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Abstract: In the paper, a hybrid method is proposed to solve the Unit Commitment (UC) problems incorporating 
with wind power system under uncertainty. The hybrid model is the combination of modified Bat algorithm and the 
Artificial Neural Network (ANN) technique with Genetic Algorithm (GA). The ANN technique is predicted the wind 
power generation based on the historical data of the wind power system using the GA. The modified Bat algorithm 
is the optimization algorithm that is optimizing the generating unit combination based on the load demand and the 
availability of the wind power from the ANN technique. Here, Gravitational Search Algorithm (GSA) is utilized to 
improve the searching behaviours of the Bat algorithm. The Bat algorithm considers thermal generators fuel cost, 
startup cost and wind power probability as the objective function. To achieve the objective function, the Bat algorithm 
requires to satisfying the constraints like thermal units generation constraints, spinning reserve constraints, startup 
cost constraints and ramp limit constraints. The proposed hybrid method based optimal generators combination 
is minimizing the thermal generators unit power generation cost by considering the wind power availability. The 
proposed hybrid method is implemented in MATLAB/Simulink working platform and the performance is evaluated. 
The proposed method is tested under standard 10 unit’s system. In order to analyze the effectiveness of the proposed 
method, this is compared with the existing techniques such as, GA-ANN and Bat-ANN respectively. The performance 
of the proposed method is verified through the comparison analysis with the existing techniques. The comparison 
results prove the superiority of the proposed method.
Keywords: UC, ANN, GA, Bat, GSA, wind power probability, fuel cost and starting-up cost.

Introduction1.	
The cumulative request of energy resources and the non-renewability of outdated energies make energy 
catastrophe one among the most considerate issues in the ecosphere [1]. And yet, the characteristic volatility of 
wind power inescapably transports about technological and economic trials to wind power incorporation. Wind 
power forecasting (WPF) skill is one among the most significant methods to alleviate negative influence from 
wind power volatility [2]. The ever-increasing diffusion of wind power transports encounters to the electricity 
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market, as wind power is neither completely dispatch able nor fully expectable [3]. Infiltration of renewable 
energy resources into power schemes meaningfully surges the suspicions on scheme operation, stability and 
reliability in smart grids [4, 5]. Wind combined with the electrical power grid conveys numerous encounters to 
grid operators like operational issues upholding scheme frequency, power balance, voltage support, and quality 
of power, and also planning and economic forecasting anxieties [6].

By refining the forecasting accuracy, these assets can be abridged. Additionally, accurate wind speed/
power forecasting and solar irradiance predicting can progress the energy conversion effectiveness, decrease 
the menace produced using scheme overloading and exciting weather conditions and can progress the Unit 
Commitment (UC) optimization [7, 8]. Similar large-scale assumption grants numerous encounters to the 
operation of the electrical power grid due to the wind power is extremely recurrent and problematic to forecast. 
In specific, UC and economic dispatch (ED) procedures are inordinate reputations due to their durable economic 
influence and cumulative emissions anxieties [9, 10]. UC is a serious combinatorial optimization issue for daily 
economic planning and operation of the modern power scheme that cooperatively accomplishes appropriate on/
off decision of producing units and allocates produced power between the committed units to attain minimum 
generation cost while sustaining power claim, replacement and other rudimentary restraints over a programmed 
time horizon [11, 12].

The UC achieves a significant role in the operational planning of contemporary power scheme and protects 
important quantity of total operation cost per year [13, 14].An amended UC model seeing wind power indecision 
will progress to an improved UC result that can endure the forecast faults in the actual time [15, 16]. There 
are numerous heuristic and metaheuristic approaches for the wind power forecasting faults in the UC model 
like priority list technique, genetic algorithms (GA), tabu search algorithms (TS), particle swarm optimization 
algorithms (PSO), ant colony algorithms (ACO), fuzzy logic (FL) systems, artificial neural networks (ANN), 
evolutionary programming (EP) and simulated annealing (SA), mixed-integer linear programming (MILP), second 
order cone programming (SOCP), memetic algorithm (MA), bacterial foraging (BF), discrete differential evolution 
method [17, 18]. MILP technique has developed generally in current years due to more effectual general-purpose 
MILP solvers have become accessible. Though, MILP technique delivers a comparatively rough guesstimate for 
the UC issue [19, 20]. Here, the hybrid method is proposed to solve the unit commitment problem. The problem 
formulation and the detailed explanation of the suggested technique is offered in Section 3 and 4. Previous to 
that, the current research works are offered in Section 2. The experimental results and conversation are specified 
in Section 5. At last, the Section 5 shows result and discussions

Recent Research Works: A Brief Review2.	
An insurance approach to refuge the conceivable imbalance cost that wind power producers may experience was 
discussed by Hongming Yang et. al. [21].

The power schemes face growing indecision from intermittent renewable resources was discussed by 
Joshua D.Lyon et. al. [22].

