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Implementation for Synchronization of
Chen and Liu-Yang Chaotic Systems using
SMC and Active Control Schemes

Piyush Pratap Singh* Jay Prakash Singh** and B. K. Roy**

Abstract : In this paper, new results are devised based on sliding mode control (SMC) using Proportional-
Integral switching surface and Active control schemes for synchronization of two different chaotic systems
Chen and Liu-Yang chaotic system. Lyapunov stability theory is used to achieve stability of designed
switching surface for proposed synchronization scheme. SMC helps in the convergence of error dynamics due
to insensitive to parameter uncertainties and disturbances. MATLAB simulation is presented to demonstrate
the effectiveness of proposed synchronization strategy. Further, Master-slave systems and synchronization
scheme are simulates in MULTISIM to bring the proposed scheme in real world, which reflects novelty of
this paper.

1. INTRODUCTION

Chaos theory is used in various ways such as time series prediction [1], system optimization [2], signal
processing and communication [3], and many others [4,28]. Motivated by potential applications, chaotic
systems are also being used in synchronization because they are sensitive to initial conditions. During
synchronization the states of two chaotic systems share common time [4]. Synchronization phenomenon
is also being implemented using analog electronics components [5] using different software or hardware.

Pioneer work was developed by Pecora and Carroll in 1990 [6] in the field of chaotic system
synchronization. After this many researchers have devised various control schemes for synchronization
such as PC method [6], OGY method [7], observer based synchronization [8], adaptive control method [9],
backstepping control method [10], time delay feedback method [11], and sliding mode control method
[12], etc.. So many techniques are also available related to synchronization like, lag synchronization [13],
phase synchronization [14], projective synchronization [15], complete, anti-synchronization and hybrid
synchronization [16, 17, 29].

Sliding mode control (SMC) scheme has been applied for control and synchronization, anti-
synchronization of identical chaotic or hyperchaotic system as in [18, 19]. Since, SMC is a robust control
technique and has many advantages [20].

Circuit implementation of different chaotic system is absorbed in literature such as Lorenz system
[21], Chen system [22], Lu system [23], Unified system [24], Rossler chaotic system [25] etc.

In this paper SMC and Active control techniques are for global synchronization of two nonidentical
chaotic systems Chen chaotic system [26] and Liu-yang chaotic system [27]. Synchronization of non-
identical chaotic system using SMC is the main contribution of this paper. Comparison among performances
of controller is shown. Proposed synchronization scheme is simulated using NI MULTISIM circuit
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simulator which is also adding novelty. For global stabilization of error dynamics Lyapunov stability
theory [20] is used. Proportional integral (PI) switching surface is designed in terms of error dynamics for
sliding mode control, and control law is designed using the relevant variable of master and slave system.
Results are verified using MATLAB and MULTISIM environment.

Rest paper discussed like this. Description of Chen and Liu-Yang chaotic system is discussed in
Section 2. Section 3 discusses synchronization of Chen and Liu-Yang chaotic systems. In Section 4,
design of switching surface and controller is presented. In Section 5, analog circuit implementation of
synchronization scheme and including dynamical systems is shown. Simulation results are given for the
validation and verification of proposed scheme in Section 6. Finally, in Section 7, summary of paper is
derived as conclusions.

2. DESCRIPTION OF CHEN AND LIU-YANG CHAOTIC SYSTEMS

Master system is Chen system [26] which is given in (1):

Y= alx,—x)
X, = (b—a)x,+ bx,— xx, (1)
Xy o= — X, T XX,

where x1, x,, x, are states and a = 35, b = 28, ¢ = 3 are parameters of system (1) for chaotic behavior. The

phase plane behavior of (1) is shown in Fig. 1 (a).
The 3D Liu-Yang chaotic system [27] is described as:

Y= oc(yz—yl)
Y o= dyl_y1y3+”1 )
Vio= =By, typ, tu,

where yl1, y2, y, are the states of system (2) and shows a chaotic behavior for parameter values d = 35,
o =35, =3 and u, u, are the control input added in (13) for synchronization. The phase plane behavior
of (2) is shown in Fig. 1 (b).

