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ABSTRACT

This paper presents the State Estimation problem using Kalman filtering approach for Nonlinear Process Control
Reactor (Continuous Stirred Tank Reactor) to simulate the circumstances of real case studies. The well-known
conventional Kalman filters give the optimal solution but require synchronous measurements, an accurate system
model and exact stochastical noise characteristics. The conventional estimation algorithm with incomplete information
may be degraded or even diverged. In order to reduce the effect of noise variance uncertainty, adaptive fading
Kalman filter is proposed to overcome this drawback. On the other hand, received data to estimation nodes from
multi-sensors have different communication delays and various sampling rates. In this paper, conventional Kalman
filter has been implemented in a way to be workable for state estimation in plants with different communication
delays in their sensors. The estimation, prediction and error correction algorithm has been used to estimate states in
presence nonlinearities and process variances. The feasibility and effectiveness of the presented methods are
demonstrated through simulation studies on a continuous stirred tank reactor (CSTR) benchmark problem.
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INTRODUCTION

For a particular industrial process application, there might be plenty of associated process variance and
nonlinear measurements located at different operational levels and having various accuracy and reliability
specifications[1]. One of the key issues in developing a nonlinear system is the question of how can design
the fused or combined to overcome uncertainty associated with individual data sources and obtain an
accurate joint estimate of the system state vector. There exist various approaches to resolve this nonlinear
problem, of which the KF or its information form is one of the most significant and applicable candidate
solutions [2]. In nonlinear systems, the Kalman filtering approach use the first order Taylor series to transform
nonlinear system to linear system, and it is a used widely in nonlinear system. The KF approximates the
probability density resulting from the non-linear transformation of a random variable instead of approximating
the nonlinear functions with a Taylor series expansion[3]. The classical Kalman filter is a centralized
fusion filter that assumes all observation coming synchronously to a control computing facility. This approach
is usually related to solving a partial differential equation and boundary condition equations which do not
have an explicit solution in general[4]. For the case of discrete-time systems, the problem has been
investigated via system augmentation and standard Kalman filtering [5]. The main idea of this methodology
is to recalculate Kalman filter in the delay time period [6]. Simulation results depict the efficiency of the
Kalman filter approach for state estimation purpose. Basically, the conventional Kalman filter methodology
hinge on prior knowledge about statistical characteristics of measurement and process noises. But when
these are unknown, using adaptive Kalman filter strategy is imperative for state estimation purpose. In
order to reduce the effect of prior measurement, fading memory algorithm has been applied in this work.
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This paper is organized as follows: Section1 explains the CSTR description, Section 2 derives state estimation
procedure on the basis of KF, Section 3 shows how the KF algorithm can be used to estimate the various
states of the nonlinear process control reactor CSTR, Section 4, CSTR industrial plant will be simulated.
Simulation results are presented in section 5. Finally, section 6 summarizes the main conclusions.

CSTR SYSTEM DESCRIPTION

The Continuous stirred Tank Reactor (CSTR) having a wide application in process control industries. The
detailed diagram of CSTR is presented in the Fig. 1.

Figure 1: Schematic Diagram of the CSTR

In order to reduce the heat created in the CSTR, a cooling jacket has been used which will be carrying
out the Vander Vusse reaction scheme described by the following reactions:
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Here B is the required product,
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 are considered as the reaction rate constants.

In this reactor, a product A is to be transformed to the desired product B by an exothermic reaction in
CSTR, but the product B is again degraded to product C. In addition to this successive reaction, a high
order parallel reaction occurs and A is converted to by product D. The mathematical modeling of this non
linear process control reactor is explained as the four set of Ordinary Differential Equations (ODE) is
derived from material and heat balances inside the reactor.
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In the differential equations, t denotes time, c denotes concentrations, T denotes temperatures, c
p 
represents

the specific heat capacities, q represents the volumetric flow rate, Q
c
 represents the heat removal, V represents

the volumes, � represents the densities, A
r
 is the heat exchange surface and U represents the heat transfer

coefficient. Indexes (.)
A
 and (.)

B
 represents the compounds A and B, (.)

r
 given for the reactant mixture, (.)

c

denotes the cooling liquid and (.)
0
 denotes the feed (inlet) values. The mathematical modeling of the nonlinear

process control reactor has been derives by considering the four states namely concentrations of the product
A (C

A
) and the concentration of the product B (C

B
), temperature of the reactor T and the temperature of the

coolant T
c
.

The model of the reactor describes the nonlinear process control reactor. Nonlinearity calculated in
reaction rates (k

j
) which are described via Arrhenius law:
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Where k
0
 denotes the pre-exponential factors and E denotes the activation energies.

The reaction heat (h
r
) in the equation (2) is expressed as:
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Where h
j
 means reaction enthalpies.

