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EXTENDED KRAUSS DEFORMATION GRADIENT
DECOMPOSITION OF SINGLE DIRECTOR SHELLS
MADE OF ELASO-PLASTIC MATERIALS
Bohua Sun*

ABSTRACT

The contribution of the present work is that we find the intrinsic relation between (fe, fp, ge, gp)and (Fe, Fp), and
given a deformation decomposition, f = fefp  g = gefp , of shell by introducing extended Krauss decomposition within
the framework of finite elasto-plasticity of shells. The formulations of strains and deformation rates have been
given in detail for both elastic and plastic single director shell model. These formulations are very useful to complete
the modelling of shells with finite elasto-plastic materials.
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1. INTRODUCTION

As we know, the shell theory is the subject, which aims to represent 3-D quantities in terms of 2-D corresponding
quantities by introducing a suitable kinematics assumption. In other words, the old question of shell theory is how
to express the fields given at arbitrary points in terms of one defined at mid-surface points. This means that we need
a shifter, which can transform the fields out-off mid-surface onto the mid-surface. This kind of shifter plays an
important role in formulating of shell theory. Krauss (1929) [1] who was the first person to introduce a shifter,
which is now called as Krauss shifter tensor, and the corresponding decomposition, is called as Krauss decomposition.
However, his work was not noticed until Pietraszkiewicz (1981) [2] rediscovered the decomposition from the
literature. Now it is well known and used in the formulation of elastic shells, but no any work has been done on the
generalization of Krauss decomposition and shifter for finite elasto-plastic deformation of shells.

In this paper, we introduced an intermediate configuration concept into the original Krauss decomposition for
finite visco-elasticity-plastic deformation of shells, then we have extended Krauss decomposition. In sort of the
extended decomposition, we found a remarkable result on the shell in the framework of finite deformation elasto-
plasticity, ee p p= ,  =f g gf f f , -1e -1 e p p=   =z z Zf z F f F , e -1 p -1e e p p= ( - ),  = ( - ) z Zg gF f F f , where f and g are deformation
gradient of mid-surface and spatial deformation gradient of director field; (fe, fp, ge, gp) are the elastic and plastic
part of f and g, respectively. This can be considered as the 2-D shell form of Lee and Liu multiplicative decomposition
F=FeFp of 3-D continuum. Using this decomposition, we formulated the kinematics of elasto-plastic shells in detail.

 An outline of this paper is as follows. In section 2 the characteristics of shell deformation have been listed and
single director kinematical assumption has been introduced and interpreted. In section 3, Krauss decomposition has
been given, strain and rates analysis have been formulated in within elasticity. In section 4, Extended Krauss
decomposition has been introduced, plastic strain and rates have been formulated in detail in sort of the extended
decomposition. In section 5, we have given some conclusions.

2. SINGLE DIRECTOR KINEMATICS AND GEOMETRIC INTERPRETATION

Despite what disagreement occurs over what a shell-like body looks like. The realistic shell-like body has a unique
spatial dimension associated with the through-the-thickness direction and two span-wise dimensions which are



large, is some appropriate measure, relative to this thickness dimension. Accordingly, two surfaces can be uniquely
identified as the “top” and “bottom” surfaces of the shell. If the body being analysed does not fit into broad
classification, the appropriateness of using a shell theory should be brought into question.

The shell theories can be divided by Derived Approach and Direct Approach. The derived approach is that the
shell theories be resulted from a systematic or approximate reduction of the three-dimensional continuum mechanics
balance equations. The direct approach is that shell theories be constructed by an idealized two-dimensional continuum
which is endowed with certain kinematical and kinetic ingredients that model the behaviour of the shell. However,
the language of the discussion to follow and the mathematical analysis often utilizes concepts from both schools of
thought, but the measure of the appropriateness of these assumptions must be the plausibility of the resulting shell
behaviour relative to the three-dimensional (physical) body. Corresponding to this point of view, the basic perceptive
adopted is that shell theory represents a mathematical statement of the physical assumptions imposed upon the
behaviour of a three-dimensional continuum. In so far as the analysis is concerned, the three-dimensional body is
replaced by a two-dimensional surface endowed with certain resultant characteristics, the definition of which stems
from those physical assumptions placed upon the three-dimensional theory. The implied strategy, then, is to very
clearly state the restrictions or kinematical assumptions that are introduced on the deformation of the body, to state
these assumptions in mathematical language of the analysis to be performed, and to systematically reduce the
general three-dimensional theory in a way that reflects the reductions imposed upon it.

