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Abstract: First, this paper announces an eleven-term novel 4-D hyperchaotic system with three quadratic
nonlinearities. This 4-D hyperchaotic system has been obtained by using a feedback control to the 3-D Zhu chaotic
system (2010). The phase portraits of the novel hyperchaotic system are displayed and the mathematical properties
are discussed. The Lyapunov exponents of the novel hyperchaotic system are obtained as L

1
 = 0.7365, L

2
 = 0.0821,

L
3
 = 0 and L

3
 = –2.9367. The maximal Lyapunov exponent (MLE) for the novel hyperchaotic system is obtained as

L
1
 = 0.7365 and Lyapunov dimension as D

L
 = 3.1779. Next, we derive new results for the adaptive control design

of the novel hyperchaotic system with unknown parameters. The adaptive controller is designed to achieve global
exponential stability for the novel hyperchaotic system with unknown system parameters. Next, we derive new
results for the adaptive synchronization design of the identical novel hyperchaotic systems with unknown parameters.
The adaptive control and synchronization results for the novel hyperchaotic system have been established using
Lyapunov stability theory. Numerical simulations with MATLAB have been shown to validate and demonstrate all
the new results derived in this paper.

Keywords: Chaos, chaotic systems, hyperchaos, hyperchaotic systems, adaptive control, chaos control, chaos
synchronization.

1. INTRODUCTION

A chaotic system is commonly defined as a nonlinear dissipative dynamical system that is highly sensitive
to even small perturbations in its initial conditions. The sensitivity of a nonlinear chaotic system in response
to small changes in the initial conditions is commonly called as butterfly effect [1] and this is one of the
characterizing features of a chaotic system. The Lyapunov exponent of a dynamical system is a quantitative
measure that characterizes the rate of separation of infinitesimally close trajectories of the system. Thus, a
chaotic system is also defined mathematically as a dynamical system having at least one positive Lyapunov
exponent.

In the last four decades, many chaotic systems have been found in the literature using modelling and
other techniques. Some paradigms of chaotic systems can be listed as Lorenz system [2], Rössler system
[3], Shimizu-Morioka system [4], Shaw system [5], Chen system [6], Lü system [7], Chen-Lee system [8],
Cai system [9], Tigan system [10], Li system [11], etc.

Many new 3-D chaotic systems have been discovered in the recent years such as Sundarapandian systems
[12-13], Vaidyanathan systems [14-20], Vaidyanathan-Madhavan system [21], Vaidyanathan-Azar system
[22], Vaidyanathan-Volos system [23-24], Pehlivan-Moroz system [25], Pham system [26], etc.

Hyperchaotic systems are the chaotic systems with more than one positive Lyapunov exponent. For
continuous-time autonomous dynamical systems, the minimal dimension for a hyperchaotic system is four.
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The first hyperchaotic system was found by Rössler [27]. This was followed by the finding of many
hyperchaotic systems such as hyperchaotic Lorenz system [28], hyperchaotic Lü system [29], hyperchaotic
Chen system [30], hyperchaotic Wang system [31], etc. Some recently discovered 4-D hyperchaotic systems
are hyperchaotic Vaidyanathan systems [32-33], hyperchaotic Vaidyanathan-Azar system [34], etc. A 5-D
hyperchaotic system with three positive Lyapunov exponents was also recently found [35].

Hyperchaotic systems have attractive features such as high security, high capacity and high efficiency
and they find miscellaneous applications in several areas like neural networks [36-38], oscillators [39-40],
circuits [41-44], secure communication [45-46], encryption [47], generator [48], laser [49-50], etc.

The problem of control of a chaotic system is to find a state feedback control law to stabilize a chaotic
system around its unstable equilibrium [51-52]. Some popular methods for chaos control are active control
[53-57], adaptive control [58-59], sliding mode control [60-62], etc.

