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Implementation for Synchronization of 
Chen and Liu-Yang Chaotic Systems using 
SMC and Active Control Schemes
Piyush Pratap Singh* Jay Prakash Singh** and B. K. Roy**

Abstract :  In this paper, new results are devised based on sliding mode control (SMC) using Proportional-
Integral switching surface and Active control schemes for synchronization of two different chaotic systems 
Chen and Liu-Yang chaotic system. Lyapunov stability theory is used to achieve stability of designed 
switching surface for proposed synchronization scheme. SMC helps in the convergence of error dynamics due 
to insensitive to parameter uncertainties and disturbances. MATLAB simulation is presented to demonstrate 
the effectiveness of proposed synchronization strategy. Further, Master-slave systems and synchronization 
scheme are simulates in MULTISIM to bring the proposed scheme in real world, which refl ects novelty of 
this paper.

1. INTRODUCTION 

Chaos theory is used in various ways such as time series prediction [1], system optimization [2], signal 
processing and communication [3], and many others [4,28]. Motivated by potential applications, chaotic 
systems are also being used in synchronization because they are sensitive to initial conditions. During 
synchronization the states of two chaotic systems share common time [4]. Synchronization phenomenon 
is also being implemented using analog electronics components [5] using different software or hardware.

Pioneer work was developed by Pecora and Carroll in 1990 [6] in the fi eld of chaotic system 
synchronization. After this many researchers have devised various control schemes for synchronization 
such as PC method [6], OGY method [7], observer based synchronization [8], adaptive control method [9], 
backstepping control  method [10], time delay feedback method [11], and sliding mode control method 
[12], etc.. So many techniques are also available related to synchronization like, lag synchronization [13], 
phase synchronization [14], projective synchronization [15], complete, anti-synchronization and hybrid 
synchronization [16, 17, 29].

Sliding mode control (SMC) scheme has been applied for control and synchronization, anti-
synchronization of identical chaotic or hyperchaotic system as in [18, 19]. Since, SMC is a robust control 
technique and has many advantages [20].

Circuit implementation of different chaotic system is absorbed in literature such as Lorenz system 
[21], Chen system [22], Lu system [23], Unifi ed system [24], Rossler chaotic system [25] etc.

In this paper SMC and Active control techniques are for global synchronization of two nonidentical 
chaotic systems Chen chaotic system [26] and Liu-yang chaotic system [27]. Synchronization of non-
identical chaotic system using SMC is the main contribution of this paper. Comparison among performances 
of controller is shown. Proposed synchronization scheme is simulated using NI MULTISIM circuit 
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simulator which is also adding novelty. For global stabilization of error dynamics Lyapunov stability 
theory [20] is used. Proportional integral (PI) switching surface is designed in terms of error dynamics for 
sliding mode control, and control law is designed using the relevant variable of master and slave system.  
Results are verifi ed using MATLAB and MULTISIM environment.

Rest paper discussed like this. Description of Chen and Liu-Yang chaotic system is discussed in 
Section 2. Section 3 discusses synchronization of Chen and Liu-Yang chaotic systems. In Section 4, 
design of switching surface and controller is presented. In Section 5, analog circuit implementation of 
synchronization scheme and including dynamical systems is shown. Simulation results are given for the 
validation and verifi cation of proposed scheme in Section 6. Finally, in Section 7, summary of paper is 
derived as conclusions.

2.  DESCRIPTION OF CHEN AND LIU-YANG CHAOTIC SYSTEMS

Master system is Chen system [26] which is given in (1):
 1x  = a(x2 – x1)
 2x  = (b  –  a) x1 +  bx2 –  x1x3                                                                                                     (1)
  3x  = – cx3 + x1x2

where x1, x2, x3 are states and a = 35, b = 28, c = 3 are parameters of system (1) for chaotic behavior. The 
phase plane behavior of (1) is shown in Fig. 1 (a). 

The 3D Liu-Yang chaotic system [27] is described as:
 1y  = (y2 – y1)
 2y  = dy1  –  y1y3 + u1                                                                                                                 (2)
 3y  = – y3 + y1y2 + u2   

where y1, y2, y3 are the states of system (2) and shows a chaotic behavior for parameter values d = 35, 
 = 35,  = 3 and u1, u2 are the control input added in (13) for synchronization. The phase plane behavior 
of (2) is shown in Fig. 1 (b).