Table 1
Parameters of the Reactor

This reaction describes the nonlinear chemical reaction, under ultimate environment, of an inflow of
substance A to a product B. a heat exchanger with coolant flow has been used for controlling the heat
created inside the reactor due to chemical reaction. The various parameters of the reactor are given in the
table 1. In order to make easier the problem, some of the assumptions have been considered:

• The mixing of the liquid has been carried out ideally.

• The density and the physical properties are assumed to be constant.

• The tank liquid level h is assumed as constant and water flows in the input and output are considered
as equal: Q1 = Q2.
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• The first order reaction with a temperature relation was carried out based on the Arrhenius law.

• The work in the shaft was neglected.

• The temperature increase in the coolant on the coil was neglected.

In the CSTR, it is considered that the reaction has been carried out in the two chemicals to produce a
product compound A with the concentration C

A
(t), with the reactor temperature T(t). The heat created by

the exothermic reaction slows down the reaction. A coolant is used with coolant flow-rate Q
c
(t), the

temperature is to be reduced which will control the concentration of the product. C
A
 denotes the concentration

of the inlet feed, Q denotes the process flow-rate, T represented the temperature of the inlet feed and T
C

denotes the temperature of the coolant, all of which are understood as constant at nominal values.

KALMAN FILTER

The Kalman filter, also known as linear quadratic estimation (LQE), is an algorithm that uses a series of
measurements observed over time, containing noise (random variations) and other inaccuracies, and produces
estimates of unknown variables that tend to be more precise than those based on a single measurement
alone. More formally, the Kalman filter operates recursively on streams of noisy input data to produce a
statistically optimal estimate of the underlying system state. The filter is named for Rudolf (Rudy) E.
Kalman, one of the primary developers of its theory.

The Kalman filter has numerous applications in technology. A common application is for guidance,
navigation and control of vehicles, particularly aircraft and spacecraft. Furthermore, the Kalman filter is a
widely applied concept in time series analysis used in fields such as signal processing and econometrics.

The algorithm works in a two-step process. In the prediction step, the Kalman filter produces estimates
of the current state variables, along with their uncertainties. Once the outcome of the next measurement
(necessarily corrupted with some amount of error, including random noise) is observed, these estimates are
updated using a weighted average, with more weight being given to estimates with higher certainty. Because
of the algorithm’s recursive nature, it can run in real time using only the present input measurements and
the previously calculated state and its uncertainty matrix; no additional past information is required.

It is a common misconception that the Kalman filter assumes that all error terms and measurements are
Gaussian distributed. Kalman’s original paper derived the filter using orthogonal projection theory to show
that the covariance is minimized, and this result does not require any assumption, e.g., that the errors are
Gaussian.

Figure 2: Kalman Filtering Approach
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The Kalman filter is a recursive estimator. The step by step procedure of the Kalman filtering approach
is given in the figure 2. This means that only the estimated state from the previous time step and the current
measurement are needed to compute the estimate for the current state. In contrast to batch estimation

techniques, no history of observations and/or estimates is required. In what follows, the notation |
ˆ

n mX

represents the estimate of Xat time n given observations up to, and including at time m. The Kalman
filtering steps for state estimation is illustrated in the figure 3.

Figure 3: Kalman Filtering Steps for State Estimation

The state of the filter is represented by two variables:

• |
ˆ ,k kX the a posteriori state estimate at time k given observations up to and including at time k;

• P
k|k

, the a posteriori error covariance matrix (a measure of the estimated accuracy of the state
estimate).

The Kalman filter can be written as a single equation; however it is most often conceptualized as two
distinct phases: “Predict” and “Update”. The predict phase uses the state estimate from the previous time
step to produce an estimate of the state at the current time step. This predicted state estimate is also known
as the a priori state estimate because, although it is an estimate of the state at the current time step, it does
not include observation information from the current time step. In the update phase, the current a priori
prediction is combined with current observation information to refine the state estimate. This improved
estimate is termed the a posteriori state estimate.

Typically, the two phases alternate, with the prediction advancing the state until the next scheduled
observation, and the update incorporating the observation. However, this is not necessary; if an observation
is unavailable for some reason, the update may be skipped and multiple prediction steps performed. Likewise,
if multiple independent observations are available at the same time, multiple update steps may be performed
(typically with different observation matrices H

k
).
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Innovation or measurement residual
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Innovation (or residual) covariance
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The formula for the updated estimate and covariance above is only valid for the optimal Kalman gain.
Usage of other gain values requires a more complex formula found in the derivations section.