Chaos synchronization problem can be stated as follows. If a particular chaotic system is called the
master or drive system and another chaotic system is called the slave or response system, then the idea of
the synchronization is to use the output of the master system to control the slave system so that the output
of the slave system tracks the output of the master system asymptotically. The synchronization of chaotic
systems has applications in secure communications [63-65], cryptosystems [66-67], encryption [68-70],
etc.

The chaos synchronization problem has been paid great attention in the literature and a variety of
impressive approaches have been proposed. Since the pioneering work by Pecora and Carroll [71-72] for
the chaos synchronization problem, many different methods have been proposed in the control literature
such as active control method [73-80], adaptive control method [81-107], sampled-data feedback control
method [108-109], time-delay feedback approach [110], backstepping method [111-122], sliding mode
control method [123-132], etc.

In this paper, we have proposed an eleven-term novel 4-D hyperchaotic system with three quadratic
nonlinearities. This 4-D hyperchaotic system has been obtained by using a feedback control to the 3-D Zhu
chaotic system [133]. The phase portraits of the novel hyperchaotic system are displayed and the mathematical
properties are discussed. Next, we derive new results for the adaptive control design of the novel hyperchaotic
system with unknown parameters. The adaptive controller is designed to achieve global exponential stability
for the novel hyperchaotic system with unknown system parameters. Next, we derive new results for the
adaptive synchronization design of the identical novel hyperchaotic systems with unknown parameters.
The adaptive control and synchronization results for the novel hyperchaotic system have been established
using Lyapunov stability theory. Numerical simulations with MATLAB have been shown to validate and
demonstrate all the new results derived in this paper.

2. A NOVEL 4-D HYPERCHAOTIC SYSTEM

In [133], Zhu et al. (2010) found a 3-D chaotic system modelled by the dynamics

1 1 2 2 3

2 2 1 3

3 3 1 2

x x ax x x

x bx x x

x cx x x

� � � �

� �

� � �

�

�

�
(1)

The Zhu system is found to be chaotic when the parameters take the following values [133]:

1.5,   2.5,   4.9a b c� � � (2)

Also, the Lyapunov exponents of the Zhu system (1) for the parameter values in (2) have been obtained
as follows:
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1 0.6747,L � 2 0,L �  3 4.0738L � � (3)

Since the sum of the Lyapunov exponents of the Zhu system (1) is negative, it is dissipative.

For numerical simulations, we take the initial values of the Zhu system (1) as 1(0) 0.4,x �  2 (0) 0.8x � and

3(0) 0.6.x �

The phase portrait of the Zhu chaotic attractor is shown in Figure 1.

Figure 1: Strange attractor of the Zhu chaotic system

In this paper, we propose a 4-D novel hyperchaotic system by adding state feedback control law to the
Zhu system (1) as

1 1 2 2 3 4

2 2 1 3 4

3 3 1 2

4 1 2

x x ax x x px

x bx x x px

x cx x x

x qx px

� � � � �

� � �
� � �

� � �

�

�

�

�

(4)

where 1 2 3 4, , ,x x x x are the states and , , , ,a b c p q  are constant, positive parameters of the system.

The system (4) exhibits a hyperchaotic attractor for the values

1.5,   3,   5.8,   1.6,   0.5a b c p q� � � � � (5)

For numerical simulations, we take the initial state as 1(0) 0.4,x �  2 (0) 0.8,x � 3(0) 0.6,x �  and

4 (0) 0.2.x �
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Figures 2-5 show the 3-D view of the hyperchaotic attractor of the system (4) in

1 2 3( , , ),x x x 1 2 4( , , ),x x x 1 3 4( , , )x x x and 2 3 4( , , )x x x spaces respectively..