A methodology to resolve UC issue from a probabilistic viewpoint was discussed by J.M.Lujano-Rojas 
et. al. [23].

A method for generating clusters of the unit status connected to a probability of occurrence from a preliminary 
set of large wind power generation circumstances was deliberated by Anup Shukla et. al. [24].

The analysis of symmetry in UC issues resolved with the help of the Mixed Integer Linear Programming 
(MILP) formulations and by Linear Programming depended on Branch & Bound MILP solvers was deliberated 
by Ricardo M.Lima et. al. [25].
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The UC problem comprises of defining optimal production strategy for a provided group of power plants 
over a specified time horizon so the complete production cost is decreased, by the meantime sustaining numerous 
restraints. Every power plant separately requires satisfying: minimum up time, minimum down time and production 
border constraints. The function of the conventional approaches is not acceptable if the objectives function/
constrains is intermittent and very multifaceted. To resolve the UC issue, some meta-heuristic approaches have 
been revealed that is appeal much more attention due to their aptitude to search local and global results and 
also easily dealing with numerous complex nonlinear constraints. The most extensively utilized meta-heuristic 
approaches such as ANN, GA, EP, SA, FL systems, PSO, and TS. The meta-heuristic approaches so far are not 
adequately supple for solving real world issues to optimality in satisfactory computational times, and it is tough 
to approximation the quality of the gotten solutions as they are stochastic search approaches. Hybrid approaches 
that syndicate the methods stated above (like GA combined with LR, PSO united with LR, Evolving Ant Colony 
Optimization (EACO) engages GA for detecting an optimal set of ACO parameters) incline to be more effectual 
than the discrete technique alone.

Multi-objective based Unit Commitment Problem3.	
Mathematical formulation of the wind uncertainty based unit commitment problem related to the net load is 
described here. Generally, the unit commitment is an optimization problem that consists of minimizing the expected 
operating cost. This cost could be separated into fuel-consumption cost and starting-up cost. Conventionally, 
fuel-consumption cost has been modelled by employing a quadratic expression in terms of the related power 
production, while starting-up cost has been modelled by applying a piecewise expression that relies on the number 
of hours that a particular generator has been de-committed. The mathematical expression of the objective function 
is described in the following equation (1).
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With, C is the total cost; H is the total number of hours; U(i, t) is the status of the unit i at tth hour, i.e., 
1 for ON and 0 for OFF; ai, bi and ci are the fuel cost coefficients of the thermal generating unit i at tth hour; 
PRWT(j, t) is the probability of the wind generator unit j at tth hour, which is calculated based on wind power 
uncertainty; PTG(i, t)is the output power of the thermal generator unit i at tth hour; Sc(i, t) is the starting-up cost 
of unit i at tth hour; N is the number of generating units; ko, i, k1, i and k2, i are the starting-up cost coefficients of 
the thermal generating unit i and Toff(i, t) is duration at which thermal generating unit i has been off at tth hour. 
Working out the stochastic UC problem contains finding out the optimal combination of generators that should 
be entrusted and their related power production in order to minimize the generation costs over the scheduling 
horizon, considering the feasible fluctuations of the dissimilar sources of vagueness. The reported equation (1) 
depends on the thermal system constraints and wind power probability [26] [27] [28], which is described in the 
following.

Equality Constraints
Power balance constraints
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where, PTD(t) is the total demand at period t; PTGi(i, t) is the power generated from thermal unit i at hour t;
PWT

ANN ( , )j t  is the power generated from wind unit j at hour t, which is attained from the ANN.

Inequality Constraints
Spinning reserve constraints

	 P U P RTG
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TD( , ) ( , ) ( ) ( )i t i t t t
i

n

=
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where, PTG
max ( , )i t  is the maximum output power limit of the thermal unit i at hour t and R(t) is the power system 

spinning reserve requirement at hour t.

Generating capacity constraints

	 P P PTG
min

TG TG
max( , ) ( , ) ( , )i t i t i t£ £ 	 (4)

Minimum up time limit

	 Ton(i, t) > Minup(t)	 (5)

Minimum down time

	 Toff(i, t) > Mindown(t)	 (6)

Ramp generation

	 PTG(i, t) – PTG(i, t - 1) £ RU(i) as generation increases	 (7)

	 PTG(i, t) – PTG(i, t - 1) £ RD(i) as generation increases	 (8)

where, PTG
min ( , )i t  and PTG

max ( , )i t  are the minimum and maximum power of thermal generating unit i at tth hour; 
Minup(t) is the minimum up time of thermal generating unit at tth hour; Mindown(t) is the minimum down 
time of thermal generating unit at tth hour; Ton(i, t) is duration at which thermal generating unit i has been on 
at tth hour;  RU(i) and RD(i) are the ramp up and down limit of the unit i. The overview of the proposed hybrid 
methodology is explained in the following section 4.