It is clear that the catalogue of kinematics ingredients to be introduced requiem to capture all the important
characteristics of any given problem would not necessarily be long. From physical consideration, included clearly
in this list would be,

1. Membrane deformation, that is, deformation that produce reaction forces that lie entirely within the tangent
plane of the shell mid-surface;

2. Bending deformation, which is the change of the curvature of the shell;

3. Transverse deformation, which rotate fibres that are initially normal to the mid-surface into fibers which
are not longer normal to the mid-surface;

4. Through-the-thickness deformation, is the effect which can result as a consequence of other types of
deformation, such as finite membrane strain.

Recently, someone believe that the drill rotation or deformation should be included in the list, which tend to
either point-wise rotate the mid-surface of the shell or ones which tend to anti-symmetrically rotate the top surface
relative to the bottom surface of the shell. Treatments relating to drill rotation appear in variational form by Reissner
(1964) [3] and Naghdi (1964)[4], or can be considered to be a particular case of the constrained rotation formulation
in the paper by Toupin (1964)[5]. A finite element approach to the linear theory of shells with drill rotations is given
by Hughes & Brezzi (1989)[6]. In this paper, the formulation on drill rotation shall not be included.

According to the long tradition of shell research, in order to identify points off the resultant mid-surface of the
shell r, the three-dimensional position-mapping x is expanded in a power series around the mid-surface in terms of
the through-the-thickness parameter � and additional kinematical ingredients called directors. These directors are
interpreted as vectors in R3, the base point of which lies on the surface defined by r. This kinematical description for

points x of the current configuration of the shell is written as 
K

k
k

k=0

= +x r d , where dk(�
1, �2, t)  (k = 1,.., K) are K

directors. It is argued in Naghdi (1972) [7] that as k goes to infinite, the exact motion of the three-dimensional body
is recovered. However, in this case the infinite resultant balance equations must be needed to give full information
about the 3-D body. Here we only use single director assumption to capture the most important characteristics
of shell deformation listed in the above consideration, the single director field in current configuration can be
written as

1 2 1 2 1 2= ( , , ,t)= ( , ,t)+ ( , ,t),x φ r d (1)

and single director field in reference or un-deformed configuration can be written as

X = R(�1, �2, t) + �D(�1, �2, t) (2)



Thus, the points in the body are identified the mid-surface mapping r or R plus the distance�  along the director
d or D. The kinematics assumption is illustrated in Figure 1.

Comparing the position maps Eq. (1), Eq. (2) in current and reference configuration, then we can find that the
deformation of shell is such that points initially defined along straight fibers, i.e., identified as the distance �  above
or below the mid-surface along the line defined by the initial director D, remain along strain fibres. From physical
point of view, the solution to the shell problem, under the single director kinematical assumption, can be considered
as the solution for the shell mid-surface plus the solution for the director, which orients points along thickness
fibres.

Let us now check, from geometric understanding, whether the single director kinematical assumption could
capture the main characteristics of shell deformation, for instance, deformation of membrane, curvature, shear,
through-the-thickness, and drill, before we go to deep. Indeed, from Eq.(1) and Eq.(2), finite membrane stretch is
captured by the deformation of the mid-surface map r, finite bending strains are modelled by the spatial gradient of
the director d, transverse shear strain is accounted for by measuring the relative rotation of the director d with
respect to the normal to the mid-surface. The thickness change can be represented by the difference of magnitude of
initial and current director. However, since there is no an additional rotation of the director d about itself, so the
single director assumption here cannot be serviced to the problem which the drill rotation should be considered.
This is the limitation of this kind kinematics assumption. It can be modified to take the drill rotation into the account
by introducing extended kinematics.

