
Implementation of Memory Efficient Semi-Parallel LDPC
Decoder using Iterative Message Passing Algorithm

Shruti Bamnote1, Sandeep Kakde2 and Atish Khobragade3

1-2Y C College of Engineering, Nagpur, India. Email: 1shrutibamnote0101@@gmail.com, 2sandip.kakde@gmail.com
3Rajiv Gandhi College of Engg., Nagpur, India. Email: atish_khobragade@rediffmail.com

Abstract: LDPC decoding for wireless application is an intensive operation which is done in a computational manner .It
requires millions of messages to be passed to achieve acceptable performance. This paper gives an overview regarding
implementation of a LDPC decoder using Iterative Message Passing Algorithm, implemented in HDL Verilog and synthesized
in CMOS 0.180 m technology. The implementation utilizes block-level Semi parallelism in order to achieve less memory, high
throughput and error-correcting performance, at the cost of large silicon area. Newer silicon technologies allow for higher
frequencies; the architectural implications of this are explored. The Variable Node’s are each connected to two RAM’s, one
holding the LLR values and one holding the sum of the incoming messages from the Check Node’s. Each Variable Node
holds adders to combine incoming messages and create the outgoing message, and registers to hold the I/O data and the
messages. Here Single-port RAM’s were used, requiring 2 cycles for each message transmission, but using less silicon and
allowing more flexibility in terms of folding logic or multi-cycle paths, compared to dual-port RAM’s.

Keywords: LDPC codes; Memory Efficient; Belief Propogation algorithm; Check Node, Variable Node, iterative
decoding.

ISSN: 0973-5704International Journal of Computing and Applications
Volume 13, Number 1, (January-June 2018), pp 171-176

© Serials Publications, New Delhi (India)

used for memory efficient implementation of LDPC
Decoder.

Belief Propogation algorithm2.	

Belief-propagation (BP) is the most commonly and
widely used algorithm for decoding LDPC codeword’s,
and is the one used in this project. This algorithm is
formed around the idea of iterative message passing along
all the edges of a Tanner graph, as illustrated in Figure 1.

vn[0]

cn[0]

vn[1] vn[2]

cn[1] cn[1]

vn[3] vn[4] vn[5]

vn[3] = p[0] = vn[0]^vn[1]
vn[4] = p[1] = vn[1]^vn[2]
vn[5] = p[2] = vn[0]^vn[2]

Figure 1:	 Simple Tanner Graph

In the BP algorithm, parity bits and likelihood
values are conceded as messages from all variable

Introduction1.	

Low-Density Parity Check (LDPC) coding is a form
of error coding which was introduced by R. Gallager,
that can achieve performance close to the Shannon
limit, exceeding the performance of Turbo codes [3].
The coding scheme was introduced in the early 1960’s
and it has gained favor recently because of its excellent
performance and lack of patent rights. Many recent
standards include optional or mandatory LDPC coding
methods, and among these is the second generation
Digital Video Broadcasting standard for satellite
applications [3]. This application is creative by low
latency requirements, so the standard employs tough
coding over codeword’s 64,800 bits long. Although the
standard was designed for low complexity in hardware,
the length of the codeword’s makes this the most
computationally intensive of LDPC codes described in
current standards. There are different message Passing
Algorithms are available for decoding the messages.
Belief Propagation is one of the important algorithms

172 Shruti Bamnote, Sandeep Kakde and Atish Khobragade

the Min-Sum algorithm uses the least likely received
message as an approximation of the result for all
edges but one. The message created for the edge
which transferred the smallest LLR must be calculated
separately, since the received result on any edge may
not be used in the calculation of the message that will
flow back along that same edge. For the edge that
transferred the smallest LLR, the next-to-smallest LLR
is used as an approximation. The Min-Sum approach
allows for simpler arithmetic and reduces storage
requirements, since only two LLR values are stored.