Hybrid method for unit commitment problem4.	
This section describes about the proposed hybrid methodology, which is the combined performance of ANN, 
modified bat algorithm. Here, the ANN is used to predict the wind power generation, which is used for the wind 
power probability calculation. The modified bat algorithm is used to optimize the generator unit combinations 
based on the wind power probability and load demand. The wind power generation prediction using ANN 
technique is described in the following section 4.1.

4.1.	E nhanced ANN based Wind Power Generation Prediction
ANNs are a well approach for developing the mathematical structures with the ability to learn. It has the notable 
capability to derive meaning from complicated or indefinite data. This can be used help to extract patterns and 
detect trends that are excessively complex to be noticed by other techniques. Neural network generally consists 
of two stages namely, training and testing stage. It can be trained using many techniques. Back propagation 
(BP) algorithm is probably the most widely used ANN training technique in practical applications due to its 
inherent simplicity and ease of implementation [29] [30]. BP technique is based on gradient descent method. The 
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concept is to have an error function and use hill climbing or descent to find the weights. This would optimize 
the task at hand. However studies have confirmed that back propagation is prone to the following problems 
– it may get stuck at a local optimum and it may take a very long time to converge. This led researchers to 
attack the ANN training problem with other methods. Another technique for ANN weight optimization is by 
using Genetic algorithms (GA). GA encodes the ANN weights as possible solutions for the problem in the 
chromosomes of simulated biological organisms. In each generation the organisms with best chromosomes 
are chosen for reproduction [31]. This continues for a predefined number of generations or until the problem 
is sufficiently optimized. GA has parallel search strategy and global optimization characteristics which helps 
the ANN to have a higher prediction accuracy and faster convergence compared to BP. However the genetic 
operators like crossover and mutation are inherently complex and hence make the computational cost to increase 
exponentially. The convergence speed of GA is better than BP. Therefore, in the paper, GA is used for training 
the ANN. Here, the wind power generation PWT

ANN ( , )j t  can be recognized by the ANN technique. The learning 
task is specified in the form of examples, which is identified as training examples. The ANN turns out to be 
trained by employing the target with corresponding inputs, using the back propagation algorithm. The resultant 
wind power generation can be attained during the testing time. Normally the ANN have three layers that is given 
by,

(i)	 Input layer,

(ii)	 Hidden layer,

(iii)	 Output layer.

Figure 1: Structure of the enhanced ANN

Figure 1 shows the proposed ANN structure, which is trained by GA technique and observes the changes 
to prediction accuracy. The training algorithm steps are described as below. Here, the inputs are considered as 
the Y values and the weight of the network is assigned for input layer to hidden layer and hidden layer to output 
layer. From the input layer to hidden layer weights are denoted as (w11, w12, ..., w1n), (w21, w22, ..., w2n) and 
(w31, w32, ..., w3n) respectively. The hidden layer to output layers weights are represented as (w211, w221, ..., w2n1). 
The output of the node is specified as (P).
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Process for Training Algorithm
Step 1: Initialize the weight of input layer, hidden layer and output layer of the network, which is specified as, 
Hour (T) and wind power generation PWT(j, t). Here, the weight of each neuron is assigned randomly for learning 
the network. The minimum and maximum weight (i.e., W = (wmin, wmax)) of the interval range is specified as 
(0, 1).

Step 2: Studying the network according to the input and the related target.

Step 3: In the section, the BP error is determined. Here, the BP error is evaluated using the GA. In the GA, the 
optimized parameter of ANN is achieved while minimizing the BP error function.

Back propagation error minimization using GA technique: Genetic Algorithm is adaptive global search 
algorithm based on the evolutionary data of genetics. In order to work out the optimization problems Genetic 
Algorithm is an arbitrary search algorithm applied. Iterations are symbolized as generation and the population is 
symbolized as chromosomes in genetic algorithm [32]. Now the input of genetic algorithm is the consequence 
of test case generation. The specified process of genetic algorithm is made cleared beneath,

Initial Phase: In genetic algorithm, at first produce the population of chromosomes Ei(i = 1, 2, 3, …, N) randomly. 
N represents the population size.

Fitness Evaluation: Assess the fitness function of each chromosome and the highest fitness value is chosen as 
the best one.

Calculate the back propagation error using the following equation (9).

	 E P PBP WT
ANN(tar)

WT
ANN(out)k

k kj t j t= -( , ) ( , ) 	 (9)

where, PWT
ANN(tar)( , )j t k  is the network target of the kth node and PWT

ANN(out)( , )j t k  is the current output of the 

network. After that, evaluate their crossover and mutation rate.

Cross Over to the Best Solution: One or more parent chromosomes are selected and carry out the single point 
cross over.

Mutation: In mutation process chromosome values are differed according to the possibility after that produced 
novel chromosome.

Updation: In the process, the present chromosome is substituted with the best chromosome.