Figure 1: Chaotic attractors of: (a) Chen and (b) Liu-Yang chaotic system
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3. SYNCHRONIZATION OF CHEN AND LIU-YANG CHAOTIC SYSTEMS USING 
SMC

This section discusses the synchronization of two different chaotic systems described in (1) and (2) based 
on sliding mode control. The master dynamics is equation (1), slave system is (2).  Using equation (1) and 
(2), error dynamics defi ned as:

 ė1 = a(e2 – e1) since;  a = 
 ė2 = be2 – by2 + dy1 – (b – a) x1 – y1 y3 + x1x3 + u1

 ė3 = – x3 – e3 + cx3 + y1 y2 – x1x2 + u2 (3)
Here u1, u2 and u3 are the added control inputs.

3.1. Design of SMC

Here synchronization chaotic systems (1) and (2) using SMC is discussed. It involves two steps: ( ) design 
of switching surfaces and (ii) control law. Switching surface as a function of error vector in proportional 
integral (PI) form is defi ned as:

 s1 = 2 1 2 20
{ }e ae k e d


    (4)

 s2 = 3 3 30
{ }e k e d


 
where, k1, k2 > 0. The sliding mode exists when it satisfi es [20]:
 ṡ1 = 0
 ṡ2 = 0 (5)

From (4), (5) equivalent sliding mode dynamics is defi ned as:
 ė1 = a(e2 – e1)
 ė2 = –k1e2 – ae1 (6)                                
 ė3 = –k2e3

The existence of sliding mode dynamics (4) is defi ned using Lyapunov theory [20] by considering the 
Lyapunov function as

 V(e) = 2 2 2
1 2 3

1 ( )
2

e e e   (7)

Taking derivative of (7) and using (6)

 V (e) = 2 2 2
1 1 2 3 3– – 0ae k e k e   (8)                                                                                                                                 

According to Lyapunov stability theory, sliding motion on the sliding surface is stable and ensure the 
convergence of error dynamics (3).

Now next step is to design a control law to drive the system trajectories onto the sliding surface. 
si = 0. To ensure the occurrence of the sliding motion controller are proposed as follows: 

 u1 = –be2 + by2 – dy1 + (b – a) x1 + y1y3 – x1x3 – k1e2 – ae1 – (sign(s1))                                                                                                          
 u2 = x3 + e3 – cx3 – y2 – y1y2 + x1x2 – k2e3 –  (sign(s2)) (9)                                                                                                                

where, ψ > 0.
Theorem : Controller (9) ensures the system trajectory of (1) and (2) to converge to sliding surface 

s(t) = 0. 
Proof : Consider another positive defi nite Lyapunov function as [20];

  V(s) = 2 2 2
1 2 3

1 ( )
2

s s s 
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Taking derivative of (10) and using (3), (4), we can write 
 V̇(s) = s1ṡ1 + s2ṡ2 =  s1[ė2 + ae1 + k2e2] + s2 [ė3 + k3e3] (11)
 V̇(s) = s1[be2 – by2 + dy1 – (b – a) x1 – y1y3 + x1x3 + u1 + ae1 + k1e2] 

+ s2[– x3 – e3 + cx3 + y2 + y1y2 – x1x2 + u2 + k2e3]                  
By, using the control law of (9) and with ψ > 0 we can get, 
 V̇(s) = –|s1|– |s2|  0 (12)                                               
Thus, using Lyapunov stability theory it ensure s(t) = ṡ(t) = 0. Therefore error dynamics on sliding 

surface is asymptotically stable according to (12), and error dynamics converges to zero.

4.  SYNCHRONIZATION OF CHEN AND LIU-YANG CHAOTIC SYSTEMS USING 
ACTIVE CONTROL TECHNIQUE

Here, we will discuss the synchronization using active control scheme. 
Master system is defi ned in equation (1) and slave system is defi ned in equation (13).
 1y  = (y2 – y1) + u1

   2y  = dy1 – y1y3 + u2 (13)
 3y  = –y3 + y1y2 + u3

u1, u2, u3 are the control input added for synchronization.
Again the error dynamics are defi ned as:
 ė1 = a(e2 – e1) + u1 since;  a =                                         
 ė2 = be2 – by2 + dy1 – (b – a) x1 – y1y3 + x1x3 + u2

 ė3 = –e3 + y1y2 – x1x2 + u3 (14)
Now, one our aim is to design active control such that error vector (14) converge to zero.