3. KINEMATICS ANALYSIS OF SINGLE DIRECTOR MODEL AND KRAUSS DECOMPOSITION
WITHIN ELASTICITY

The purpose of this section is to calculate most of the three-dimensional, as well as the surface, kinematics quantities
which are required in the formulation of shells.

3.1. Tangent Basis and Deformation Gradient

From the definition in section 2, the convected tangent basis vectors in current shell configuration S is defined by

g� = x,� = r,� + �d,�,  g3 = x,3 = d, (3)

and ones in reference configuration B is defined by

3= + ,  = ., ,X D DG G , (4)

The dual basis vectors are also defined by the relationships i i I I
j J Jj= , and =g g G G . If we put ��= 0 in the Eq.

(3) and Eq.(4), then the basis vectors of the mid-surface in the current and reference configuration can be obtained,

Ii I=0 =0i= , and = ,| |ga GA respectively. That is the

33= ,  = ;  = ,  =, ,r d R Da a A A , (5)

corresponding dual basis vectors in the mid-surface are defined by i i II
Jj j J= , =a a A A . Then, tangent of

deformation or deformation gradient F can be defined by
I 3

i= = + + ., ,F r d dg G G G G , (6)

The associated Jacobean determinant is 0 0
1 2 31 2 3det )=j/ , j= , =j jF g g g G G GJ = ( . And from Eq.(4) and

Eq. (5) and if we denote the director field gradient as

3 3= + ,  = + ., ,d d D Da A , (7)

we have 
0 00 2 0

1 2 1 2=0, = (1+2 H+ ),  = = ,j j |, , , ,j jr r d R R D2
=0j = j(1+ 2 h+ ),  j = j =|  where

1
2 ( )1 2

1 2h = + , 1 2 1 2
1 2 2 1= -  can be thought of as the mean and Gaussian curvature in the current configuration,



and 1
2

1 2 1 2 2 1
1 2 1 2 1 2H = ( + ), = -  can be thought of as mean and Gaussian curvature in the reference

configuration.

3.2. Krauss Decomposition of Deformation Gradient and Shifter

According to the aim of shell theories, which the information of points off the mid-surface is to be represented in
terms of mid-surface quantities. The deformation gradient F of shell can be decomposed into

I i iI -1
I 0ii i= =( )( )( )= ,F zg gG a a GA A F Z (8)

where i 3
0 i=0= = = +| , ,F r r dF A A A  is the mid-surface/director field deformation gradient, and which map

the basis vectors on the mid-surface in reference configuration into the ones in the current configuration, that is,
ai = F0 A1. Z. and Z are called Krauss shifter tensors, which map the basis vectors of mid-surface into the points off
the mid-surface, they are defined by z = gi � ai, and Z = GI � AI, with Z–1, AI � GI. Krauss (1929)[1] firstly gave the
decomposition in Eq.(5), its geometric interpretation was illustrated in Figure 1.

Figure 1: Single Director Model and Geometric Interpretation

If we introduce the metric tensor a and director metric tensor b in the current configuration as
i 3

i= = + , and =, ,a r d b da a a a a , and the metric tensor A and director metric tensor B in the reference

configuration as A = Ai � Ai, and B = D,� � A�, then the shifter tensors can be rewritten as

i 3
i

3i
i

= = +  +  = + , ,

= = + + = + .,

z d d a bg a a a a a

Z G D A D A BA A A A
, (9)

For the given shape of shell, Z is known after we define the mid-surface. For convenient, let us write
zF0 = f + �g, and since we have

i I I 3
0 i= ( )( ) = = + + + ,, ,i iz a d d f gg ga aF A A A A A (10)

we have 3
0= + , and = ,f d g da A A F A  which is called director field gradient.

Well the deformation in Eq.(10) can be rewritten as

F = (f + �g)Z–1, (11)



If the thickness of shell is very small then we have approximation, Z � Z–1 � 1, and F � f + �g.