Figure 2: 3-D view of the novel hyperchaotic system in (x
1
, x

2
, x

3
) space

Figure 3: 3-D view of the novel hyperchaotic system in (x
1
, x

2
, x

4
) space
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Figure 4: 3-D view of the novel hyperchaotic system in (x
1
, x

3
, x

4
) space

Figure 5: 3-D view of the novel hyperchaotic system in (x
2
, x

3
, x

4
) space
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3. PROPERTIES OF THE NOVEL HYPERCHAOTIC SYSTEM

A. Dissipativity

We write the system (4) in vector notation as

1

2

3

4

( )

( )
( )

( )

( )

f x

f x
x f x

f x

f x

� �
� �
� �� �
� �
� �
� �

�
(6)

where

1 1 2 2 3 4

2 2 1 3 4

3 3 1 2

4 1 2

( )

( )

( )

( )

f x x ax x x px

f x bx x x px

f x cx x x

f x qx px

� � � � �

� � �
� � �

� � �

(7)

We take the parameter values as

1.5,   3,   5.8,   1.6,   0.5a b c p q� � � � � (8)

The divergence of the vector field f on R4 is obtained as

31 2 4

1 2 3 4

div 1 ,
ff f f

f b c
x x x x

�
�� � �

� � � � � � � � � �
� � � � (9)

where

1 3.8 0b c� � � � � � (10)

Let � be any region in R4 having a smooth boundary.

Let ( ) ( ),tt� � � �  where �
t
 is the flow of f.

Let V(t) denote the hypervolume of �(t).

By Liouville’s theorem, it follows that

1 2 3 4 1 2 3 4

( ) ( )

( )
(div ) ( )

t t

dV t
f dx dx dx dx dx dx dx dx V t

dt
� �

� �

� � � � �� � (11)

Integrating the linear differential equation (12), we get the solution as

( ) (0)exp( )V t V t�� � (12)

From Eq. (9), it follows that the volume V(t) shrinks to zero exponentially as t��.

Thus, the novel hyperchaotic system (4) is dissipative. Hence, the asymptotic motion of the system (4)
settles exponentially onto a set of measure zero, i.e. a strange attractor.

B. Symmetry

The 4-D novel hyperchaotic system (4) is invariant under the coordinates transformation

1 2 3 4 1 2 3 4( , , , ) ( , , , )x x x x x x x x� � �� (13)
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Since the transformation (13) persists for all values of the system parameters, the novel hyperchaotic
system (4) has rotation symmetry about the x

3
– axis and that any non-trivial trajectory must have a twin

trajectory.

C. Invariance

The x
3
– axis ( 1 0,x � 2 0,x � 4 0)x � is invariant for the system (4). Hence, all orbits of the system (4) starting

on the x
3
– axis stay in the x

3
– axis for all values of time. Also, this invariant motion is globally exponentially

stable as c > 0.

D. Equilibrium Points

The equilibrium points of the novel hyperchaotic system (4) are obtained by solving the following nonlinear
system of equations

1 1 2 2 3 4

2 2 1 3 4

3 3 1 2

4 1 2

( ) 0

( ) 0

( ) 0

( ) 0

f x x ax x x px

f x bx x x px

f x cx x x

f x qx px

� � � � � �

� � � �
� � � �

� � � �

(14)

We take the parameter values as in the hyperchaotic case, viz.

1.5,   3,   5.8,   1.6,   0.5a b c p q� � � � � (15)

Solving the equations (14) using the values (15), we obtain the unique equilibrium point:

0

0

0

0

0

E

� �
� �
� ��
� �
� �
� �

(16)

The Jacobian matrix of the novel hyperchaotic system (4) at E
0
 is obtained as

0 0

1 1.5 0 1.6

0 3 0 1.6
( )

0 0 5.8 0

0.5 1.6 0 0

J J E

� �� �
� �
� �� �
� ��
� �� �� �

(17)

which has the eigenvalues

1,2 3 40.0345 0.7082 ,   2.0690,   5.8i� � �� � � � � � (18)

This shows that the equilibrium 0E is a saddle-focus, which is unstable.