(b)

Figure 1: Chaotic attractors of: (a) Chen and (b) Liu-Yang chaotic system
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3. SYNCHRONIZATION OF CHEN AND LIU-YANG CHAOTIC SYSTEMS USING
SMC

This section discusses the synchronization of two different chaotic systems described in (1) and (2) based
on sliding mode control. The master dynamics is equation (1), slave system is (2). Using equation (1) and
(2), error dynamics defined as:

é, = a(e,—e)since; a=a

e, = be,—by,+dy —(b—a)x,—yy,+xx, tu

e, = —PBx,—Pe,tex, +yy,—xx,tu, 3)
Here u , u, and u, are the added control inputs.

3.1. Design of SMC

Here synchronization chaotic systems (1) and (2) using SMC is discussed. It involves two steps: (i) design
of switching surfaces and (i7) control law. Switching surface as a function of error vector in proportional
integral (PI) form is defined as:

s, = ez+J‘OT{ae1 + k,e,}dt 4)
s, = e+ theldr

where, k , k, > 0. The sliding mode exists when it satisfies [20]:

s, =0

s, =0 (5)
From (4), (5) equivalent sliding mode dynamics is defined as:

e, = ale,—e)

e, = —ke,—ae, (6)

e, = —ke,

The existence of sliding mode dynamics (4) is defined using Lyapunov theory [20] by considering the
Lyapunov function as

V(e) = %(612 +el+él) (7)

Taking derivative of (7) and using (6)
V(e) = ael —ke; — kel <0 (8)
According to Lyapunov stability theory, sliding motion on the sliding surface is stable and ensure the
convergence of error dynamics (3).

Now next step is to design a control law to drive the system trajectories onto the sliding surface.
s.= 0. To ensure the occurrence of the sliding motion controller are proposed as follows:

u = —be,+by, —dy +(b-a)x +yy, —xx,—ke, —ae —y(sign(s)))
u, = Bx,+Pe,—cx,—oy,—yy, +xx,—ke, — y(sign(s,)) 9)
where, vy > 0.
Theorem : Controller (9) ensures the system trajectory of (1) and (2) to converge to sliding surface
s(1) = 0.
Proof : Consider another positive definite Lyapunov function as [20];

1
V(s) = E(Slz +s22 +s32)
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Taking derivative of (10) and using (3), (4), we can write

V(s) = 58, ts.8, = s[é tae thel+s, e, +ke] (11)

V(s) = s[be,—by, +dy, —(b—a)x, —yy,+xx,tu +ae +ke,|

* Sz[f Bxs - Be3 toxy oy, tyy, XX, tu, T kzes]

By, using the control law of (9) and with y > 0 we can get,

V(s) = —wlsl-yls,[<0 (12)
Thus, using Lyapunov stability theory it ensure s(¢) = s(¢) = 0. Therefore error dynamics on sliding

surface is asymptotically stable according to (12), and error dynamics converges to zero.

4. SYNCHRONIZATION OF CHEN AND LIU-YANG CHAOTIC SYSTEMS USING
ACTIVE CONTROL TECHNIQUE

Here, we will discuss the synchronization using active control scheme.
Master system is defined in equation (1) and slave system is defined in equation (13).
o=, -y)
Y2 = dy -y tu, (13)
Vio= Py tyy, T
u,, u,, u, are the control input added for synchronization.
Again the error dynamics are defined as:
e, = a(e,—e)+u, since; a=a
¢, = be,~by,+dy, —(b-a)x, —yy, +xx,+u,
e, = Pe,tyy,—xx, +tu, (14)
Now, one our aim is to design active control such that error vector (14) converge to zero.

4.1. Design of Active Control law and stabilization of error

We consider the active nonlinear controller for above error dynamics (14) are as follows:

u, = ae,
u, = —be,*+by,—dy, +(b-a)x +yy,—xx,—ke,
U, = _Be3_y1y2+x1x2 (15)
Now, using (15) in (14) we obtained the derivative of another Lyapunov function as
ve) = —¢ —ke; —Pe; (16)

which is a negative definite function with w < 0.