From this representation of the deformation gradient F, we can find that the F can be replaced by (f, g). This can
be considered as one of the mathematical properties of shell, which is different from three-dimensional body. More
precisely, for the three-dimensional theory, the configuration manifold consists of simply one quantity: the three-
dimensional position map. Corresponding, one configuration gradient field is required namely, the deformation
gradient F. The gradient F, then, is the mapping which transforms tangent vectors in the reference configuration
into tangent vectors in the current configuration. For the present shell theory, the configuration manifold consists of
pairs: (r, d), in which r is the mid-surface position map and d is the director field. Corresponding, two configuration
gradient fields are required. One, i.e., f, analogous to the three-dimensional case, maps the tangent vectors in the
reference configuration into tangent vectors in the current configuration. The second, i.e., g, maps tangent vectors
in the reference configuration into the director gradient field in the current configuration.

3.3. Strain Measures and Velocity Gradient

After having the deformation gradient F, then the proper strain measures can be defined according to the theorem of
polar decomposition of the deformation gradient.

The Green left stretching tensor C, which is the metric tensor in the current configuration, can be defined with
the polar decomposition as

2 2T -T -1 -T -1
0 0= = = = ,C FU C UF Z Z Z Z (12)

where T 2 TT2 T
0 0= = + ( + ) +f f g f gg gC U f is defined on the mid-surface in the reference configuration, this can be

easily identified by the definition of f and g, that is, I J I J2
0 0 0IJ IJ= =C UC A A A A . Then the definition Eq. (12) can

be understand as that the C or U2 can be obtained by the push-forward operation of C0 or U2
0 through the shifter Z,

i.e., 2 2
0 0* *= = ( ) = ( )Z ZC U C U . Clearly, the C and U2 are defined in the points off the mid-surface.

With the definition of Green strain tensors, we have

22-T -1
0 0 0 f g 20*

1
= = ( ),  = ( - ) = + +

2ZE U GZ E Z E E E E E , (13)

Where

T TTT I J T T T T T
0 f g 20 0IJ

1 1 1
= = = , = ( - ),   = ( + - - ),   = ( - ).G

2 2 2
Z f f A g f B A g Bg gG 1 Z A A E A E f A B E B , (14)

Here Ef, Eg are measures of membrane strain and curvature of mid-surface. Let us introduce the following
notations

23 3 3 3T
f

T3T
3g d

+ ( + )+ ,a

+ ,   ,

=

=

C f A A A A A A A A

gC Cf A A A A A Ag

f

g

def

defdef , (15)

and 2
3, = , = , = , = , =, , , ,d d d d d d d da a a a=a ,  and , = , ,A DA A=A ,

2
3= , = , = , =, , , ,HD D D D D D DA . Then we have the components form of Green strain tensor as

follows

23 3 2 3 3
f 33

3 3
g 3 3 2

1 1
= ( - ) +( - )( + )+ ( - )  a A

2 2
1

=( - ) +( - )( + ), = ( - ) .
2

E A A A A A A A A

E A A A A A A E A A
, (16)

In (15) and (16), are classical surface metric measures in the current/reference configuration, respectively;
a�� and A�� are transverse shear deformation measures in current/reference configuration, and which measure how



much d or D are rotated away from the normal to the surface, then 1
2 ( )- can measure the shear deformation;

similarly, 1
2 ( )2 2-  can measure the thickness change of shell; ( ) ( ) ( )3 3- , -  and -  can measure

the bending or curvature of shell configuration space. This means that the strain measure can capture all deformation
behaviours in the single director kinematics.

Since the time differential of deformation gradient is I 3
i= = + +, ,� ��F r d dg G G G G , then, using the

relation iI -1=gG F , the velocity gradient can be got

i 3-1
i= = =r + + ,, ,� � ��l F d dg g g g gF (17)

with relation i
i= �g glT .