E. Lyapunov Exponents

We take the parameter values of the novel system (4) as

1.5,   3,   5.8,   1.6,   0.5a b c p q� � � � � (19)
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The Lyapunov exponents of the system (4) are numerically obtained with MATLAB as

1

2

3

4

0.7365

0.0821

0

4.6005

L

L

L

L

��
� ��
� ��
� � ��

(20)

Thus, the system (4) is hyperchaotic, since it has two positive Lyapunov exponents.

Also, the maximal Lyapunov exponent (MLE) of the system (4) is obtained as 1 0.7365,L �  which is

greater than the MLE of the Zhu system, viz. 1 0.6747.L �

Since 1 2 3 4 3.7819 0,L L L L� � � � � � it is immediate that the system (4) is dissipative.

The dynamics of the Lyapunov exponents of the novel hyperchaotic system (4) is depicted in Figure 6.

F. Lyapunov Dimension

The Lyapunov dimension of the hyperchaotic system (4) is determined as

1 2 3

4

3 3.1779
| |L

L L L
D

L

� �
� � � (21)

which is fractional.

Figure 6: Dynamics of the Lyapunov exponents of the novel hyperchaotic system
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4. ADAPTIVE CONTROL OF THE THREE-SCROLL CHAOTIC SYSTEM

In this section, we design new results for the adaptive controller to stabilize the 4-D novel hyperchaotic
system with unknown parameters for all initial conditions.

Thus, we consider the controlled novel 4-D hyperchaotic system

1 1 2 2 3 4 1

2 2 1 3 4 2

3 3 1 2 3

4 1 2 4

x x ax x x px u

x bx x x px u

x cx x x u

x qx px u

� � � � � �

� � � �
� � � �

� � � �

�

�

�

�

(22)

where 1 2 3 4, , ,x x x x  are state variables, , , , ,a b c p q  are constant, unknown, parameters of the system and

1 2 3 4, , ,u u u u  are adaptive controls to be designed.

We aim to solve the adaptive control problem by considering the adaptive feedback control law

1 1 2 2 3 4 1 1

2 2 1 3 4 2 2

3 3 1 2 3 3

4 1 2 4 4

ˆ ˆ( ) ( )

ˆ ˆ( ) ( )

ˆ( )

ˆ ˆ( ) ( )

u x a t x x x p t x k x

u b t x x x p t x k x

u c t x x x k x

u q t x p t x k x

� � � � �

� � � � �

� � �
� � �

(23)

where ˆ( ),a t ˆ( ),b t ˆ( ),c t ˆ ( ),p t ˆ( )q t  are estimates for the unknown system parameters ,a ,b ,c ,p ,q respectively,,

and 1 2 3 4, , ,k k k k  are positive gain constants.

The closed-loop system is obtained by substituting (23) into (22) as

1 2 4 1 1

2 2 4 2 2

3 3 3 3

4 1 2 4 4

ˆ ˆ( ( )) ( ( ))

ˆ ˆ( ( )) ( ( )

ˆ( ( ))

ˆ ˆ( ( )) ( ( )

x a a t x p p t x k x

x b b t x p p t x k x

x c c t x k x

x q q t x p p t x k x

� � � � � �

� � � � �
� � � �

� � � � � �

�

�

�

�

(24)

To simplify (24), we define the parameter estimation error as

ˆ( ) ( )

ˆ( ) ( )

ˆ( ) ( )

ˆ( ) ( )

ˆ( ) ( )

a

b

c

p

q

e t a a t

e t b b t

e t c c t

e t p p t

e t q q t

� �

� �

� �
� �

� �

(25)

Substituting (25) into (24), we obtain

1 2 4 1 1

2 2 4 2 2

3 3 3 3

4 1 2 4 4

a p

b p

c

q p

x e x e x k x

x e x e x k x

x e x k x

x e x e x k x

� � � �

� � �

� � �
� � � �

�

�

�

�

(26)
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Differentiating the parameter estimation error (25) with respect to ,t we get

ˆ( ) ( )

ˆ( ) ( )

ˆ( ) ( )

ˆ( ) ( )

ˆ( ) ( )

a

b

c

p

q

e t a t

e t b t

e t c t

e t p t

e t q t

� �

� �

� �

� �

� �

��

�
�

��

��

��

(27)

Next, we find an update law for parameter estimates using Lyapunov stability theory.