It was found in [8] that a non-linear message
representation improves the compression of messages
while retaining the same performance as a linear
representation. The simulations carried out for
DVB-S2’s LDPC specification could not reproduce
this result, with BER results for log-scale messages
uniformly inferior to the linear version. Simulations
were carried out using logarithmic tables of various
lengths, using bases between 1.25 and 2.0, and
maximum values the same or twice the magnitude
of the linear tables. Another coding scheme was
simulated, with the goal of improving the granularity
of the messages by removing a redundant signed
zero representation. In this encoding scheme, the
coded inputs were offset by positive or negative 1,

so that +0 represented
1
2b ¥ clip threshold and -0

represented a negative number of the same magnitude.
This offset-linear scheme retained symmetry around
zero and improved the granularity of the messages.
Unfortunately, while offset-linear encoding did have
better performance under certain EbN0 values,
the performance degraded relative to the linear
implementation as EbN0 increased. It is intended to
deliver a quasi-noise free stream, so the codeword
input to the BCH decoder should have an error rate of
at most 10-4. By that criterion, offset-linear encoding
had poorer performance under all usable conditions,
compared to direct linear encoding.

It was found in [4] that clipping the received
signal at ±1.25 can improve performance under some
circumstances, but can also introduce a noise floor. No
effort was made to find the optimal clipping value, as

nodes to all connected check nodes. The initial
likelihood values are derived from the channel quality
and the Euclidian distance between the received
symbols and the nearest constellation points. Messages
are conceded as log-likelihood ratios (LLR’s), since
representing probability ratios in this form allows for
simpler arithmetic. The parity equations all estimate to
zero, so the check nodes determine the expected parity
bits at each connected VN, based on the signs of each
of the other connected nodes. The expected parity bits
are passed to each connected variable node, along with
likelihood values. The VN’s in turn use these values to
update the VN parity bits and likelihood values, and
the cycle begins again. In this way, the messages tend
to strengthen bits which are in agreement with parity
equations and correct bits which are in error.

vn[0]

cn[0]

vn[1] vn[3]
a)

vn[0]

cn[0]

vn[1] vn[3]

vn[0]

cn[0] cn[1]

b)

c)

Figure 2:	M essage Passing. In (a), parity bits and likelihood
ratios are passed from the variable nodes to the
check nodes. In (b), the received messages are
pooled to create messages for the variable nodes,
containing most likely parity values and the
likelihood of that value being correct, based on the
messages received from the other VN’s. (c) shows
how the variable nodes (in this case, VN[0]) uses
the received data to send updated parity values and
likelihood ratios in the following iteration.

The ideal BP implementation combines the
messages from the variable nodes to create optimal
reliability messages. For a parallel implementation,
each computation node would have to implement
this function. It was shown in [4] that the Min-Sum
algorithm can provide alike performance to the
ideal implementation with far lower computational
complexity. Rather than combining the likelihood
values optimally in the check nodes for each edge,

173Implementation of Memory Efficient Semi-Parallel LDPC Decoder using Iterative Message Passing Algorithm

clipping is implemented outside of the LDPC decoder,
in the quantization/LLR function.

VLSI Architecture3.	

LDPC decoder uses codewords of up to 64,800 bits in
length, and with more than 280,000 edges in the Tanner
graph. Passing this lots of messages in parallel would be
impractical, and would provide far higher performance
than what is requisite. For this project, a performance
level of 135Mbps was targeted, and it was assumed
that the synthesized result would run at 200MHz or
faster. Single-port RAM’s were used, requiring 2 cycles
for each message transmission, but using less silicon
and allowing more flexibility in terms of folding logic
or multi-cycle paths, compared to dual-port RAM’s.
Based on these assumptions, the minimum degree of
parallelism was calculated:

	
30 2 233 135

200

iteration
codeword

kmessage
iteration

Mbit
s

Mcyc
¥ ¥ ¥

lle
s

message
cycle

kbit
codeword0.5 64

300
¥ ¥

ª

The standard is written such that bits are arranged
in groups of 360 bits, so this is the degree of parallelism
that was chosen. Increasing the frequency or using
dual-port RAM’s could allow for 180x, 90x or 45x
parallelism for reduced area, with some increase in the
complexity of the control logic.

Central to the design is a shuffle network, which
shifts 360 input messages to 360 outputs through a
3-stage pipeline. The shuffle network has a multiplexer
at each input, to pick from the check node and the
variable node messages. The VN’s are each connected
to two RAM’s, one holding the LLR values and one
holding the sum of the incoming messages from the
CN’s. Each VN holds adders to combine incoming
messages and create the outgoing message, and
registers to hold the I/O data and the messages.