Discover the Fitness Function: If the fitness value of novel chromosome is greater than the present chromosome. 
Choose the novel chromosome is the best chromosome.

The maximum iteration is reached, then the process is terminated otherwise repeat the steps. Here, the 
minimized BP error values are calculated and their corresponding inputs are noted. Based on the fitness function, 
the ANN is optimally trained and gets the optimal outputs and the corresponding back propagation error of the 
network is calculated.

Step 4: The current output of the network is determined by using the following equation,
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where, a1, a2 and ak are the bias function of the node 1, 2 and k respectively.
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Step 5: The new weights of the each neurons of the network are updated by wnew = wold + Dw. Here, wnew is the 
new weight, wold is the previous weight and Dw is the change of weight of each output. The change of weight 
is determined as follows:

	 Dw j tk k
k= d . ( , ) .P EWT BP 	 (12)

where, d is the learning rate (0.2 to 0.5).

Step 6: Repeat the above steps till the EBP
k  gets minimized EBP

k < 0 1. .

Repeat the above steps till the BPerror gets minimized BPerror < 0.1. Once the neural network training process 
is completed, the network is ready to give the wind power generation at the particular instant. Based on the wind 
power generation, the wind power probability for the particular instant has been calculated [33]. The optimal 
generator combination selection using the Bat-GSA algorithm is described in the following section.

4.2.	 Modified Bat Algorithm for Optimal Generator unit Combination Selection
In the paper, the modified bat algorithm is utilized to optimize the generating unit combinations. The hybrid 
algorithm is the combined operation of both the Bat algorithm and gravitational Search Algorithm (GSA) 
technique. In the proposed method, combined Bat-GSA algorithm finds the optimal combination of the generator 
units based on the objective function, which is possible by taking the generation limits of the generator as the 
input. Here, the solution updating process can be done by the GSA process. From the attained updated solutions, 
the best solution can be selected by using the objective function. The algorithmic procedure to find the optimal 
generator combination is described as follows.

4.2.1.	 Modified Bat Algorithm
The bat inspired algorithm constitutes an innovative optimization approach, which takes its cues from the 
echolocation conduct of the bats. In echolocation, each pulse produced by a microbat generally exists only for 
8–10 ms with a frequency in the range of 25 kHz to 150 kHz, in accordance with the wavelengths of two mm 
to 14 mm. In the BA, the echolocation attributes of the Microbats are idealized by means of the stipulations 
detailed below [34-37].

(a)	 It is supposed that the bats are competent to identify the distance of the prey, background hazards 
and distinction in the accessible prey/food in the search path with certain magical skills by means of 
the echolocation attribute.

(b)	 A kth Bat is likely to arbitrarily fly with location as xk, velocity as vk, frequency as fmin but with changing 
wavelength and loudness of echo as A0 to locate the food/prey. The Microbats are equipped with the 
requisite skills of adapting the frequency (wavelength) of the emanated pulses of the echo and the 
rate of pulse emission out of Re [0, 1] based on the distance of their prey/food.

(c)	 The loudness of the echo pulse has to be invariable changed in such a way as to decrease in the case 
of reduced distance of the food, in other words from a mammoth A0 to a smallest value Amin (at target/
prey location).

In the document, the bat inspired algorithm is elegantly employed to allocate the units in the generating 
station. The input are considered as the generation limits of thermal generators Xi and arbitrarily produced for 
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appraising the objective function, which constitutes the total operating cost (C) minimization. Subsequently, their 
corresponding parameters of the system are estimated as per the objective function. By means of the optimal 
results, the optimal C is estimated. The procedures for the optimization of the unit commitment of the system 
and the minimization of the C is explained in the following section.

Working Process
Step 1: Initialization process

(a)	 Here, the generation limits of thermal generators are initiated on the input of bat algorithm and this 
population is activated as position (Pk) and velocity (Vk) vector as with k = 1, 2, 3, ..., n. Subsequently, 
the pulse frequency (fk), pulse rates (Rk) and loudness (Ak) are described. The range of initial frequency 
is represented as fk Œ [fmin, fmax].

(b)	 The generating units are arbitrarily produced as Xi = (x1, x2, x3, ..., xn)

Step 2: Generate new solutions

In this procedure, the pulse rate and loudness are defined. Now, the new solutions are produced by adapting 
the pulse frequency and maintaining wavelength stable. For each bat (k), its position Pk and velocity Vk in a 
d-dimensional search space has to be well-explained. Afterwards, the Pk and Vk have to be modified during 
the iterations. The new solutions Pk

t and velocities Vk
t at time step t are evaluated by means of the following 

equations.

	 fk =	fmin + (fmax - fmin)b	 (13)

	 Vk
t =	Vk

t - 1 + (Pk
t - 1 - P¢) fk	 (14)

	 Pk
t =	Pk

t - 1 + Pk
t	 (15)

In the above-mentioned equations, b is represented for uniform distribution as a vector and chosen as 
b Œ [0, 1]. P¢ indicates the best location in the search space when the solutions of all the kth bats are assessed and 
contrasted. The product of fk and Pk signifies the velocity increment, which may be adapted by modifying one 
and preserving the other as constant in relation to a problem. The commonly employed range of frequency is 
0 £ f £ 100 and each bat at initialization step is chosen from f = [fmin, fmax].

