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Abstract: The main purpose of this paper isto establish anal ogous of Mill oux
inequality and Hayman's alter native on annuli. Asan application of our results,
we deduce some interesting anal ogous results on annuli.
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1. INTRODUCTION

In 2005, Khrystiyanyn and Kondratyuk [6,7] gave an extension of the Nevanlinna
value distribution theory for meromorphic functions in annuli. In their extension
the main characteristics of meromorphic function are one-parameter and posses
the same properties as in the classical case of a simply connected domain. In [6]
and [7], we can get the analogous of the Jensen’s formula, the first fundamental
theorem, the lemma of the logarithmic derivative and the second fundamental
theorem of Nevanlinna theory for meromorphic function in annuli. After [6,7],
Fernandez [5] study the value distribution of meromorphic functions in the
punctured plane, Cao, Deng, Yi and Xu [1]-[3] study the uniqueness of meromorphic
functionsin annuli, Chen and Wu [4] study the exceptional values of meromorphic
functionsanditsderivativesin annuli. In thefollowing, weintroducethe definitions,
notations and basic results of [4] and [6,7] which will be used in this paper.

2. DEFINITIONSAND MAIN RESULTS
Let f (z) beameromorphicfunctionintheannulus A(R)) ={z: 1R, <|z|[< R},

wherel< R, < +co. Denote
1 1 2= 1
R——|=— : log" —————d@
f-a) 2z° | f(Re” —a)|
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_ 1 ¢ + i
m(R,f)—Z.[O log | f (R’ |do,

where g e C andl/R, <|z|< R,. L&t

- 1 \_ 1 1 1
my(Ra, f)= m{R’f——aj_ H{R’f——a}rn{ﬁ’f——aj’ 1<R<R,

and
mO(R,oo,f):mO(R,f):m(R,f)+n'(%,fj, 1<R<R,
Put
1 1
et el
N{R, 1 j_j dt, N{R, j:j dit
f-a) t f-a) % t

1
where 1< R<R,, nl(t’f—_aj is the counting function of zeros of the

1
function f —a in{z:t <|z|K1} and n{t’f——aj isthe counting function of zeros
of the function f —a in{z:1<|zKt}. Denote also

J'R nz(t, f )dt
1 t

Ny(R, f):ﬁ@dt, N,(R f)

wherel< R<R,, nl(t, f) is the counting function of poles of the function f
in{z:t<|z|<1} andn,(t, f) is the counting function of poles of the function f
in{z:1<|zKt}. Let

1 1 1
No(Ra f) =Ny R——[=N| R—— [+ N,| R——|
(R 0=N[REJ=n[R 2 fonfr b ]
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No(Roo, F)=Ny(R, f) =N, (R, f)+ N, (R, ).
Finally, we define the Nevanlinna characteristic of finA(R,) by
T,(R f)=my(R, f)-2m(1, f)+ N,(R, f),1<R<R, (2.1

where R, < +oo. Suppose that f,g are two meromorphic functions in A(R;),

where R, < +oo. Then

my(R. fg) <my(R, ) +m,(R,) +O(1). (22)
Definition 2.1[4] Let f (z) be a non-constant meromorphic function on the
annulusA(R,) ={z: 1R, <|z|< R}, wherel< R, <+co. The function f is

called a transcedental or admissi ble meromorphic function on theannulus A(R,)
provided that

. To(R f) _ _
ISP g T ASRER T @3
or
_ T.(R f)
sup—2 "7 =, 1<R<R <+
Aim SR l0g(R —R) i 24
respectively.

Thus for a transcedental or admissible meromorphic function on the annulus
A, S(R, f) =0o(T,(R, f)) holds for all1< R< R except for the set A, or the

set A, mentioned in Theorem 2.B, respectively.

Definition 2.2[4] Let f be a non-constant meromorphic function on the
annulusA(R,), wherel< R, < +co. Then the order of f (2) is defined by
T,(R f
p(1) = lim sp 221
logR

R

y I<SR<R, =+ (2.5)

or
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T,(R f)

—= "2 1< R<R <+oo0.
Tlog(R - R) R (2.6)

o(f)=lim sup
R—>R0

Theorem A.[6] (The First Fundamental Therorem). Let f be a non-constant

meromorphic function inA(R;), wherel< R, <-+co. Then

T{R, fij =T,(R £)+0(1) @7

for any fixed g C.