Consider the quadratic Lyapunov function defined by

� �2 2 2 2 2 2 2 2 2
1 2 3 4 1 2 3 4

1
( , , , , , , , , ) ,

2a b c p q a b c p qV x x x x e e e e e x x x x e e e e e� � � � � � � � � (28)

which is positive definite on R9.

Differentiating V along the trajectories of (26) and (27), we obtain

2 2 2 2 2 2
1 1 2 2 3 3 4 4 1 2 2 3

1 4 1 4

ˆˆ ˆ

ˆ ˆ      

a b c

p q

V k x k x k x k x e x x a e x b e x c

e x x p e x x q

� �� � � �� � � � � � � � � � � � �� � � �� �� �
� � � �� � � � �� � � �

�� ��

� � (29)

In view of (29), we define an update law for the parameter estimates as

1 2

2
2

2
3

1 4

1 4

ˆ

ˆ

ˆ

ˆ

ˆ

a x x

b x

c x

p x x

q x x

� �

�

� �

�

� �

�

�

�

�

�

(30)

Theorem 1. The 4-D novel hyperchaotic system (22) with unknown parameters is globally and
exponentially stabilized for all initial conditions by the adaptive control law (23) and the parameter update

law (30), where ,ik ( 1,2,3, 4)i � are positive gain constants.

Proof. The result is proved using Lyapunov stability theory [134]. We consider the quadratic Lyapunov

function V defined by (19), which is a positive definite function on 9.R

Substituting the parameter update law (21) into (20), we obtain V� as

2 2 2 2
1 1 2 2 3 3 4 4V k x k x k x k x� � � � �� (31)

which is a negative semi-definite function on R9.

Therefore, it can be concluded that the state vector ( )x t and the parameter estimation error are globally

bounded, i.e.
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1 2 3 4( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .
T

a b c p qx t x t x t x t e t e t e t e t e t L�� � �� � (32)

We define

� �1 2 3 4min , , , .k k k k k� (33)

Then it follows from (21) that

2
V k x� ��  or 

2
.k x V� � � (34)

Integrating the inequality (34) from 0 to ,t we get

2

0

( )    ( ) (0) ( )
t t

o

k x d V d V V t� � � �� � � �� � � (35)

From (35), it follows that 2( ) .x t L�

Using (26), we can conclude that ( ) .x t L���

Hence, using Barbalat’s lemma, we can conclude that ( ) 0x t � exponentially as t �� for all initial

conditions 3(0) .x �R

This completes the proof.

Numerical Results

For the system (22), the parameter values are taken as in the hyperchaotic case, viz.

1.5,   3,   5.8,   1.6,   0.5a b c p q� � � � � (36)

We take the feedback gains as 6ik � for 1, 2,3, 4.i �

The initial values of the hyperchaotic system (22) are taken as

1 2 3 4(0) 4.2,  (0) 2.7,  (0) 3.8,   (0) 7.4x x x x� � � � � (37)

The initial values of the parameter estimates are taken as

ˆ ˆˆ ˆ ˆ(0) 6,  (0) 5.1,  (0) 2.5,  (0) 3.4,  (0) 4.2a b c d p� � � � � (38)

Figure 7 depicts the time history of the controlled novel hyperchaotic system.

5. ADAPTIVE SYNCHRONIZATION OF THE IDENTICAL NOVEL HYPERCHAOTIC
SYSTEMS

In this section, we derive new results for the adaptive synchronization of the identical novel hyperchaotic
systems with unknown parameters.