Step 3: Local Search: In this procedure, the pulse rate and loudness of the bats are appropriately defined. After 
the best current solution is chosen from among the accessible solutions, a new solution is created by means of 
a local arbitrary walk and allocated to each bat as illustrated in the equation furnished below. If e Œ [-1, -1] 
signifies an arbitrary number range and At = (At

k) corresponds to the average value of loudness of all activated 
n bats at time t.

	 Pnw = Pold + e ¥ At	 (16)

Step 4: Fitness evaluation: In this procedure, the fitness is defined as the objective function. And the total operating 
cost minimization is treated as the fitness function and their corresponding parameters are estimated.

	 Fi = min(Tc)	 (17)

Step 5: Bat flying and generation of a new solutions: In accordance with enhancement in the number of 
iterations, the loudness Ak and the rate Rk of pulse emission are modernized. When the microbat arrives near the 
target/prey the rate of pulse emission gets perked up while the loudness is reduced. The loudness is habitually 
chosen from [A0, Amin] = [1, 0]. The expression A0 = 1, characterizes the maximum loudness of the pulse emanated 
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by the microbat on the lookout for the prey, while Amin = 0 illustrates that the microbat is in possession of the 
target/prey and does not produce any loudness. Thus, the loudness and the rate of pulse emission are changed 
for updating process, which is illustrated in the following Equations.

	 Ak
t + 1 =	aAk

t	 (18)

	 Rk
t + 1 =	Rk

0[1 - e-gt]	 (19)

where, a and g signify the constant values. The initial loudness and the emission rate are characterized by Ak
0 

and Rk
0 correspondingly. The value of emission rate at time t may be chosen from Rk

0 Œ [0, 1].

If we allow the algorithm to switch to exploitation stage too quickly by varying Ak
0 and Rk

0 too quickly, 
it may lead to stagnation after some initial stage. As a novel feature, bat algorithm (BA) was based on the 
echolocation features of microbats, and BA uses a frequency-tuning technique to increase the diversity of the 
solutions in the population, while at the same, it uses the automatic zooming to try to balance exploration and 
exploitation during the search process by1mimicking the variations of pulse emission rates and loudness of bats 
when searching for prey. As a result, it proves to be very efficient with a typical quick start. Therefore, this 
paper intends to review the latest developments of the bat algorithm. Here, the performance of Bat algorithm 
is improved by utilizing the GSA algorithm with updating the parameter. The detailed description of GSA 
algorithm is explained as follows,

GSA for Updating the Solutions of BAT Algorithm: GSA is a newly developed stochastic search algorithm 
based on the law of gravity and mass interactions. In GSA, the search agents are a collection of masses which 
interact with each other based on the Newtonian gravity and the laws of motion, completely different from other 
well-known population-based optimization method inspired by swarm behaviours in nature [38] [39] [40]. GSA 
is used for improving the performance of Bat algorithm and updating the Bat parameters. Here, the inputs are 
considered as the agents. The minimized cost functions can be evaluated from the inputs. The optimal outputs 
are determined based on evaluated inputs. The procedure of the proposed algorithm is briefly explained as 
follows:

Procedure of Proposed Algorithm:
1.	 In the section, the Bat updating parameters are initiated randomly. Here, the inputs are considered as 

the agents. The position of agents are defined by the following equation,

	 S = ( , ..., , .... )s s si i
d

i
n1 	 (20)

	 where, n is the search space dimension of the problem, si
d is the position of the ith agent in the dth 

dimension.

2.	 The fitness function of agents is evaluated as their minimum range of BP error. The minimized error 
function of the network is given to the network. The fitness function of the agent is calculated as follows:

	 Fi = min(C)	 (21)

	 After that, force of the agent is calculated.

3.	 The mass of agents are defined randomly and determine the forces of each agent. Here, the force 
acting on mass i from mass j can be determined by,

	 f k g t
k k

r k
s k s kij

d i j

ij
j
d

i
d( ) ( )

( ) ( )
( )

( ) ( )=
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	 where, Mi(k) and Mj(k) are masses of the agent i and j. Here, g(k) is the gravitational constant, Œ is the 
small constant and rij(k) is the Euclidian distance between ith and jth agents. Calculate the gravitational 
constant of the agent using the following formula,

	 g k g e
k

tr( ) = ¥
-Ê

ËÁ
ˆ
¯̃

0

a

	 (23)

	 From the above equation, tr are the total iterations of the algorithm, g0 is the initial value and a is the 
user specified constant.

