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1. INTRODUCTION

In 2005, Khrystiyanyn and Kondratyuk [6,7] gave an extension of the Nevanlinna
value distribution theory for meromorphic functions in annuli. In their extension
the main characteristics of meromorphic function are one-parameter and posses
the same properties as in the classical case of a simply connected domain. In [6]
and [7], we can get the analogous of the Jensen’s formula, the first fundamental
theorem, the lemma of the logarithmic derivative and the second fundamental
theorem of Nevanlinna theory for meromorphic function in annuli. After [6,7],
Fernandez [5] study the value distribution of meromorphic functions in the
punctured plane, Cao, Deng, Yi and Xu [1]-[3] study the uniqueness of meromorphic
functions in annuli, Chen and Wu [4] study the exceptional values of meromorphic
functions and its derivatives in annuli. In the following, we introduce the definitions,
notations and basic results of [4] and [6,7] which will be used in this paper.

2. DEFINITIONS AND MAIN RESULTS

Let )(zf  be a meromorphic function in the annulus },|<<|1/:{=)( 000 RzRzRA
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where ,<<1 0RR � �ftn ,1  is the counting function of poles of the function f

in 1}|<|:{ �ztz  and � �ftn ,2  is the counting function of poles of the function f
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Finally, we define the Nevanlinna characteristic of f in )( 0RA  by

0000 <<1),,()(1,2),(=),( RRfRNfmfRmfRT �� (2.1)

where .0 ���R  Suppose that gf ,  are two meromorphic functions in ),( 0RA

where .0 ���R  Then

(1).),(),(),( 000 OgRmfRmfgRm ��� (2.2)

Definition 2.1[4]  Let )(zf  be a non-constant meromorphic function on the

annulus },|<<|1/:{=)( 000 RzRzRA  wheree .<<1 0 ��R  The function f  is

called a transcedental or admissible meromorphic function on the annulus )( 0RA
provided that
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Thus for a transcedental or admissible meromorphic function on the annulus

,A )),((=),( 0 fRTofRS  holds for all 0<<1 RR  except for the set R� or the

set R��  mentioned in Theorem 2.B, respectively..

Definition 2.2 [4]  Let f  be a non-constant meromorphic function on the
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Theorem D.[7,8]  (Lemma on the Logarithmic Derivative ). Let f be a non-

constant meromorphic function in ),( 0RA  wheree ���0<1 R  and 0.��  Then
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holds for every positive integer k.

In the value distribution theory, it is very important to introduce and study the
derivative of a given function. It is natural to ask whether can we establish the
analogous of Milloux inequality and Hayman’s alternative in annulus.

In this paper, we prove the following theorems and establish an interesting and
remarkable result of the Milloux inequality and Heyman’s alternative in annulus.

Theorem 2.1.Let f  be a function that is meromorphic and admissible in

),( 0RA  wheree .<1 0 ���R  Let
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for any positive integer k.Where kaaaaa ,.....,,,, 3210  are small functions of f.
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0 fRN  counts the simple poles of f  and ),(
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0 fRN  counts the multiple

poles of f, not including multiplicity in )( 0RA .
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Theorem 2.4. Let f  be a transcedental meromorphic function and admissible

in ),( 0RA  wheree .<1 0 ���R  Then
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By replacing )(= kf�  in the Theorem 2.2, we get the following result

Corollary 2.1.Suppose )(zf  is a non-constant meromorphic function and
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By Theorem 2.2, we get the following Corollary

Corollary 2.2.Let f  be a non constant transcedental meromorphic function

and admissible in ),( 0RA  wheree ,<1 0 ���R  with only a finite number of zeros

and poles. Then every function � as defined in (2.13) assumes every finite complex

value, except possibly zero, infinitely often or else is identically constant.

By replacing )(= kf�  in the Theorem 2.4, we get the following result

Corollary 2.3 Let f  be a transcedental meromorphic function and admissible

in ),( 0RA  wheree .<1 0 ���R  Then

).,(
1

,
2

2
1

,
1

2),( )(000 fRS
af

RN
kf

RN
k

fRT k ���
�

�
��
�

�
�

�
�
�

�
�
� ����

�

�
��
�

�
�
�
�

�
�
� ��

By replacing the value of ,=
2

1

�
��f

F  where �1 and �2 be complex numbers

0=2 ��  and (1)),(=),( 00 OfRTFRT �  in Theorem 2.4. Then we get the

following result.

Corollary 2.4 (Hayman’s Alternative in annuli.) Let f  be a transcedental

meromorphic function and admissible in ),( 0RA wheree .<1 0 ���R  Then either f
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assumes every finite value infinitely often or )(kf  assumes every finite value except

possibly zero infinitely often in ).( 0RA

3. PROOF OF THEOREMS

3.1. Proof of Theorem 2.1

First of all, we prove the Theorem 2.1 for the case )(=)( kfz�  using induction on

the number k  and then deduce the conclusion of the Theorem 2.1 for the general
case.
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In the following, we consider the general case.
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Thus, we have
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Suppose f  has a simple pole at ,0z  i,e (1))(=)( 1
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By (3.20)  and (2.17),  we get
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By (3.20)  and (3.21) , we can write
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4. APPLICATIONS

We can use Milloux inequality and Hayman’s alternative in annulus to prove results
related to uniqueness and sharing of two meromorphic functions in annulus.

5. OPEN QUESTIONS

Can we establish Milloux inequality and Hayman’s alternative for more general
differential polynomials in annulus and use those to prove results related to sharing
of two differential polynomials of meromorphic functions in annulus.
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