Theorem B.[7] (Lemma on the Logarithmic Derivative ). Let f be a non-

constant meromorphic function inA(R,), wherel< R, <+ and > 0. Then

1. Inthecase, R, = +oo,
m{R,fT’j = O(log(RTy(R, 1)) (2.8)

for Re (1,+o0) except for the set A, such that LRR‘HdR < +o0;

2. Inthecase, R, <+,

fr) T(R, f)
m{R, —J = O(IOQ(—RO R JJ (2.9)

dR
for Re (1, R,) except for the set A}, such that LR (R—RY) < +o0.

Theorem C.[7] (The Second Fundamental Theorem) Let f be a non-constant

meromorphic function inA(R;), wherel< R, < +w. Letd&,a,,3a;,...,8, bep
distinct finite complex numbersand ¢ > Q. Then

1

J

my(R, f)+Zp:mO[R, f Jg 2T, (R, f)-= NS (R, )+ S(R, f) (2.10)
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where
NQ(Rf)=2NdRJ)—Nde)+N{R;%j

and

1. Inthecase, R; =+,
S(R, f) = O(log(RTy(R, 1)) (2.12)
for Re (1,+00) except for the set A, such that LRRHdR < +oo;

2. Inthe case, R, <+,

T,(R, f
S(R, f)= O[Iog(ﬁj} (2.12)

dR
for Re (1, R,) except for the set A}, such that LR (R—RY) < +o0.

Theorem D.[7,8] (Lemma on the Logarithmic Derivative ). Let f be a non-

constant meromorphic function inA(R,), wherel< R, <+ and > 0. Then

£ (k)

fj:aan

m{R,

holds for every positive integer k.

In the value distribution theory, it is very important to introduce and study the
derivative of a given function. It is natural to ask whether can we establish the
analogous of Milloux inequality and Hayman's alternative in annulus.

In this paper, we prove the foll owing theorems and establish an interesting and
remarkable result of the Milloux inequality and Heyman's alternative in annulus.

Theorem 2.1.Let f be a function that is meromorphic and admissible in

A(R,), wherel< R) < +oo. Let



86 Renukadevi S., Dyavanal and Ashok Rathod

0(2)=2a1"(2) (2.13)

for any positive integer k. Where a,,a,,a,,4a,,.....,8, are small functions of f.
Then

©
%(R,Tj =3(R ) (2.14)

and
T,(RO)< (k+ DT, (R, f)+S(R, f). (2.15)

Theorem 2.2. Let f(2) be a non-constant meromor phic function and admissible
inA(R,), wherel< R, < +o0 and ©(z) bethefunction defined by (2.13). 1f®(2)

is not a constant, then

T.(R f)<No(R, f)+N rRE +NO[RLJ—N<°>(Rij+S(R f)

o ’ i '@-a) U@ ’
(2.16)

1

where (a # 0,00) and Néo)[R, 5} counts only zeros of @' but not the repeated
rootsof @ =a in A(R,).

Theorem 2.3.Let f bea transcedental meromor phic function and admissible

. of p 1 . .
inA(R,), wherel<R <+0.®=f® and No R,g be defined as in
Theorem2.2. Then

KNA(R, £) < NS (R, f)+N0[R, @1

0 1
j+Né )[R’§j+S(R’ f) 2.17)

whereN (R, f) counts the simple poles of f andﬁff(R, f) counts the multiple

poles of f, not including multiplicity in A(R,).
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Theorem 2.4. Let f beatranscedental meromor phic function and admissible

in A(R,), wherel< R, < +oo. Then

1 1 2\ 1
T,(R f)< [27) N{R,Tj +[2+EJN0[R, @_aj+S(R, f). (2.18)

By replacing ® = f® in the Theorem 2.2, we get the following result

Corollary 2.1.Suppose f (z) is a non-constant meromorphic function and

admissibleinA(R,), wherel< R, < +o0 andk isany positive integer. Then

— 1) — 1 1
T,(R )< No(R, )+ NO[R,fJ+ NO[R,MJ_ NéO)[R,f(M)J+S(R, f).

By Theorem 2.2, we get the following Corollary

Corollary 2.2.Let f be a non constant transcedental meromorphic function
and admissiblein A(R;), wherel< R, < 4o, with only a finite number of zeros
and poles. Then every function ® asdefinedin (2.13) assumes every finite complex

value, except possibly zero, infinitely often or else isidentically constant.