Invariants

If the model is accurate, and the values for 0|0X̂  and P
0|0

 accurately reflect the distribution of the initial state

values, then the following invariants are preserved: (all estimates have a mean error of zero)

• | | 1ˆ ˆ[ ] [ ] 0k k k k k kE x x E x x

• [ ] 0kE y�

where E[�] is the expected value of �, and covariance matrices accurately reflect the covariance of estimates

• | |ˆcov( )k k k k kP x x

• | 1 | 1ˆcov( )k k k k kP x x

• cov( )k kS y�

Estimation of the Noise Covariance’s Q
k
 and R

k

Practical implementation of the Kalman Filter is often difficult due to the inability in getting a good estimate
of the noise covariance matrices Q

k
 and R

k
. Extensive research has been done in this field to estimate these

covariance’s from data. One of the more promising approaches to do this is the Auto covariance Least-
Squares (ALS) technique that uses auto covariances of routine operating data to estimate the covariances.
The GNU Octave code used to calculate the noise covariance matrices using the ALS technique is available
online under the GNU General Public License license.

KALMAN FILTER DESIGN

In this paper the ability of the Kalman filtering is explained as both a steady state filter and a time varying
filter.
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Let us assume

x(n + 1) = Ax(n) + Bu(n)

y(n) = Cx(n) + Du(n)

design a Kalman filter to estimate the output y based on the noisy measurements yv[n] = C x[n] + v[n]

Steady-State Kalman Filter Design

The function KALMAN to design a steady-state Kalman filter. This function determines the optimal steady-
state filter gain M based on the process noise covariance Q and the sensor noise covariance R.

First specify the plant + noise model. Set the sample time to –1 to mark the plant as discrete.

Design the steady-state Kalman filter with the equations

Time update:

x[n + 1|n] = Ax[n|n–1] + Bu[n]

Measurement update:

x[n|n] = x[n|n–1] + M (yv[n] – Cx[n|n–1])

where M = optimal innovation gain

The working of the Kalman filter is as follows and the block diagram of Kalman filtering is given in the
figure 4, which generate some data and compare the filtered response with the true plant response:

Figure 4: Block Diagram of Kalman Filtering

Next, connect the plant model and the Kalman filter in parallel by specifying u as a shared input:

Finally, connect the plant output yv to the filter input yv. The resulting simulation model has w, v, u as
inputs and y, y_e as outputs. The Kalman filter reduces the error y–yv due to measurement noise. To confirm
this, compare the error covariances, Covariance of error before filtering (measurement error), Covariance
of error after filtering (estimation error).

Time-Varying Kalman Filter Design

A time-varying Kalman filter can perform well even when the noise covariance is not stationary. The time
varying Kalman filter has the following update equations.

Time update:

x[n+1|n] = Ax[n|n] + Bu[n]

P[n+1|n] = AP[n|n]A’ + B*Q*B’

Measurement update:
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x[n|n] = x[n|n–1] + M[n](yv[n]–Cx[n|n–1]) –1

M[n] = P[n|n–1] C’ (CP[n|n–1]C’+ R)

P[n|n] = (I – M[n]C) P[n|n–1]

The time varying filter also estimates the output covariance during the estimation. Plot the output
covariance to see if the filter has reached steady state

SIMULATION RESULTS

The estimation of all two process variables of nonlinear process control reactor Continuous Stirred Tank
Reactor was given in the Figure 5 and 6. In Figure 5, gives the estimation of Concentration in steady state
analysis and the estimation of Concentration in time varying Kalman filter. The actual and estimated state
simulation of process variables was compared which will shows the efficient tracking capability of the
Kalman filter.

CONCLUSION

The ability to incorporate data from a large, possibly changing variety of sources and to accommodate
sensing delays without derogating estimation is extremely valuable in systems. The inaccurate estimation
of states in Kalman filter approach is due to a lack of solid consideration of existing model uncertainty and
also a nonrealistic pre-assumption on noise distribution matrices has been alleviated by incorporation of an
adaptive fading method into KF strategies. Moreover, the simulation results denote the improvement of
nonlinear state estimation using KF that approximates the probability density from the non-linear

Figure 5: Steady state Kalman Filtering Approach for State Estimation of CSTR
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Figure 6: Time Varying Kalman Filtering Approach for State Estimation of CSTR

Figure 7: Simulation Result of Error Covariance and Error
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transformation of a random variable, compared to other estimation method in which approximation is done
employing Taylor series expansion. This paper presents the real-time implementation of a Kalman ûlter
based estimator in order to overcome the simultaneous estimation problem of the variations in heat removal
rate Q and volumetric flow rate q and all states required for the state and parameter estimation of the
Continuous Stirred Tank Reactor. As it is well known, nonlinear behavior of the process control reactor,
processing errors of data acquisition devices, modeling errors, parameter uncertainties, and noise adversely
affects the performance of any estimation algorithm in real-time experiments. In this paper, the KF based
estimation technique introduced to solve the simultaneous estimation problem of the uncertainties associated
with the system and all states required for the nonlinearities in continuous Stirred Tank Reactor via measuring
Concentration of A and B and to overcome the limited number of state and parameter estimations that
would be possible with a single KF algorithm.
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