Now, we can say that according to Lyapunov stability theory error dynamics (14) globally
asymptotically stable for equilibrium state at origin i.e. error dynamics will converge to zero as t — . We
obtained the following result.

Remarks : The chaotic Chen (1) and chaotic Liu-yang (2) system are exponentially and globally
synchronized for any value of initial conditions with the nonlinear controller U defined by (15).

5. ANALOG CIRCUIT SIMULATION

Here, circuit simulation of two chaotic systems (Chen chaotic system, & Liu-Yang Chaotic
system), and for complete synchronization scheme is shown using NI MULTISIM 11.0. Fig. 2
shows the phase portraits of Chen system using circuit simulation.
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Figure 2: Phase Plane of: (a) Chen and (b) Liu-Yang chaotic system with respect to plane in oscilloscope
(1), with respect to plane in oscilloscope (2)

A. Circuit Design for Synchronization using SMC scheme

Here, sliding surface, control law describes in equation (4) and (4) respectively for synchronization
scheme is simulated using analog components resistance, capacitance, Op-Amp, of different values.
Components values used in circuit shown in Fig. 3 according to equation in (28), (29).

R 456 Ry Ry R,
Ry;¢ Ry Ry
Ry Rs Ry R, ) 10 Ry, R, Ry R

u, = _(&j%_[RssJylyz_i_[Rastlxz —(R”j%—[Rﬁjsz
R, R, ) 10 R, ) 10 R, R

B. Circuit Design for Synchronization using Active control Scheme

—

LS}

Here, control law describes in (15) for synchronization using NAC is simulated using analog components
resistance, capacitance, Op-Amp, of different values. Components values used in circuit shown in Fig. 4
according to equation in (18).

R R R
u, = = R_” €, =(R_37jy2 _(R_WJXZ
49 38 36
47 Ry, Ry ) 10 Ry R, Ry,

R
Ry |, Rys
“ TR, 10 (R
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6. RESULTS AND DISCUSSION
A. MATLAB Simulation Results

The initial condition for simulating master (1) and slave system (2) are as x(0) = (2, 2, 1), and y(0) = (-5.2,
— 1.5, 8.8) for both the control schemes. The response of the sliding surfaces is given in Fig. 5. Figure 6
show the synchronization errors between Chen (master) and Liu-Yang (slave) chaotic systems using SMC

and NAC, respectively.

B. MULTISIM Simulation Results for synchronizationm using Active control scheme

The initial condition for simulating master (1) and slave system (2) are as x(0) = (0.1, 0.2, 0.1), and y(0)
=(0,0,0). Figs. 7 and 8 shows the time responses of synchronized master and slave systems using NAC

in multisim simulation.
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Figure 3: Circuit simulation of synchronization between Chen and Liu-Yang chaotic systems using Active control

C. MULTISIM Simulation Results for synchronizationm using SMC scheme

The initial condition for simulating master (1) and slave system (2) are as x(0) = (0.1, 0.1, 0.1), and y(0) =

(0,0,0). Fig. 9 and Fig. 10 shows the time response plot of the each state for synchronized master and slave
systems using SMCC in multisim simulation.
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Figure 4: Circuit simulation of synchronization between Chen and Liu-Yang chaotic systems using SMC
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Figure 6: Synchronized errors: (a) using SMC and (b) using NAC
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Figure 7: Synchronization between: (a) x, -y, and (b) x, -y, states using SMC
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Figure 9: Synchronization between: (a) x, —y, and (b) x, -y, states using NAC
7. CONCLUSION

This paper presented the global chaotic synchronization between two different chaotic systems (Chen
and Liu-Yang) using sliding mode control (SMC) technique is achieved. PI switching surfaces of SMC
are designed for the synchronization of states. Lyapunov stability theory is used for stabilizing the
synchronization error. Here it is proved that SMC is very effective and convenient technique to achieve
global chaos synchronization for Chen and Liu-Yang chaotic system. Synchronization of non-identical
systems along with circuit simulation presented here is the novelty of this paper. Circuit simulation is
shown for proposed synchronization scheme as well as master and slave system using NI MULTISIM.
This master and slave pair can be used as transmitter receiver pair for secure communication as application
of proposed synchronization scheme.
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