4.	 The total force acts on the agent in kth dimension is calculated as follows,

	 f kt f ki
d

i
i j i

ij
d( ) ( )

,
=

= π
Â rand
N

1
	 (24)

	 where, randj is a random number in the interval [0, 1] and the acceleration is calculated.

5.	 Acceleration of any mass is equal to the force acted on the system divided by mass of inertia

	 ai
d i

d

i
k

f k
k

( )
( )
( )

=
M

	 (25)

6.	 New positions of the agents and gravitational constant & inertia masses are updated by the following 
equations.

	 mi(k) =	
fit worst
best worst

i k k
k k

( ) ( )
( ) ( )

-
-

	 (26)

	 Mi(k) =	
m k

m k

i

j
j

( )

( )
=

Â
1

N 	 (27)

	 where, fiti(k) represents the fitness value of the ith agent at iteration k.

7.	 Velocity of each mass is calculated, the new position of the masses could be considered. Updating 
the agent’s velocity and position using the following equation,

	 V randi
d

i
d

i
dk v k k( ) ( ) ( )+ = ¥ +1 a 	 (28)

	 When acceleration and velocity of each mass are calculated then new positions of the masses could 
be considered as follows

	 s k s k v ki
d

i
d

i
d( ) ( ) ( )+ = + +1 1 	 (29)

	 where, Vi
d k( )  and s ki

d ( )  are the velocity and position of an agent at the k time and d dimension, 
randomi is the random number at the interval at [0, 1].

8.	 The maximum iteration is reached, then the process is terminated otherwise repeat the step3-8. Here, 
the minimized cost functions values are calculated and their corresponding inputs are noted. Based 
on the fitness function, the bat algorithm is updated optimally and gets the optimal outputs

Step 6: If the conditions (fi < fj) is satisfied, the new solution is accepted by perking up the pulse rate and scaling 
down the loudness.



A Hybrid Method for Solving Unit Commitment Problem with Wind Power Uncertainty

International Journal of Control Theory and Applications89

Step 7: Checking the stopping criterion: If the maximum count of iterations is attained when the stopping 
standard is fulfilled, then the task of evaluation is stopped. Or else, return to steps 3 and 4 for the replication 
of the procedure. Once the process is completed, the network is ready to give the better generator units 
combination for different types of load demand. The flowchart for the proposed Bat-GSA algorithm is illustrated 
in Figure 2.

The proposed methodology is implemented in the MATLAB/Simulink platform and the effectiveness is 
analysed by comparison with different techniques. The detailed analysis of the proposed method is described 
in the following section.

Figure 2: Flowchart of modified Bat algorithm
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Results and Discussion5.	
In this paper, a hybrid method was utilized to solve the unit commitment problem in the power system. An 
enhanced ANN and modified Bat algorithm is worked as a hybrid technique. The performance of the proposed 
hybrid technique was tested with the unit system. The enhanced ANN is used to train the historical data of 
wind power at the 24 hours. Here, the Genetic Algorithm (GA) is carried out to train the ANN and enhance the 
performance of ANN. By using Bat algorithm, the optimal parameter of the unit system is determined. From 
the optimal values, the cost function of the unit system is evaluated. The updating function of Bat algorithm 
is updated by using the GSA. Based on the proposed algorithm, the minimum value of the fitness function is 
evaluated. A comparative analysis is performed between the proposed and existing techniques to demonstrate 
the effectiveness of the proposed method. The performance of proposed method is evaluated and compared with 
the GA-ANN and Bat-ANN techniques.

The implementation parameter of the proposed method is tabulated in Table 1.
Table 1 

Implementation parameters

S.No. Description Algorithms Value
1 W(min, max) ANN (0,1)
2 Number of Hidden layer 10
3 Population size GA 50
4 Crossover rate 0.01

Mutation rate 0.03
5 Population size Bat 50
6 Loudness 1
7 Pulse rate 1
8 Qmin 0
9 Qmax 2

Number of Generations 100
10 Number of agents GSA 5
11 Rnorm 10

5.1.	 Performance Analysis of 10 unit System
In the sub section, the experimentation is carried out in test systems with ten generator units. Here, the Table 2 
and 3 illustrates that the data used in the experimentation and describes the load demand for the UCP [41, 42]. The 
modified Bat algorithm is utilized for solving the UCP in the system. The system parameters such as generation 
limits, cost coefficients, startup cost, and unit minimum ON and OFF time are used. The optimization of thermal 
generators combination and performance based on 24 hours load demand profile of the system. Allocating the 
generator incurs both fuel cost and startup cost in order to satisfy the load demand. Hence, the total operating 
cost for a thermal generator allocation is calculated that is a sum of both fuel cost and start up cost.

