
1. Department of Civil Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China, E-mail: tonggs@zju.edu.cn

J M M
 Journal of Mechanics and MEMS
 Special Issue dedicated to Prof. K Y Ye edited by Z M Ye, P Liu and B Sun

ISSN: 0974-8407
© Serials Publications

9(2) 2017: pp. 333-338

BEARING STRESSES IN WEB OF BEAMS
SUPPORTING OVERHEAD CRANES
Genshu Tong1 and Zejun Xuan2

ABSTRACT

This paper uses the model of “an infinite beam on a semi-infinite plane” to solve the local bearing stresses in the
web of beams supporting overhead cranes. The solutions of an infinite beam on a semi-infinite plane subjected to
a concentrated force were already achieved by Soviet scholars in 1930s, but their solutions were very complicated
and cumbersome. This paper presents a new and simple method, in which the Fourier transform is applied to the
equilibrium equation of the beam and the compatibility condition between the beam and the semi-infinite plane to
find the their FT forms. The inverse Fourier transform is then carried out to find the final analytical solution of the
problem. Expressions for the beam deflection, bending moment and shear force on the cross-section of the beam
are formulated; the stresses in the semi-infinite plane are also presented. Equivalent bearing length is compared
with previous results based on FE analysis and approximate model, and good correlation between both is found.
Suggestion for modifying the code for design of steel structures is proposed.
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1. INTRODUCTION

Ref. [1] reported a detailed finite element study on the dispersion of bearing stresses in webs of I-shaped crane runway
girder under a concentrated wheel load on the rail (Fig. 1). The study showed that the beam end conditions (fixed or
pinned), the span of the beam and the depth of the I-shaped girder had little impact on the local bearing stresses in the
web of the crane runway girder, indicating that a semi-infinite plane loaded by a concentrated vertical force on the rail
might be utilized to analyze the local bearing stresses. However, Ren &Tong [1] solved the problem by treating the
beam web as a Winkler foundation on which the rail was sitted. The spring constant of the Winkle foundation was
related to the web height. An analytical solution was presented in which the web height is a factor influencing the
stress distribution, thus the proposed analytical solution was not in agreement with the FE results. In the final modified
solution, the effect of the web height was eliminated to achieve a good corelation with the FEM results.

Figure 1: Finite Element Model of I-shape Crane Runway Girder



From the engineering point of view, the problem has been solved. But the Winkle foundation model, although
it provided very useful information, was not be able to model the true behavoir of the web. In the present paper, as
suggested by the FE analysis, an infinite beam(representing the rail) on a semi-infinite plane (representing the web)
is used to solve for the brearing stresses in the web, when the infinite beam is subjected to a concentrated vertical
force.

A semi-infinite plane subjected to a vertical force was solved for stresses and deformations by Flamant, the
solution was called as the Flamant solution, and has long been a necessary part in all textbooks on theory of
elasticity (Ref. 2,3).

But an infinite beam on a semi-infinite plane, subjected to a concentrated vertical force, was proved to be much
complicated, no textbook was found to have somoe introductions and solutions to it, although some tables were
presented for design of foundations in civil engineering (Ref.4). According to Ref.4, this problem was studied in as
early as 1935 by Gjershevanov N.  M., & Macherjet J. A [4]. In Pages 203-204 of Ref. [4], a description was given
on how the problem was solved, we cite it here as follows: “In their solutions, they hadn’t used the Flamant solution
to establish the equilibrium equation of the beam and the compatibility condition between the beam and the semi-
infinite plane, as the other scholars did in studying similar problems. Instead, they started their solution from
the fundamental equations of the elastic plane strain theory, and integrated them in the whole integration
domain, � � � � � � .”

“Gjershevanov N. M. & Macherjet J. A’s solution was in a closed form, but it was very complicated, Shomohkin
V N worked out the same problem with another method in 1937. He studied the more common case in that the
infinite beam was put on a elastic plane with finite depth, below which was incompressible semi-infinite plane. The
beam was subject to repeated concentrated vertical forces spacing  2l, The solution was in a form of infinite series,
the stress function Shomohkin chose was the multiplication of triangular functions and hyperbolic functions in the
form of infinite series, in which the coefficients were determined by contact conditions between the elastic layer
and the beam on it, � � � � � � . The solution he attained were so complicate that it’s very difficult to be put into practical
application. However, the solutions could be greatly simplified if the depth of the elastic plane extended to infinity.”

“Closed form solution, in a integral form, was obtained, by another scholar, O, J., Shjehtjer, he obtained it by
letting the load-to-load distance 2l be infinite in the infinite series solution of Shomohkin,” Ref. [6] introduced also
other approximate soltuions based on the Rayleigh-Ritz technique.

As mentioned above, the problem of an infinite beam on a semi-infinite plane, acted on by a concentrated
vertical force, had already been solved, but their soluitons and their mathimatical derivations were very complicate,
because they were solved as a two-dimensional plane strain problem in theory of elasticity. The final simple solution
of the integral form was reached from the infinite series solution through taking a limit process.

It may be pointed out here that Ref. [4] have not presented any solution process of the problem, it gave only a
brief description on the history of the problem and the final closed form solution in Page 204.

The present paper addresses this problem in a much more concise way. The well-known Flamant solution is
used in establishing the compatibility equation between the infinite beam and the semi-infinite plane. Fourier
transform is applied to the compatibilty equation and the equilibrium equation of the beam itself, thus two linear
algebraic equations are obtained. The final solution is found simply through the inverse Fourier Transform. The
presented solution proves to be rather simple and easy to understand, and therefore it is worthwhile to be presented
here.

