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Variational Methods of Analysis of Signals 
Based on the Frequency of Ideas
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Abstract :  The article considers the approach to the signal analysis on the base of variational principles 
refl ecting the views of the effi ciency of the results obtained. These principles are formed by means of the 
natural language of frequency domain representations for the theory and practice of the signal processing, 
which allows to reach the adequacy from the point of view of the refl ection of the physical entity of analysis 
and synthesis problems. The results of the problems solution of accurate values calculation of the energy 
shares of signals parts in an arbitrary frequency domain (accurate time-frequency analysis) were obtained, 
the criterion was formulated and the corresponding solution of the frequency fi ltration and optimal subband 
transformation (optimal subband frequency analysis) was obtained.
Keywords : Variational principles of the signal analysis on the base of frequency presentations, accurate 
values of energy shares of signals parts in an arbitrary frequency domain, optimal subband frequency analysis.
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1. INTRODUCTION AND PROBLEM ASSIGNMENT

A signal is understood as a time function, characteristics of which contain data intended for the participants 
of the information exchange in an encoded form. The analysis of signals provides the distinguishing of 
these data on the base of the data processing.

Frequency representations are most often used as a base of the signal analysis algorithm. The analysis 
procedure of signals often leads to the distinguishing their components possessing these or those frequency 
properties, for example, the formation of spectrogram, fi ltration and subband transformations.

Solving of the specifi ed problems shall satisfy some criteria of optimality. Such conditions are formed 
in this work on the basis of some variational principles allowing to build up the appropriate processing 
methods. It is the mathematical apparatus that determines the particular algorithms of data processing and 
reachable effi ciency of the problem solving.

Frequency representations as a base of the signal analysis

Apparently, the frequency representations of the following type are most widely used in the theory of 
signals and at the development of the methods of its synthesis and analysis [1-5]:

 f(t) = F( )exp( ) / 2j t d




    , (1)

where f(t) is a function with a fi nite or unbounded defi nition domain t  [a, b]. In the context of the 
question considered of the analysis and synthesis of signals it is suffi cient to consider Fourier transform 
(main frequency characteristics) as the function F()
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 F() = ( ) exp( )
b

a

f t j t dt   (2)

And the variable   = 2v
is commonly called a circular frequency and that refl ects the periodicity (cyclicity) of the changes 

of the initial function components f(t) with the change of the argument t, which means that v is a value 
opposite to the period. According to this, the Fourier transform is often called a frequency characteristic 
of the studied function. 

Concerning the content, the role of frequency representations in the problems of the analysis and 
synthesis of the signals is determined not only by the mathematical dualism of the representations (1) 
and (2), but also by the fact that the representation (1) is the expression of the superposition principle in a 
general case of the infi nite number of the periodic components to which this initial function is expanded.

Parseval equation is true 

 2 ( )
b

a

f t dt  = 2| F( ) | / 2d




   , (3)

and can be easily transformed into 

 2 ( )
b

a

f t dt  = 2

0
| ( ) | / 2

r
r D

F d


 

    , (4)

where domains Dk determine the partition of the axes of the frequencies
 Dr = [–r + 1, –r]  [r , r + 1] 0 = 0. (5)

Thus, it is possible to perform the frequency analysis of the energy characteristics of the studied 
function because the integrals determine the shares of energy belonging to the selected frequency domains. 

 Pr = 
2

D

| F( ) | / 2
r

d


    (6)

In particular, the frequency domains can be distinguished where the biggest energy share is concentrated, 
or almost periodic components of the initial function which energies are concentrated in the different 
domains, if the last ones are rather narrow in comparison with the value
 D = 2/(b – a).

The subintegral function in the right part of the ratio (3) is often called the spectral power density that 
emphasizes the “physical” sense of the characteristic. At the same time, it seems more reasonable to use 
the integrals of a type (6) as the physical characteristic of the signals. 

Computer processing of the signals leads to the necessity of the domains discretization of the studied 
functions. Further the use of the equidistant discretization with a constant pitch is presupposed when

 tk + 1 = tk + .
For the simplicity of the designation, we suppose
 a = 0 ; b = T ;
 tk = (k – 1)* ;
  = T / (N – 1) ; (7)
 k = 1, ... , N ;
 fk = f(tk).
For the discretized (discrete) functions, the analogue of the representation (1) is 

 fk = F ( )exp( ( 1)) / 2 , /d j k d




          (8)
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and the Fourier transform is determined by the ratio 

 Fd() = 
N

1
exp( ( 1))k

k
f j k



    (9)

and the Parseval equation is the following

 
N

2

1
k

k
f


  = 2| F ( ) | / 2 , /d d





        (10)

The natural analogue of the determination (6) of the energy share of the discretized function that gets 
into the selected frequency domain is 

 Pr = 
2

D

| F ( ) | / 2
r

d d


    (11)

Here it is the same as above
 Dr = 1 1 0[ , ) [ , ), 0r r r r         
but the equation shall be satisfi ed
 r + 1    = / (12)
It is evident that the main problem is to provide the adequacy of the conclusions of the frequency 

properties of the studied functions on the base of the processing of its discretized values. The Nyquist 
theory gives the answer to some extent; one of its results is the ratio connecting the Fourier transforms of 
the continuous function and its discretized variant.

 Fd() = F( 2 / ) / ,| | /
k

k


  

         (13)

It follows herefrom that at the fi niteness of the domain of the Fourier transform of the continuous 
function and the selection of the discretion interval value, on the assumption of 

 F(/ + ) = 0,  > 0, (14)
for the corresponding Fourier transforms the following equality will be performed 
 Fd() = F() / , ||   / . (15)
It should be mentioned that the condition (14) for the functions with a fi nite domain can be performed 

approximately only. In particular, the Fourier transform of the function with the fi nite domain of the 
defi nition is the entire frequency function, and, consequently, it can be equal to zero in any frequency 
domain of the fi nite length.