Table 2 
Description of the Ten Unit System under Analysis

No Pmin 
(MW)

Pmax 
(MW)

a 
($/h)

b 
($/MWh)

c 
($/MW2h)

Ton 
(h)

Toff 
(h)

DR 
(MW/h)

UR 
(MW/h)

IS 
(h)

CSC 
($)

HSC 
($)

CST 
($)

1 150 455 1000 16.19 0.00048 8 8 130 130 8 9000 4500 5
2 150 455 970 17.26 0.00031 8 8 130 130 8 10000 5000 5
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No Pmin 
(MW)

Pmax 
(MW)

a 
($/h)

b 
($/MWh)

c 
($/MW2h)

Ton 
(h)

Toff 
(h)

DR 
(MW/h)

UR 
(MW/h)

IS 
(h)

CSC 
($)

HSC 
($)

CST 
($)

3 25 162 450 19.7 0.00398 –6 6 90 90 -6 1800 900 4
4 20 130 680 16.5 0.00211 –5 5 60 60 -5 1120 560 4
5 20 130 700 16.6 0.002 –5 5 60 60 -5 1100 550 4
6 20 80 370 22.26 0.00712 –3 3 40 40 -3 340 170 2
7 20 80 370 22.26 0.00712 –3 3 40 40 -3 340 170 2
8 25 85 480 27.74 0.00079 –3 3 40 40 -3 520 260 2
9 25 85 480 27.74 0.00079 –3 3 40 40 -3 520 260 2
10 10 55 660 25.92 0.00413 –1 1 40 40 -1 60 30 0

Table 3 
Load demand for 24 hours

Hour Load demand (MW) Hour Load demand (MW)
1 700 13 1400
2 750 14 1300
3 850 15 1200
4 950 16 1050
5 1000 17 1000
6 1100 18 1100
7 1150 19 1200
8 1200 20 1400
9 1300 21 1300
10 1400 22 1100
11 1450 23 900
12 1500 24 800

Table 4 
Thermal generator unit’s status

Unit 
Time (h)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 0 0 1 0 1 0 1 0 0

4 0 0 1 0 0 0 1 0 0 1 1 1 1 1 0 0 1 0 1 1 0 0 1 0

5 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 0 0 0

6 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 0 0 0 0 1 0 0 0

7 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 0 0

8 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0



Mary P. Varghese and Amudha A.

International Journal of Control Theory and Applications 92

Table 5 
Power dispatch of the generator units

Hour
Units power dispatch (MW)

1 2 3 4 5 6 7 8 9 10
1 445.98 0 0 0 152.32 0 0 0 0 0
2 410.92 264.59 0 0 0 0 0 0 0 0
3 400.02 334.42 0 13.59 0 0 0 0 0 0
4 451.52 448.31 0 0 0 0 0 0 0 0
5 414.31 399.21 0 0 127.64 0 0 0 0 0
6 339.21 435.76 110.02 0 141.05 0 0 0 0 0
7 423.78 413.69 0 107.51 110.84 0 0 0 0 0
8 376.34 440.28 113.21 0 149.42 0 0 0 46.38 0
9 447.01 428.95 115.99 0 149.34 56.97 0 0 0 0
10 423.03 404.96 129.01 109.52 155.97 0 74.76 45.09 0 0
11 450.96 450.32 118.94 120.03 155.68 79.21 0 0 0 43.37
12 445.91 449.98 126.95 122.24 130.07 76.32 77.24 0 0 0
13 409.94 436.82 114.82 98.93 149.92 0 0 0 0 37.96
14 451.23 374.86 108.74 115.07 142.93 0 0 53.08 0 0
15 438.28 410.54 104.23 0 118.24 59.06 0 0 0 0
16 453.37 421.98 0 0 0 71.53 0 0 0 0
17 425.59 348.35 0 128.43 0 0 0 0 0 0
18 451.64 448.04 128.01 0 0 0 0 0 0 0
19 441.6 440.24 0 120.99 0 0 79.42 0 0 0
20 445.36 430.13 115.03 122.04 143.01 0 77.08 0 0 38.10
21 453.38 453.14 0 0 154.04 66.08 0 0 0 51.05
22 421.98 407.21 113.21 0 0 0 45.43 0 0 0
23 360.82 341.32 0 79.46 0 0 0 0 0 0
24 423.7 369.24 0 0 0 0 0 0 0 0

Table 6 
Wind probability for 24 hours

Hour Wind probability Hour Wind probability
1 0.8269 13 0.9502
2  0.8730 14 0.9547
3 0.8816 15 1
4 0.8373 16 0.8976
5 0.9250 17 0.9430
6  0.8930 18 0.8884
7 0.9425 19 0.9401
8 0.9207 20 1
9 0.9624 21 0.9133
10 1 22 0.9289
11 0.9630 23 0.9721
12 0.9552 24 0.9033
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In the ANN technique, the wind and load demands are trained. We assume that the uncertain wind power 
output follows a multivariate normal distribution with the forecasted value. To generate each individual historical 
data sample, we use ANN training for getting optimal outputs. Based on the wind probability and load demands, 
the modified Bat algorithm is utilized to get the optimal solution. The generator units are scheduled using the 
proposed method as per the load variation and the wind probability. The Table 4 indicates the on/off status of 
the generators for 24 hours using the binary variables. The generator is on at the particular instant, which is 
denoted as 1 otherwise 0. The scheduled thermal generators are allowed to generate the power based on the wind 
power probability. The required generator power using proposed method based on the wind power probability at 
24 hours is described in Table 5. Here, the multi-objective function plays an important role, because it minimizes 
the fuel cost and start-up cost. The wind power probability for 24 hours is illustrated in Table 6, which varies 
between 0.8269 and 1.