2. FOURIER TRANSFORM SOLUTION

Figure 2 shows an elastic semi-infinite plane of thickness t
w
 with a normal force P at a point on the top straight

boundary. Assuming that a point B on the x  axis at a large distance s  from the origin does not move vertically..
Based on the well-known Flamant solution, the vertical displacement of an arbitrary point A on the x axis is given
by Flamant [2, 3]
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where E is the Young’s modulus of the half-plane.

If, instead of a concentrated force, we have distributed load q(x) over the top horizontal boundary of the semi-
infinite plane with thickness t

w
, shown in Fig. 3, then the displacement at point A produced by loads q(�)d� at point

C is
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Integrating Eq.(2) to obtain the total displacement at point A
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The first derivative of y(x) is
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where * means convolution, and 
1

( )f x
x

� � .

Denoting the Fourier Transforms of y(x) and q(x) by Y(�) and Q(�) respectively, and applying Fourier transform
[6] to Eq.(4), employing the formula for the Fourier transform of convolution, one obtains

2
( ) ( )[ sgn( )]

w

i Y Q i
Et

� � � � � �� �
� , (5)

in which i is the unit imaginary number. Because
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Eqn(5) may be rewritten as
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For the infinite beam, the equilibrium differential equation is

(4) ( )E Iy q x� � �  0 < x < +�  and (8)

where E� is the Young’s modulus of the infinite beam, I is the moment of inertia of the cross section of the beam.
q(x) is acted on the beam upwards. At x = 0, a concentrated force is acting , therefore
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Figure 2: Flamant Solution Figure 3: Displacement Produced by Line Loads
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Denoting the Heaviside function by
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Integrating eqn (8) once, using eqn(9) (10), one obtains

( ) ( ) ( )
x

E Iy x q d Pu x
��

� ��� � � � � �� (11)

Applying Fourier transformation to Eq. (11)
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here �(�) is the Dirac function. Multiplying eqn(12) by i�, we have
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Let � = 0 in eqn(13), Q(0) = P is obtained, so
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From eqn(6) and eqn(14), we find
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q(x) may be found by applying the inverse Fourier Transform to Eqn(15). Because q(x) is a even function,

3 30

1 cos cos
( )

2 22
1 1

sgn( )w w

P x P x
q x d d

E I E I

Et Et

�� ��

��

� �
� � � �

� �� �� �� �
�

� �
(16)

Denote 
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, L� = t, ��= x / L, Eqn(16) becomes
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Numerical integration of eqn(17) shows that the distribution of q(x) along the beam length is the same as the
tabulated values in page 142 of Ref. [4], showing the correctness.

Substituting Eq. (15) into Eq.(6), then applying the inverse Fourier transform, hence
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The moment and shear of the infinite beam can be achieved from Eq.(18) as follows:
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We can also obtain the shear of the beam by integrating q(x), then taking the boundary conditions into account
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Eqs. (19b) and (19c) are equal.

The above solutions are the same as given in Ref. [4], which were obtained, as explained in Ref. [4], in a very
complicated way.

The stresses in the semi-infinite plane can be attained by integrating q(x) as follows:
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The stress expressions are so complex that their value can only be derived through numerical integration.

Equivalent bearing length, utilized to calculate the maximum local vertical bearing stress in the web of the I-
sectional beam below the wheel load (Fig. 1), can be obtained from the maximum compressive stress �

y max that
occurs below the load, on the top boundary of the infinite plane.

In this case, the Young’s moduli of the beam and the semi-infinite body are equal. The maximum vertical
compressive stress of the semi-infinite plane is.
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The equivalent bearing length for calculating the maximum compressive stress in the web of an I-shape girder
was given by Ref. [1]:

32.83z
w

I
l

t
� (22)



It takes the same form as Eq. (21), with a 13% smaller coefficient. This difference comes from the different
model used for the rail in Ref. [1], where the rail was exactly modeled as solid elements and in its exact shape,
therefore the effect of shear deformation in the rail and the effect of load level (on the top of the rail) have been
considered.

3. CONCLUSIONS

The previous investiagtion carried out by the author[1] found that,the local bearing stress in the web of I-sectional
runway girders may be calculated by using eqn(22) as an equivalent bearing length. Eqn(22) was proposed based on
a Winkle foundation model and FE analyis. The Winkle model is not very close to the real behavior of the web.
Based on the previous findings, the present paper proposed a new model in which the rail is seen as an infinite beam
and the web is modeled as an infinte plane.

The solution of an infinite beam on the semi-infinite body, subjected to a concentrated normal force, had been
found long ago, but in very complicated ways. The present paper solved this problem in a much easier and more
concise way. Besides the common equilibrium equation of the beam, the well-known Flamant solution in theory of
elasticity is used to set up the compatibility condition between the beam and the semi-infinite plane. Fourier
Transformation (FT) has been applied to both equations to find the FT forms of the beam deflection and the distributed
interactive force between the beam and the semi-infinite plane. The inverse Fourier Transform is then carried out to
find the final analytical solution of the problem. Expressions for the beam deflection, bending moment and shear
force on the cross-section of the beam are formulated, the stresses in the semi-infinte plane are also presented.

The presented solution proves to be rather simple and easy to understand, and therefore it is worthwhile to be
revisited and presented here.

The British code BS5950:2000 and Russian practice used the following equation for the equivalent bearing
length
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in which I is defined as the sum of the inertia moments of both the rail and the top flange of I-girders. This formula
comes obviously from the earlier series solution of the Russian scholars.

The equivalent bearing length eqn (23) or eqn (21) of the present solution, is 14.8% higher than eqn (22). Eqn
(22) was found by analyzing the actual I-girders and the rail was accurately modeled in the investigation(Ref. [1]),
it might be more appropriate to use Eqn (22) instead of eqn (23). But if one understands that the local bearing stress
is highly localized, and a certain amount of plastification is allowed in practice, then eqn (23) may still be used in
practice.
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