By replacing ® = ) in the Theorem 2.4, we get the following result

Corollary 2.3 Let f be atranscedental meromor phic function and admissible

in A(R,), wherel< R, < +oo. Then

1 1 2\ 1
TO(R, f)S[Z'FEjNO(R,TJ +[2+EJNO(R,T_aJ+8(R, f)

_f-w
By replacing the value of F= o, o where o, and o, be complex numbers

w,#0 and T,(R,F)=Ty(R, f)+O(1) in Theorem 2.4. Then we get the
following result.

Corollary 2.4 (Hayman's Alternative in annuli.) Let f be a transcedental

meromorphicfunction andadmissiblein A(R;), wherel< R, < +oo. Theneither f
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assumes every finitevalueinfinitely often or f %) assumes every finite val ue except

possibly zero infinitely often in A(R;).

3. PROOF OF THEOREMS

3.1.Proof of Theorem 2.1

First of all, we provethe Theorem 2.1 for the case ®(z) = f ) usinginduction on

the number k and then deduce the conclusion of the Theorem 2.1 for the general
case.

By Theorem B, we have

T,(R )= T{R, f ij <T,(R, f )+T{R,fT’j +0(1)

=T,(R f)+ m{R,fT’j + NO(R,fT’j—er{l,fT’j+O(l)

<T,(R f)+No(R, f)+S(R, f)
<2T(R, f)+S(R, f).
Hencethe result is truefor k =1.

Suppose that the theoremis true for k = n. Then by assumption, we have

f (n)
m{R, . j=S(R, f) 3.1)
and
T, (R, f ™) <(n+ DT, (R, f)+S(R, f). (3.2)
Also we have,
o . f (n+1)
mREOmRIkn RG] ey

and
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N (R f ™) = Ny (R, f ™)+ No(R, f™)
= Ny(R, f ™)+ No(R, f)

<NG(R ™)+ Ny (R, ). (3.4)

By Theorem D, we have

f (n+1) f (n+1) f (n)
my| R, . SWR,W+%R, .

<S(R f™)+S(R, f)
<S(R f) (3.5)

and

To(R, £O) =my(R, £ "9 )Ny (R, f ") —2m(1, f ")

(n+1)

f
<m,(R f‘”))+m{R,WJ+NO(R, f™)+N, (R, f)+O(1)

<T(R F™)+N, (R, f)+S(R, f)

<(+DT(R )+ T (R f)+S(R, f)

<(N+2)T,(R, f)+S(R, f). (3.6)
Hence theresult is truefor all positive integer k.

In the following, we consider the general case.

By above casg, it is obvious that

m{R,gj < Zk:m{R, 4 ';(I) j+log(k+1)

"

< Zk“{mo(R, a )+m{R,fTﬂ +log(k +1)

<S(R, f). (3.7)
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Thus, we have

®
my(R,0)< m{R,Tjﬂm(R, f)<m(Rf)+S(R ). (39
On the other hand, we have

No(R ®)< Ny(R, )< Ny(R, )+kNo(R, f ). (3.9)
it follows from (3.8) and (3.9) that
T,(R®)=m,(R,0)+N,(R 6®)-2m(L,0)
<my(R, f)+No(R, f)+kNo(R, f)+S(R, f)
<To(R, f)+kNo(R, f)+S(R, f)
<(k+DT,(R, f)+S(R, )
T,(RO)< (k+1T,(R, f)+S(R, f)

which completes the proof of Theorem 2.1.

3.2. Proof of Theorem 2.2
By the Second Fundamental theorem in annulus, we have

mO(R,®)+mO[R,éj +mo[R, @1

jg 2T,(R,0)- NP (R, f)+S(R,0).

(3.10)
By the First Fundamental theorem in annulus, we have

2T,(R®)-NP(R, ) =m,(R,®)+m,(R,a,0)+ N,(R,®)+N,(R,a,0)
{2NO(R,®)—NO(R, 0')+ N{R,%ﬂ
=m,(R,©)+m,(R,a,0)+N,(R a,0)

1
—NO[R,5J+ No(R.©)-No(R,®) (3.11)
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It is obvious that

No(R,©')-Ny(R,®)< No(R, f) (3.12)

1 1) — 1 1
N|R——|-N,|R— |=No RR—— |-NO| R,— |,
[ @—aj [ @'j [ @—aj [ @'j (313

Henceit follows from (3.10), (3.11),(3.12) and(3.13) that

and

R 2 J<M® )R] -m{R L |rsRo) @

From(2.15), we have
S(R®)=9S(R, f).