The CN’s are each connected to a single, wide
RAM holding the two smallest of the incoming LLR’s
during the current iteration, the signs of all incoming
messages, the locations of the minimum values, and
the parity result of all the incoming messages. The
message to the VN’s are produced by reading one of
the two min-LLR values, along with the expected sign
value for a particular edge.

The control module reads a ROM to fetch a shift
value for the shuffle network and a write/read address
for the check nodes. In the forward direction, for
message passing from VN’s to CN’s, these values are
used directly. In the reverse direction, the shift value
is negated to allow messages to flow along the same
edge in both directions. The control module also needs
to compensate for delays in the shuffle network, VN’s
and CN’s. To define an LDPC code which could be
efficiently implemented in hardware, but a regular edge
pattern would have provided poor performance. To
create a pseudo-irregular edge pattern, a scrambling
factor was introduced, spreading edges throughout the
codeword. This scrambling factor, q, is proportional
to the number of check nodes, and is defined as

q
n k

=
-

360
. In the standard, the edges are defined in

groups of 360 variable nodes, with each edge starting
at a vn[m], where m is the relative position within the
360-node group, and ending in check node x + (m ¥ q)
mod(n - k), where x is a base parity location, defined
in appendices of the standard. For instance, for the
1/4 code rate, the code parameters (n, k) are (64800,

16200), and q =
-

=
64800 16200

360
135.

Variable Node Processing Unit

Shuffler Block Unit

Input Register Block

Check Node Processing Unit

Output Register Block

C
ontroller Block U

nit

Figure 3:	T op-Level Block Diagram

To allow parallel access to all 360 variable nodes in
a group, the VN RAM’s are arranged as shown below:

The first edge defined in the standard for vn[0] is
23606. The corresponding edge for vn[1] is 23606 +
(1 ¥ 135) mod (n - k) = 23741. For this example, to
allow simultaneous message passing from: {vn[0], vn[1]

174 Shruti Bamnote, Sandeep Kakde and Atish Khobragade

... vn[359]}, the following CN memory locations must
be made available:

0 1 2 357 358 359
360 361 362
720 721 722

717 718 719
1077 1078 1079

1080 1081 1082 1437 1438 1439

vn[0] vn[1] vn[2]
vn
[357]

vn
[358]

vn
[359]

addr=0
1
2
3

n-3 n-2 n-1179 n-360 n-359 n-358

Figure 4:	V ariable Node Memory Organization

{cn[23606], cn[23741] ... cn[(23606 + 135 * 359)
mod(n - k)]}

The need to access {x, x + q, x + 2q ...} suggests the
following memory organization in the Check Nodes
(CN’s):

0 q 2q 357q 358q 359q

1 q+1 2q+1
2 q+2 2q+2

357q+1 358q+1 359q+1

357q+2 358q+2 359q+2

3 q+3 2q+3 357q+3 358q+3 359q+3

cn[0] cn[1] cn[2]
cn
[357]

cn
[358]

cn
[359]

addr=0
1
2
3

358q-1 359q-1 360q-1q-1 q-1 2q-1 3q-1

Figure 5:	C heck Node Memory Organization

This pattern is used through the parity encoding
of all the data bits in the codeword, but in the end
the parity bits are combined in a different manner.
The first parity bit, vn[k] is encoded into the check
equation cn[1], then vn[k + 1] is encoded into cn[2],
and so on until the end of the codeword. Storing all
messages in the VN’s is requisite for the optimal result
by summing the received messages, but excluding the
message received on the edge being calculated. Storing
all the upstream messages would require a large RAM
to store up to 30 messages at each location in each VN.
To avoid the use of these large RAM’s, the CN’s store
the messages sent in the previous upstream message,
and subtract that value from the received downstream
message. When neither upstream nor downstream
message saturates to the full LLR value, this approach
provides identical results to the ideal approach. When

one of the messages saturates, some distortion occurs.
In particular, for the case when both upstream and
downstream messages are saturated, the resulting
offset-message received in the CN will be zero, even
though the VN sent the maximal LLR. This problem
is diminished by limiting the upstream message to
one fewer bit than the downstream messages. This
approach allows for the use of small RAM’s in the
VN’s, but reduces the performance by reducing the
number of effective message bits by one.