It is reasonable to use the following energy share as an accuracy measure of the condition fulfi llment 

 P = 2 2

/

| F( ) | / 2 / || ||d f


 

  
which shall be compared with the unit; here || f ||2 is the Euclidean norm (energy) of the signal.

Thus, one of the most important tasks of the analysis of signals is the defi nition of accurate values 
of shares of their energies in the set frequency domains on the base of the variational principle of the 
inaccuracy minimization.

Solution of the calculation problem of the accurate values of the energy shares

It can be shown that the substitution into the defi nition (11) of the right part of the ratio (9) allows to obtain 
the representation for the part of energy Pr concentrated in the frequency domain Vr 

 Vr = 1 1 0[ , ) [ , ), 0r r r rv v v v v    

of the studied vector f
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 Pr = 
2 '

V

| F( ) | / 2 A
r

rd f f


   
 

 (16)

where Ar is a subband matrix, Ar = {ar
ik},

 ar
k = 1(sin( ( )) sin( ( ))) /( ( )); , 1,.., N.r rv i r v i k i k i k        (17)

Let us consider some properties of the subband matrices Ar.
It is obvious that a subband matrix is symmetrical and nonnegative defi nite. Therefore [6-7], it 

possesses the complete system of the orthogonormal eigenvectors corresponding to the nonnegative 
eigenvalues and satisfying to their ratios 

 kr krq


 = Ar krq  ;

 ( , )kr irq q 
 = 

N

1
* 1, ;r r

mk mi
m

q q i k


 
 ( , )kr irq q 

 = 0, ;i k
 1r > 2r > ... Nr   0;

 Ar = ' 'GLGkr kr krq q
 

   

 G =   , 1,.., Nkrq k 


 L = diag (1r ,2r , ..., Nr).
Besides, the Fourier transforms of the eigenvectors possess the double orthogonormality 

 
V

Q ( )Q ( )
r

kr ir d


    = 0, i  k,

 Q ( )Q ( )kr ir d




    = 0, i  k,

 
2| Q ( ) | / 2kr d





    = 1, k = 1, 2, ... , N,

 kr = 2

V

| Q ( ) | / 2
r

kr d


    (18)

Thus, in the discrete case the eigenvalues are equal qualitatively to the energy shares concentrated in 
the selected frequency domains and corresponding to their eigenvectors, which is important for the signal 
synthesis.

As a consequence, we obtain the inequality that determines the range of changes of the eigenvalues,
 0 < kr  1, k = 1, ... , N.
It is easy to obtain the equality from the ratios (17) 

 trec Ar = 
N

1
N / Rkr r

k
  ,

where Rr =  / (vr + 1 – vr).
The inequality is performed due to the properties of the subband matrix 

 det Ar = 
N

N

1

1/ Rkr r
k

 
from which and from the inequality (18) it follows that some of the eigenvalues will be very small. 
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The calculations show that the eigenvalues, the indices of which exceed the value 
 Jr = 2[N/2Rr] + 4 = M + 4,

are negligible in comparison with the unit (square brackets means the integral part of the value). Therefore, 
the representation of the subband matrix with a suffi cient degree of accuracy can be replaced by the 
following approximation 

 Ar 
J

' '
1 1 1

1
G L G

r

kr kr kr r r rq q
 

   

Therefore, Pr 
J

2
J

1
P

r

r kr kr
k

  
where kr = ( , )krq f

 .

Relative computational error of the energy shares is defi ned by the equation 

 r = 
N N

2 2
J

J 1 1 J 1
1 P / P / N / R

r r

N

r r kr kr ir ir kr
k i k    

         

Optimal fi ltration

The other example of the more frequently used procedure is the division (fi ltration) of the signals for 
additive components that are defi ned by the use of the frequency representations. 

Let f(t), t [0, T] be a continuous part of empiric data. We designate its Fourier transform Fd(). These 
data shall be divided into additive components 

 f


 = 1 2;f f
 

so that the fi rst of them in its turn possesses the Fourier transform that satisfi es the conditions 
 Fd1() = Fd(),   Dk ;
 Fd1() = 0,   Dk ;

 1f


 = (f11, ... , fN1)’ ;

 Dk = [– k + 1, – k] [ k, k + 1), 0 = 0.
It is clear that these conditions express the ideal requirements to the obtained components as a result 

of the fi ltration that can be satisfi ed approximately only.
Therefore, the implementation of the variational principle of error minimization of the approximization 

to the ideal case is a natural approach 

 
2

1S ( , )f f
 

 = 
2 2

1 1
V V

| F ( ) F ( ) | | F ( ) | min ,
r r

d d dd d
 

       

where Fd1() = 
N

1
1

exp( ( 1) )k
k

f j k


   .

 '
1f


 = Ar f


. (19)
Solution (19) has an important property

 fi1 = 
V

F( )exp( ( 1) ) / 2 , 1,.., N
r

j i d i


        (20)

Thus, the components of the vectors obtained as a result of the optimal fi ltration are determined only 
by the signal energy in the corresponding frequency domain. This property distinguishes profi tably the 
offered method of fi ltration from the use of fi nite impulse response fi lters [8-10].
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2. CONCLUSION

It was recommended to use the characteristic of the energy share in the set frequency domain as a base 
for the analysis of signals. This allowed to obtain the subband matrices that are adequate mathematical 
apparatus of the problem solution of signal analysis on the base of the frequency representations. 
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