By First fundamental Theorem in annulus, we have

T,(R f)= m{R,%}+N{R,%} +O(1)

< mO[R, %) +m{R, gj + N{R, %j +0(2)

1 1
S%[R,6J+N{R,TJ+S(R, f). (3.15)

From(3.14) and (3.15), we have

N o P = I NTCT
T,(R )< No(R,f)+NO(R,fj+No[R,® j N [R,@J+S(R,f)

which completes the Proof of Theorem 2.2.

3.3.Proof of Theorem 2.3
We first define the function
(f (k+1) )k+l (®r)k+l

g= (a_ f(k))k+2 = (a_®)k+2' (3-16)
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Suppose f has a simple pole at z,, i,ef(2) =b(z-2z,)"+O(1) for some
b # 0. Then differentiating k times,

(-D)*ak!

W(]-Jr O((z- Zo)kﬂ))-

0(2) =

Differentiating again and then substituting it into g, we find that

_ (D) (k+p)*
9= ak!

(1+0((z- ,)“"))

Thus, at a simple pole of f,g # 0,00, butg’ has a zero of order at leastk,

Now we apply First Fundamental Theorem in annulus to E assuming gto be

non constant, giving

m{R, %j —m{R, gj +0(1)

fag} e

=)o R |-

g
- O(R,éj—NO(R,éJ—NO(R’Q)

1) = (- 1) <
=N R—= |-No| R,= |-No(R, g).
( g,j ( gj (R.g) (3.17)

g
Thus using (3.17) ,Theorem B and the property that %(R’Ej is non

negative, we have
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’

KNi(R, f) < Néo)(R,éj < N{R,éj +No(R, g)+m{R,%j +O(1)

. 1 —
< N{R,EJ+NO(R,9)+S(R, Q). (3.18)

By (3.18) and zeros and poles of g can only occur at multiple poles of f, a
points of @ or zerosof @' which are not a-points of ® and so

N 1) N =@ 1
No(R,EJ+No(R,g)S N{R, @_aj-i-No (R, f)+N(§°>[R,5j.

Hence by (3.15), we have

—(@2 — 1 1
kNg(R, f) < No (R, f)+N0[R,EJ+N(§°)(R,§}+S(R, f).

3.4.Proof of Theorem 2.4

We start by noting that inN, (R, f), multiple poles are counted at least twice and
then apply (2.16)
NL(R, f)+2N5 (R, f) < T,(R, f)

— 1) — 1 of p 1
< NO(R, f)+NO(R’TJ+NO[R’®—j_Né)[R,gj—i_S(R’ f). (3.19)

Since  No(R, f)= Ni(R, f)+N5 (R, f), hence by (3.20), we get

— 1) — 1 0 1
No (R, f) < N{R,TJ+N{R,®—j—Né)(R,5J+S(R, f). 3.20)

By (3.20) and(2.17), we get

KNL(R, f)< N, R +N{R,ij—NgO{R,i}LN{R,Lj
f ®-a CH ®-a
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+N(§°)[R,éj+S(R, f)

1 1 ‘N 1
kKNg(R, f) < NO(R,TJJrZNo[R,@ j+S(R, f). (3.22)

By (3.20) and (3.21), we can write

No(R, f) = NX(R, f)+No (R, f)

SENO R |+2No[ R -1 +N, R |+No| R—2—
k f) k ®-a f ®-a

1
—Néo)[R,§j+S(R, f)

No(R,f)S[1+EJNO[R,£J+[1+EJN0[R, 1 j—Ng°>[R,ij+S(R,f).
k f k ©-a e

(3.22)

1
Since Néo)[R, gj >0, we substitute this and (3.22) into(2.16), we get

T,(R f)< (2#)N{R,EJ +[2+EJNO[R, 1 j+ S(R, f).
k f k ®

4. APPLICATIONS

We canuseMilloux inequality and Hayman's alternativein annulus to prove results
related to uniqueness and sharing of two meromorphic functions in annulus.

5. OPEN QUESTIONS

Can we establish Milloux inequality and Hayman's alternative for more general
differential polynomials in annulus and usethoseto prove results related to sharing
of two differential polynomials of meromorphic functions in annulus.
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