Then the rate of deformationd
�

 and spin w can be defined as

i j i j
ij ij

1 1 1
= ( + )= = ,    = ( - )gd

2 2 2
�

�
d l w lg g g gl lT T , (18)

According to the Krauss decomposition, the velocity gradient can also be rewritten as

-1-1 -1 -1 -1 -1 -1 -1=[( + ) ]( =( + ) =[ + ] .)� �� � � �l f g zf φ g f gZ Z f z f f z (19)

Set � = 0 in the above, then we have velocity gradient of the mid-surface as

i 3-1
f i=0= = = = + .| � ���l f da a a al f d , (20)

After understanding of Krauss decomposition, let us go to find the extended Krauss decomposition for elasto-
plastic shells.

4. EXTENDED KRAUSS DECOMPOSITION, STRAINS AND RATES WITHIN FINITE ELASTO-
PLASTICITY

In this section, we will generalise Krauss decomposition into the frame of finite deformation of shell by introducing
intermediate configuration.

4.1. Extended Krauss Decomposition

The proper definition of plastic strain and plastic strain rate are very important to develop plastic constitutive
equations of shell in terms of resultant quantities. In this section, we will define proper plastic strain and plastic
rate by extended Krauss decomposition, which is first introduced in present paper. In order to give a clear
picture of these definitions, let us firstly introduce extended Krauss decomposition and it has been illustrated in
Figure 3.

we have following decompositions of deformation gradient

e p1 1e e e p p -1 p -1

e p1e p e p -1 e p -1 e p -1

e p1e p -1 -1 -1

= =( + ) ,  = =( + ) , 

= = =( + ) = ( + )

 =( + ) ( + ) ( + ) .

z z z zg gF f f F f Z f Z

F z z zg gF F f f Z f f Z f f Z

z zf f gg gf f Z Z Z
, (21)

where the shifter tensor is defined by i=z g a i , the elastic and plastic parts of deformation gradient on the surface

are defined by e p
i= , and = I

ia a Aaf f
i ,  and elast ic and plastic parts of director field gradient

e p= , =, ,d a d Ag g , and 0|i ia g .

From Eq.(9), it is easy to find the following decomposition



ee p p

e -1 e p p

e -1 p -1e e p p

= ,     =  

= ,    =  

= ( - ),    = ( - )

-1

f g gf f f

z z Zf z F f F

z Zg gF f F f
(22)

This means that the deformation gradient on the surface and director field gradient can also be multiplicatively
decomposed into elastic and plastic parts. These remarkable results are due to the extended Krauss decomposition.
These intrinsic relations are the keys to formulate the kinematics of shells with finite elasto-plasticity.

It means that the elastic strain is defined with respect to the intermediate configuration. These formulations can
be directly used to complete modelling of shells.

4.2. Plastic Strain Measure and Plastic Strain Rate

Using the above decompositions and the definitions of elastic/plastic strains, we have

Figure 3: Extended Krauss Decomposition within Elasto-plasticity

Figure 2: Krauss Decomposition



e eT 2 eT ee -T -T e e e e2eT e eT e eT e
0 f g 2

p pT 2 pT p 2p p pp pT p -T pT p p p -1 -T T -1 -T -1 -T p -1
g0 2f

= - = [ + ( + )+ ] - ( ) [ + + ] ,

2 = - = [ + ( + + ] - ( ) [ + + ] .

-1 T T -1 -1 -T -11 z z z z z z z zg g g gF F f f f fE z z E E E E

1 Zg g g gE F F Z f f f f Z Z Z Z Z E Z Z E E E Z

2
, (23)

where

e eT eT ee e eeT e eT e
f g 2

1 1 1
= ( ),  = ( + ),  = ( ).

2 2 2
T T T Ta a a bb a b bg g g gf f f fE E E , (24)

and

p pT pT pp p ppT p pT p
f g 2

1 1 1
= ( ),  = ( + ),  = ( ).