As the master system, we take the novel 4-D hyperchaotic system

1 1 2 2 3 4

2 2 1 3 4

3 3 1 2

4 1 2

x x ax x x px

x bx x x px

x cx x x

x qx px

� � � � �

� � �
� � �

� � �

�

�

�

�

(39)
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where 1 2 3 4, , ,x x x x are state variables and , , , ,a b c p q are constant, unknown, parameters of the system.

As the slave system, we take the controlled novel 4-D hyperchaotic system

1 1 2 2 3 4 1

2 2 1 3 4 2

3 3 1 2 3

4 1 2 4

y y ay y y py u

y by y y py u

y cy y y u

y qy py u

� � � � � �

� � � �
� � � �

� � � �

�

�

�

�

(40)

where 1 2 3 4, , ,y y y y  are state variables and 1 2 3 4, , ,u u u u  are adaptive controllers to be designed.

The synchronization error is defined by

,    ( 1, 2,3, 4)i i ie y x i� � � (41)

The error dynamics is easily obtained as

1 1 2 4 2 3 2 3 1

2 2 4 1 3 1 3 2

3 3 1 2 1 2 3

4 1 2 4

e e ae pe y y x x u

e be pe y y x x u

e ce y y x x u

e qe pe u

� � � � � � �

� � � � �
� � � � �

� � � �

�

�

�

�

(42)

We consider the adaptive control law defined by

Figure 7: Time history of the controlled novel hyperchaotic system
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1 1 2 4 2 3 2 3 1 1

2 2 4 1 3 1 3 2 2

3 3 1 2 1 2 3 3

4 1 2 4 4

ˆ ˆ( ) ( )

ˆ ˆ( ) ( )

ˆ( )

ˆ ˆ( ) ( )

u e a t e p t e y y x x k e

u b t e p t e y y x x k e

u c t e y y x x k e

u q t e p t e k e

� � � � � �

� � � � � �

� � � �
� � �

(43)

where 1 2 3 4, , ,k k k k are positive gain constants.

Substituting (43) into (42), we get the closed-loop error dynamics as

1 2 4 1 1

2 2 4 2 2

3 3 3 3

4 1 2 4 4

ˆ ˆ[ ( )] [ ( )]

ˆ ˆ[ ( )] [ ( )]

ˆ[ ( )]

ˆ ˆ[ ( )] [ ( )]

e a a t e p p t e k e

e b b t e p p t e k e

e c c t e k e

e q q t e p p t e k e

� � � � � �

� � � � �
� � � �

� � � � � �

�

�

�

�

(44)

To simplify the error dynamics (44), we define the parameter estimation error as

ˆ( ) ( )

ˆ( ) ( )

ˆ( ) ( )

ˆ( ) ( )

ˆ( ) ( )

a

b

c

p

q

e t a a t

e t b b t

e t c c t

e t p p t

e t q q t

� �

� �

� �
� �

� �

(45)

Using (45), we can simplify the error dynamics (44) as

1 2 4 1 1

2 2 4 2 2

3 3 3 3

4 1 2 4 4

a p

b p

c

q p

e e e e e k e

e e e e e k e

e e e k e

e e e e e k e

� � � �

� � �

� � �
� � � �

�

�

�

�

(46)

Differentiating the parameter estimation error (45) with respect to ,t we get

ˆ( ) ( )

ˆ( ) ( )

ˆ( ) ( )

ˆ( ) ( )

ˆ( ) ( )

a

b

c

p

q

e t a t

e t b t

e t c t

e t p t

e t q t

� �

� �

� �

� �

� �

��

�
�

��

��

��

(47)

Next, we find an update law for parameter estimates using Lyapunov stability theory.

Consider the quadratic Lyapunov function defined by
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� �2 2 2 2 2 2 2 2 2
1 2 3 4 1 2 3 4

1
( , , , , , , , , ) ,

2a b c p q a b c p qV e e e e e e e e e e e e e e e e e e� � � � � � � � � (48)

which is positive definite on R9.