The use of layered decoding was considered for
this project, but was not appropriate for the projected
architecture. Layered decoding can reduce the number
of required iterations by updating VN outgoing
messages during each iteration and using this updated
value to provide improved downstream messages to
the CN’s. This approach requires shifting the message-
passing direction many times during a single iteration
to update the VN’s with the latest messages. It also
implies that the messages are passed in row-order, (in
terms of the parity matrix), so that all messages destined
for a single check node are passed around the same
time. Switching directions has a significant (at least 5
cycle) penalty in the implemented design, increasing
the period of each iteration. For instance, if each check
node in the Tanner graph were attached to 4 edges,
reversing the direction after each complete check-node
update would increase each iteration’s period by more
than 60%. Passing messages in parity matrix row-order,
rather than column-order, as is currently implemented,
would require a very different memory arrangement
than the one proposed, and possibly a number of
architectural changes.

HDL Design Results4.	

LLR data is first loaded serially into the variable nodes
through a chain of registers. The signal, llr_access,
turns off message passing and connects the chain
of registers, with the signal llr_din_we exchange the
data in the RAM for the data in the register chain.
For instance, if llr_addr were held to zero and the
llr_din_we were driven high, the contents of the chain
of registers would be written into address zero, and the
contents of each of the RAM’s at location zero would

175Implementation of Memory Efficient Semi-Parallel LDPC Decoder using Iterative Message Passing Algorithm

be encumbered into the chain. In this manner, reads
and writes from the module can be consummate at
once. Data should be written in the format described
in Figure 6.

After data has been written into the decoder, the
message passing algorithm may begin. This is controlled
by the signal “start” which loads parameters, including
the mode and the number of iterations, and starts the
decoding process. The modes are as follows:

Table 1
Allocation of Memory

Mode number Description n k
0 1/4 normal 64800 16200
1 1/3 normal 64800 21600
2 2/5 normal 64800 25920
3 1/2 normal 64800 32400
4 3/5 normal 64800 38880
5 2/3 normal 64800 43200
6 3/4 normal 64800 48600
7 4/5 normal 64800 51840
8 5/6 normal 64800 54000
9 8/9 normal 64800 57600
10 9/10 normal 64800 58320
11 1/5 short 16200 3240
12 1/3 short 16200 5400
13 2/5 short 16200 6480
14 4/9 short 16200 7200
15 3/5 short 16200 9720
16 2/3 short 16200 10800
17 11/15 short 16200 11880
18 7/9 short 16200 12600
19 37/45 short 16200 13320
20 8/9 short 16200 14400

The system controller manages the swap over of
messages between the variable and check nodes by
controlling the VN and CN write and read addresses
and the shift value of the shuffler.

The controller reads the edge destinations from the
ROM and creates addr_cn and addr_vn (the check and
variable node addresses), along with the write enable
signals based on those edges. The basic state machine
operation is as follows:

IDLE

Jump Rom

CMD

Message
Send

Store
Message

Parity
Send

Store
Parity

IDLE

Parity-2
Send

Store
Parity-2

End
Process

Switch
Directions

Figure 6:	 State machine in module iocontrol

The state machine ignores delays in the shuffler,
VN’s and CN’s, and relies on delay registers somewhere
else in the module “iocontrol” to bring into line the
control signals properly. The shuffler muxes the CN
and VN messages into a pipeline of shifters, allowing
for any rotation in three cycles. The signal “first_half”
controls the multiplexer, using “vn_concat” in the first
half of each iteration, and “cn_concat” in the second
half.

Table 2
Comparison with Existing Work

LDPC Decoder
EDA TOOL:XILINX ISE 14.1

FPGA FAMILY: Virtex 5
Memory Implementation

Module Name Block RAM
Ref. [5] 36

Proposed Schedule 2

Conclusion5.	