2 2 2
T T T Ta a a bb a b bg g g gf f f fE E E , (25)

In which the metr ic tensor a and director metr ic b  in the intermediate configuration as

i 3
i= = + , and =, ,a d d b da a a a a . Similarly, we have elastic strain referred to reference configuration as

follows
e -T e -1 ee pT p pT p -T pT p -1

* 0 0 0= = = .E F F F F Z f f ZE z E z E , (26)

Then we have total strain on the mid-surface
e e e epp ppT p pT p pT p p pT p

0 f g g 20 2fo f f 2= + ,    = + ,    = + ,    = +E f f E E f f E f f E E f f EEE E E E , (27)

and the strain rates

pppT p pT p
gf gf=  + ,  = + .

� �

�� ��E Ef f f f EE EE
e e
f g

, (28)

where the objective derivatives are defined by 
pT pe ee

f ff
 

= + +
�

E l lE EE
e

f ff , and 
pT e ee

g g gg= + +
�

E l E E lE
pe

gf ,  
p p p-1

f =� ffl .

For easily understanding, let us write out the component form of the above strains and strains rates as follows.
Introduce the following notations

def
3 3 3 3e 2eeT

f
 

def def
e e e3 e eTeT

g 3 d
  

= + ( + )+ ,a

= + ,   = ,

=

= =

f fC a a a a a a a a

g g gC f Ca a a a a a
, (29)

where, 2
3, = , = , = , = , =, , , ,d d d d d d d da a a a=a ; , = ,,A DA A=A

2
3= , = , = , =, , , ,HD D D D D D DA ; , = , = ,d da a a a=a ,  3= ,d d ,

2= , = , ,d d d d .

Then we have the components form of Green strain tensor as follows

23 3 2 3 3
f 33

3 3
g 3 3 2

1 1
= ( ) +( )( + )+ ( )a A

2 2
1

=( ) +( )( + ),  = ( )
2

E A A A A A A A A

E A A A A A A E A A
, (30)

and elastic strain with respect to the intermediate configuration

e 3 3 2 3 32
f 3 3

e 3 3 e
3g 3 2

1 1
= ( - ) +( - )( + )+ ( - )a a

2 2
1

=( - ) +( - )( + ),   = ( - ) ,
2

E a a a a a a a a

E a a a a a a a aE
, (31)



and plastic strains with respect to the un-deformed configuration

2p 3 3 2 3 3
3f 3

p p3 3
g 3 23

1 1
= ( ) +( )( + )+ ( )Aa

2 2
1

=( ) +( )( + ),   = ( )E
2

A A A A A A A AE

E A A A A A A A A
, (32)

And the total strain rates

23 3 3 3
f 3

3 3
3g 2

1 1
= + ( + )+a

2 2
1

= + ( + ),   =
2

��� �

�� �� �

A A A A A A A AE

A A A A A A A AE E
, (33)

And

p 3 3 3 32
f 3

  

p p3 3
g 23

   

1 1
= + ( + )+a2 2

1
= + ( + ) ,  = ,

2

�

� �

A A A A A A A AE

A A A A A A A AE E
, (34)

and objective elastic strain rates

-pT -p 3 3 3 3p 22
3f f 3

      

-pT
p -p 3 3

3 2gg 3
     

1 1
( - ) = ( - ) +( - )( + )+ ( - )a a2 2

1
( - ) =( - ) +( - )( + ),   ( - ) .

2

�

��

��

�� �

E f f A A A A A A A AEE

Ef A A A A A A A AEE f E

e
f

ee
g

, (35)

It means that the elastic strain is defined with respect to the intermediate configuration. These formulations can
be directly used to complete modelling of shells.

5. CONCLUSIONS

We believe that there are following features in our formulations:

1. Extended Krauss decomposition, F = (fe fp + ge fp)Z-1, is important for the formulation of elasto-plastic shell
with finite deformation;

2. The intrinsic relations we found between the deformation gradients fe, fp, ge, gp of shell with the deformation
gradients Fe, Fp of 3-D continuum are key relations for the formulation of shells;

3. The form of multiplicative decomposition for elasto-plastic shell takes f=fefp, g=gefp, which can be considered
as the extension of Lee and Liu’s work on the shells;

4. The formulation in this paper can be directly used to formulate the elasto-plastic constitutive equations of
shells.
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