Differentiating V along the trajectories of (46) and (47), we obtain
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In view of (49), we define an update law for the parameter estimates as

1 2

2
2

2
3

1 4

1 4

ˆ

ˆ

ˆ

ˆ

ˆ

a e e

b e

c e

p e e

q e e

� �

�

� �

�

� �

�

�

�

�

�

(50)

Theorem 2. The identical novel hyperchaotic systems (39) and (40) with unknown system parameters
are globally and exponentially synchronized for all initial conditions by the adaptive control law (43) and

the parameter update law (50), where ,ik  ( 1,2,3, 4)i � are positive constants.

Proof. The result is proved using Lyapunov stability theory [134]. We consider the quadratic Lyapunov
function V defined by (39), which is a positive definite function on R9.

Substituting the parameter update law (50) into (49), we obtain V� as

2 2 2 2
1 1 2 2 3 3 4 4V k e k e k e k e� � � � �� (51)

which is a negative semi-definite function on R8.

Thus, it can be concluded that the synchronization vector ( )e t and the parameter estimation error are
globally bounded, i.e.

1 2 3 4( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .
T

a b c p qe t e t e t e t e t e t e t e t e t L�� � �� � (52)

We define

� �1 2 3 4min , , , .k k k k k� (53)

Then it follows from (51) that
2

V k e� ��  or 
2

.k e V� � � (54)

Integrating the inequality (54) from 0 to ,t we get

2

0

( )    ( ) (0) ( )
t t

o

k e d V d V V t� � � �� � � �� � � (55)

Therefore, we can conclude that 2( ) .e t L�
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Using (37), we can conclude that ( ) .e t L���

Hence, using Barbalat’s lemma, we can conclude that ( ) 0e t � exponentially as t �� for all initial

conditions 3(0) .e �R

This completes the proof.

Numerical Results

For the novel chaotic systems, the parameter values are taken as in the chaotic case, viz.

1.5,   3,   5.8,   1.6,   0.5a b c p q� � � � � (56)

We take the feedback gains as 6ik � for 1, 2,3, 4.i �

The initial values of the master system (39) are taken as

1 2 3 4(0) 5.2,  (0) 2.7,  (0) 6.2,   (0) 4.9x x x x� � � � (57)

The initial values of the slave system (40) are taken as

1 2 3 4(0) 2.8,  (0) 6.3,  (0) 3.7,   (0) 2.5y y y y� � � � (58)

The initial values of the parameter estimates are taken as

ˆ ˆˆ ˆ ˆ(0) 8,  (0) 4.3,  (0) 7.5,  (0) 2.1,  (0) 5.3a b c d p� � � � � (59)

Figures 8-11 depicts the complete synchronization of the identical novel chaotic systems.

Figure 12 depicts the time-history of the synchronization errors.

Figure 8: Complete synchronization of the states x
1
 and y

1
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Figure 9: Complete synchronization of the states x
2
 and y

2

Figure 10: Complete synchronization of the states x
3
 and y

3
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Figure 11: Complete synchronization of the states x
4
 and y

4

Figure 12: Time history of the chaos synchronization errors e
1
, e

2
, e

3
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6. CONCLUSIONS

In this paper, we have derived an eleven-term 4-D novel hyperchaotic system with two positive Lyapunov
exponents. We gave a qualitative analysis of the mathematical properties of the novel 4-D hyperchaotic
system. We determined the Lyapunov exponents and Lyapunov dimension of the 4-D hyperchaotic system.
Next, we have derived adaptive control and synchronization results for the novel hyperchaotic system with
unknown parameters, which have been established using Lyapunov stability theory. Numerical simulations
with MATLAB were exhibited to demonstrate the phase portraits of the novel hyperchaotic system and the
adaptive results derived in this paper for adaptive control and adaptive synchronization of the 4-D novel
hyperchaotic system.
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