Table 7 
Cost parameters of the scheduled generator units

Time (h) Fuel cost ($) Starting-up cost ($) Total cost ($)
1 11482.24 0 11482.24
2 13081.31 0 13081.31
3 15043.04 0 15043.04
4 17060.21 0 17060.21
5 18253.31 0 18253.31
6 20714.07 450 21164.07
7 21157.14 0 21157.14
8 23703.53 1140 24843.53
9 24416.18 0 24416.18
10 29204.19 1410 30614.19
11 30101.37 0 30101.37
12 30144.86 0 30144.86
13 22220.07 50 22270.07
14 23141.08 0 23141.08
15 21204.05 270 21474.05
16 16142.34 0 16142.34
17 16410.42 0 16410.42
18 20046.04 0 20046.04
19 21096.89 1240 22336.89
20 29104.89 2560 31664.89
21 24264.96 320 24584.96
22 20110.07 1420 21530.07
23 15125.31 1040 16165.31
24 15040.96 0 15040.96

It is used to analyze the power dispatch of unit system according to their desired constraints. Depending 
on the wind power generation, the thermal generator cost has been minimized. The cost parameters attained 
from the given generator schedule is illustrated in Table 7, which shows the fuel cost, start-up cost and 
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the total cost. Table 7 gives power dispatch details of the ten – unit system along with the startup cost 
and fuels cost for 24 hours. Table 8 gives the details of the sum of total operating cost incurred, when 
testing with different techniques. The 24 hour load demand is given in Figure 3. Based on the objective 
function, the generator allocation with the amount of power dispatching is performed. However, the 
combination of generator units is optimized by the proposed technique to minimize the cost for load demand 
conditions.

Table 8 
Comparison results for 10 unit system

Techniques Minimum Operating cost ($)
ELR[43] 563977
GA[44] 565825
SA[45] 565828
UCC-GA[46] 563977
QEA-UC[47] 563938
ICA[48] 563938
NSGA-II+DLS[49] 563938
GA-ANN 523214.3
BAT-ANN 516347.9
Proposed hybrid technique 508168.5

From the illustrations, we can understand that the first hour utilizes the minimum operating cost of 
$11482.24 at the load demand 700MW and the wind probability is 0.8269. The maximum operating cost of $ 
31664.89 is attained from the 20th hour at the load demand 1400MW and the wind probability is 1. Then the 
effectiveness of the proposed method is compared with the GA-ANN and Bat-ANN techniques and the other 
methodologies available in the literature. The total cost attained from the different techniques is described 
in Table 8. The cost comparison is graphically illustrated in Figure 4, which clearly shows that the proposed 
method effectively selects the optimal generating unit combinations with reduced cost compared to the other 
techniques.

The convergence characteristics of the proposed method compared with the GA-ANN and Bat-ANN have 
been described in Figure 5. The convergence performance is analyzed for 100 numbers of iterations.

Figure 3: Load demand for 24 hours
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Figure 4: Total operating cost of different approaches

Figure 5: Convergence characteristics of the 
different approaches

Hence, it can be demonstrated that the proposed method is more effective than the existing methods in 
solving the unit commitment problem.

Conclusion6.	
In this paper, we briefly analysed about the hybrid technique which was proposed for solving the UCP in the system. 
The hybrid technique is the combination of enhanced ANN and modified Bat algorithm. Here, GA was used for 
training the ANN and enhancing their performance. Bat algorithm was utilized to minimize the total operating 
cost of unit system. Here, the ten unit system was considered, which contains the wind power probability, system 
and generating unit constraints. The proposed method was implemented in Matlab/Simulink platform. Using the 
proposed algorithm, the optimized the cost function of UCP are determined. The performance of the proposed 
method is evaluated and compared with the existing methods such as, GA-ANN and Bat-ANN respectively. The 
proposed technique was regularly employed to produce the useful solutions, which are competent enough for 
scheduling generators with large scale constraints to work out large scale optimization problems. The proposed 
hybrid algorithm obtained lesser cost than other methods available in the literature, when validated on the ten-
unit test systems. The validation results have proved the dominating performance of the proposed methodology 
over the other techniques that are reported in the literature.
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