

0

eAWr−Λβ1r1{Wr<0}dr +

∫ t

0

eBWr−Λβ1r1{Wr≥0}dr

≤
∫ ∞

0

e−Λβ1rdr +

∫ t

0

eBWr−Λβ1rdr =
1

Λβ1
+

∫ t

0

eBWr−Λβ1rdr,

it follows that

τ′′ := inf

{
t ≥ 0 :

1

Λβ1
+

∫ t

0

eBWr−Λβ1rdr ≥ 1

β1 ∥ψ∥β1

∞
min
i=1,2

{
1

Lβ1

i

}}
(4.1)

satisfies τ′′ ≤ τ∗∗ as long as A > 0.

Theorem 4.1. Assume that

∥ψ∥β1

∞
Λ

< min
i=1,2

{
1

Lβ1

i

}
.

Then

P (τ <∞) ≤

γ

 2Λβ1

B2 , 2

B2

(
1

β1∥ψ∥β1∞
min
i=1,2

{
1

L
β1
i

}
− 1

Λβ1

)


Γ
(

2Λβ1

B2

) . (4.2)

Proof. From the relation τ′′ ≤ τ and the continuity of paths of Brownian motion,
it follows that

P (τ <∞) ≤ P (τ′′ <∞)

= 1− P

(∫ ∞

0

eBWr−Λβ1rdr ≤ 1

β1 ∥ψ∥β1

∞
min
i=1,2

{
1

Lβ1

i

}
− 1

Λβ1

)

= P

(∫ ∞

0

eBWr−Λβ1rdr >
1

β1 ∥ψ∥β1

∞
min
i=1,2

{
1

Lβ1

i

}
− 1

Λβ1

)
.

The result follows from (2.1). □

Remark 4.2. Notice that P (τ <∞) < δ for any given δ > 0 provided that the
positive constants L1, L2 are sufficiently small, i.e., for sufficiently small initial
conditions, the system (1.3) explodes in finite time with small probability.
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4.2. Lower bound for the probability of explosion in finite time.

Theorem 4.3. If m = λ+ 1
2 (κ1 ∨ κ2)

2
then

P (τ <∞) ≥ 8mβ1
A2

∑
n≥1

exp

{
− A22β1

8β1(L1+L2)
β1∥ψ∥2β1

2

j22mβ1
A2 −1,n

}
j22mβ1

A2 −1,n

. (4.3)

Proof. From the relation τ ≤ τ ′, the continuity of paths of Brownian motion and
Theorem 2.6, it follows that

P (τ <∞) ≥ P (τ ′ <∞)

= P

(∫ ∞

0

e−(AWs−mβ1s)1{AWs−mβ1s}ds ≥
2β1

β1 (L1 + L2)
β1 ∥ψ∥2β1

2

)

=

∫ ∞

2β1

β1(L1+L2)β1∥ψ∥2β12

mβ1
∑
n≥1

exp

{
−
(
A2

8
j22mβ1

A2 −1,n

)
y

}
dy.

=
8mβ1
A2

∑
n≥1

exp

{
− A22β1

8β1(L1+L2)
β1∥ψ∥2β1

2

j22mβ1
A2 −1,n

}
j22mβ1

A2 −1,n

,

where we used the Monotone Convergence Theorem to obtain the last equality. □

Remark 4.4. Notice that for sufficiently large L1 and L2, the relation

8mβ1
A2

∑
n≥1

exp

{
− A22β1

8β1(L1+L2)
β1∥ψ∥2β1

2

j22mβ1
A2 −1,n

}
j22mβ1

A2 −1,n

∼ 1−
√
8mβ

1/2
1 2β1/2

Aπ (L1 + L2)
β1/2 ∥ψ∥β1

2

holds; see [4, formula (39)]. Therefore P (τ <∞) > 1 − ϵ for any given ϵ > 0
provided that the positive constants L1, L2 are sufficiently large, i.e., for sufficiently
large initial conditions, the solution of system (1.3) explodes in finite time with
high probability.
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