4.1. Design of Active Control law and stabilization of error

We consider the active nonlinear controller for above error dynamics (14) are as follows:
 u1 = ae2

 u2 = –be2 + by2 – dy1 + (b – a) x1 + y1y3 – x1x3 – ke2

 u3 = –e3 – y1 2 + x1x2 (15)
Now, using (15) in (14) we obtained the derivative of another Lyapunov function as
 ( )v e  = 2 2 2

1 2 3– – –e ke e  (16) 
which is a negative defi nite function with w < 0.

Now, we can say that according to Lyapunov stability theory error dynamics (14) globally 
asymptotically stable for equilibrium state at origin i.e. error dynamics will converge to zero as t  . We 
obtained the following result. 

Remarks : The chaotic Chen (1) and chaotic Liu-yang (2) system are exponentially and globally 
synchronized for any value of initial conditions with the nonlinear controller U defi ned by (15).

5. ANALOG CIRCUIT SIMULATION

Here, circuit simulation of two chaotic systems (Chen chaotic system, & Liu-Yang Chaotic 
system), and for complete synchronization scheme is shown using NI MULTISIM 11.0. Fig. 2 
shows the phase portraits of Chen system using circuit simulation. 
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( )a ( )b

Figure 2: Phase Plane of: (a) Chen and ( ) Liu-Yang chaotic system with respect to  plane in oscilloscope 
(1), with respect to  plane in oscilloscope (2)

A. Circuit Design for  Synchronization using SMC scheme

Here, sliding surface, control law describes in equation (4) and (4) respectively for synchronization 
scheme is simulated using analog components resistance, capacitance, Op-Amp, of different values. 
Components values used in circuit shown in Fig. 3 according to equation in (28), (29). 
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B. Circuit Design for  Synchronization using Active control Scheme

Here, control law describes in (15) for synchronization using NAC is simulated using analog components 
resistance, capacitance, Op-Amp, of different values. Components values used in circuit shown in Fig. 4 
according to equation in (18). 
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6. RESULTS AND DISCUSSION
A. MATLAB Simulation Results

The initial condition for simulating master (1) and slave system (2) are as x(0) = (2, 2, 1), and y(0) = (–5.2, 
– 7.5, 8.8) for both the control schemes. The response of the sliding surfaces is given in Fig. 5. Figure 6 
show the synchronization errors between Chen (master) and Liu-Yang (slave) chaotic systems using SMC 
and NAC, respectively. 

B. MULTISIM Simulation Results for synchronizationm using Active control scheme

The initial condition for simulating master (1) and slave system (2) are as x(0) = (0.1, 0.2, 0.1), and y(0) 
= (0,0,0).  Figs. 7 and 8 shows the time responses of synchronized master and slave systems using NAC 
in multisim simulation.
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Figure 3: Circuit simulation of synchronization between Chen and Liu-Yang chaotic systems using Active control

C. MULTISIM Simulation Results for synchronizationm using SMC scheme

The initial condition for simulating master (1) and slave system (2) are as x(0) = (0.1, 0.1, 0.1), and y(0) = 
(0,0,0). Fig. 9 and Fig. 10 shows the time response plot of the each state for synchronized master and slave 
systems using SMCC in multisim simulation.
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( )a
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( )b

Figure 4: Circuit simulation of synchronization between Chen and Liu-Yang chaotic systems using SMC
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Figure 5: Response of sliding surfaces during synchronization

( )a ( )b

Figure 6: Synchronized errors: (a) using SMC and (b) using NAC

( )a ( )b

Figure 7:  Synchronization between: (a)  x1 – y1 and (b) x2 – y2 states using SMC
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Figure 8:  Synchronization between: x3 – y3 states using SMC

( )a ( )b

Figure 9:  Synchronization between: (a) x1 – y1 and (b) x2 – y2 states using NAC

7. CONCLUSION

This paper presented the global chaotic synchronization between two different chaotic systems (Chen 
and Liu-Yang) using sliding mode control (SMC) technique is achieved. PI switching surfaces of SMC 
are designed for the synchronization of states.  Lyapunov stability theory is used for stabilizing the 
synchronization error. Here it is proved that SMC is very effective and convenient technique to achieve 
global chaos synchronization for Chen and Liu-Yang chaotic system. Synchronization of non-identical 
systems along with circuit simulation presented here is the novelty of this paper. Circuit simulation is 
shown for proposed synchronization scheme as well as master and slave system using NI MULTISIM. 
This master and slave pair can be used as transmitter receiver pair for secure communication as application 
of proposed synchronization scheme.   
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Figure 10:  Synchronization between:  states using NAC
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