In this paper, efficient memory utilization was shown
by using semi parallel architecture. Reorganizing the
memories in the current architecture is a difficult
task, since that implies accessing and writing data at

176 Shruti Bamnote, Sandeep Kakde and Atish Khobragade

different rates in the VN’s and CN’s. Another solution
might be to combine the VN’s and CN’s, and to store
data for the two functions in a common RAM. Code
rates which require large storage in the CN’s require
less storage in the VN’s, and vice-versa, so storing
the data together makes better use of RAM. Using
the current logic, such a change would require 3-port
RAM’s with two simultaneous writes to different
addresses.

References
Engling Yeo, Payam Pakzad, Borivoje Nikolić, and [1]	
Venkat Anantharam. “High Throughput Low-Density
Parity-Check Decoder Architectures”2001 IEEE.

R.G. Gallager, [2]	 Low Density Parity Check Codes.
Cambridge, MA: MIT Press, 1963.

D.J.C. MacKay and R.M. Neal. “Near Shannon limit [3]	
performance of low density parity check codes.”
Electronics Letters, Volume 32, pages 1645-1646, Aug
1996.

Karkooti, Marjan, and Joseph R. Cavallaro. “Semi-[4]	
parallel reconfigurable architectures for real-time
LDPC decoding.” In Information Technology:
Coding and Computing, 2004. Proceedings. ITCC
2004. International Conference on, Vol. 1, pp. 579-
585. IEEE, 2004.

Chen, Yanni, and Dale Hocevar. “A FPGA and ASIC [5]	
implementation of rate 1/2, 8088-b irregular low density
parity check decoder.” Global Telecommunications
Conference, 2003. GLOBECOM’03. IEEE. Vol. 1.
IEEE, 2003.

Shimizu, K., Ishikawa, T., Togawa, N., Ikenaga, T., & [6]	
Goto, S. (2006, May). A parallel LSI architecture for
LDPC decoder improving message-passing schedule.
In 2006 IEEE International Symposium on Circuits
and Systems (pp. 4-pp). IEEE.

A.H. Banihashemi, J. Zhao and F. Zarkeshvari, [7]	
“On implementation of min-sum algorithm and its
modifications for decoding LDPC codes,” IEEE
Trans. Comm., Nov 2004.

J. K. S. Lee, J. Thorpe, J. Hawkins, “Memory-Efficient [8]	
Decoding of LDPC Codes,” IEEE Intl. Symposium
on Information Theory, Sep 2005.

Kakde, Sandeep, Atish Khobragade, and MD [9]	
Ekbal Husain. “FPGA Implementation of Decoder
Architectures for High Throughput Irregular LDPC
Codes.” Indian Journal of Science and Technology 9,
No. 48 (2016).

“High Throughput Low-Density Parity-Check [10]	
Decoder Architectures”, Engling Yeo, Payam
Pakzad, Borivoje Nikolić, and Venkat Anantharam
Department of Electrical Engineering and Computer
Sciences, University of California, Berkeley, CA
94720-1770.

Low-Power VLSI Decoder Architectures for LDPC [11]	
Codes * Mohammad M. Mansour and Naresh R.
Shanbhag iClMS Research Center, ECE Dept.
Coordinated Science Laboratory University of Illinois
at Urbana-Champaign 1308 W. Main Street, Urbana,
IL 61 801.

Kakde, Sandeep, and Atish Khobragade. “VLSI [12]	
Implementation of a Rate Decoder for Structural
LDPC Channel Codes.” Procedia Computer Science
79 (2016): 765-771.

Layout-Driven Memory Synthesis for Embedded [13]	
Systems-on-Chip Luca Benini, Member, IEEE, Luca
Macchiarulo, Alberto Macii, and Massimo Poncino,
Member, IEEE.

Kakde, Sandeep, and Atish Khobragade. “HDL [14]	
Implementation of an Efficient Partial Parallel LDPC
Decoder Using Soft Bit Flip Algorithm.”

European Telecommunications Standards Institute. [15]	
Digital Video Broadcasting (DVB); Second generation
framing structure, channel coding and modulation
systems for Broadcasting, Interactive Services, News
Gathering and other broadband satellite applications;
ETSI EN 302 307 V1.1.2 (2006-06).

Kakde, Sandeep, and Atish Khobragade. “Performance [16]	
Analysis of a High-Throughput LDPC Decoder Using
Sum Product and Min Sum Algorithm.” Int. J. Com.
Dig. Sys 6, No. 2 (2017).

