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ABSTRACT

Abstract: A vector - valued ratio type mixed Lagrange function is introduced to study mixed saddle point 
optimality criteria for a class of multiobjective fractional programming problems involving differentiable n-set 
functions. Further, a mixed Bector type dual is proposed and duality results are established under generalized 
( )-convexity assumptions on the functions.
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1. INTRODUCTION

Optimization problems involving set functions are extensively studied in the recent years. These 
problems arise in various areas and have many interesting applications, for example, in fluid flow [4], electric 
insulator design [5], plasma confinement [5], and many more. First theory of optimizing set functions was 
developed by Morris [12]. Subsequently several authors [2, 8, 10] have made significant contributions to 
study duality results for various optimization problems containing n-set functions under different set ups. In 
[13], Preda introduced ( )-convexity for n-set functions which was defined by using a sublinear functional. 
Later, Jo, Kim and Lee [9] extended the concept of ( )-convexity to generalized ( )-convexity for 
n-set functions and established several sufficient optimality conditions for multiobjective programming 
problem with inequality and equality constraints. Recently, Preda and Batatorescu [14] established duality 
results for minmax generalized B-vex program involving n-set functions.
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Different types of duals are proposed in the literature. The most significant ones are given by Wolfe 
[15] and Mond and Weir [11]. Since then several authors have studied Wolfe duality and Mond-Weir 
duality for different types of optimization problems under different set ups. Recently, it was 
remarked by Bector and Chandra [3] that while Wolfe dual originated from the Lagrange function of 
the problem under consideration, the formulation of Mond-Weir dual from the Lagrange function is 
not fully explored. This led them to introduce the new concept of mixed Lagrange function to study 
saddle point optimality criteria for scalar- valued nonlinear programming problem under convexity 
assumptions. 

In this paper, the concept of mixed Lagrange function and mixed saddle point for generalized 
fractional programming problem involving n-set functions is introduced. Duality results are 
established under generalized (, , )-convexity assumptions. 

2.   PRELIMINARIES 

Throughout the paper, we assume that (X,A,) is a finite atomless measure space with X(L1 ,A,) 
separable. nA  is n-fold product of a -algebra A of subsets of set X, a pseudometric d on nA  is 
defined by 

d(S, T) = 



n

1i

2
12

ii ))TS((  

where  S = )S,...,S,S( n21   nA ,   T = )T,...,T,T( n21   nA ,  and  ii TS    denotes  

symmetric difference of sets iS   and iT . For h X(L1 , A,)  and iS   A, the integral   
iS

dh  

will be denoted by h,
iS ,where 

iS   is the characteristic function of iS . 

The following definitions from Jo, Kim and Lee [9] are used in the sequel. 

Definition 2.1 A functional  on nA  nA  X(Ln
1 , nA ,) is said to be sublinear in its third 

argument if for any S, T  nA , 

(S, T; 21  )    (S, T; 1 ) + (S, T; 2 )   21 ,    X(Ln
1 , nA ,) 

(S, T; )  =   (S, T; )               0,    R     X(Ln
1 , nA ,) 

Definition 2.2   Let  be a sublinear functional on nA  nA  X(Ln
1 , nA ,). Let the function         

F: nA  R be differentiable n-set function,  : nA  nA   nA  nA  with  (S, *S )  0,    S 
*S  and   R. 

(i)   F is said to be (, , )-convex at *S  if 

F(S)  F( *S )   (S, *S ; D *S
F ) +  2d ((S, *S )). 

(ii)   F is said to be (, , )-quasiconvex at *S  if for each S  nA  such that 

F(S)   F ( *S ), we have, (S, *S ; D *S
F )     2d ((S, *S )). 

(iii)  F is said to be (, , )-pseudoconvex at *S  if for each S  nA  such that 



Mixed Lagrangian and Multiobjective Fractional Programming Duality with Generalized -Convex n-Set Functions

International Journal of Applied Business and Economic Research107

 

(S, *S ; D *S
F )      2d ((S, *S )) ,we have, F(S)   F( *S ). 

(iv)  F is said to be strictly (, , )-pseudoconvex at *S  if for each S  nA , 

S  *S , such that (S, *S ; D *S
F )      2d ((S, *S )) , we have, F(S) > F( *S ). 

Following multiobjective fractional programming problem is studied in this paper: 

(P) V-minimize F(S)/G(S) = ( 1F (S)/ 1G (S), 2F (S)/ 2G (S), …, pF (S)/ pG (S)) 

 subject to jH (S)   0,  1   j   m, 

where F = )F,...,F,F( p21  : nA  pR , G = )G,...,G,G( p21  : nA  pR ,                              

H = )H,...,H,H( m21  : nA  mR  are differentiable n-set functions on nA , and minimization is 
taken in terms of efficient solutions as defined below. Further, assume that for each i, 1   i   p and 

for every S nA , iF (S)   0 and iG (S) > 0. 

Let  = {S  nA  jH (S)   0, 1   j   m} denotes the set of feasible solutions of (P). 

We now give the following definitions from Bector et al. [2] 

Definition 2.3   A point *S   is said to be an efficient solution of (P) if   S   such that 

iF (S)/ iG (S)   iF ( *S )/ iG ( *S ),   i, 1   i   p , i  k 

kF (S)/ kG (S) < kF ( *S )/ kG ( *S ) for some k. 

For a vector maximization problem the above definition is modified analogously. 

Definition 2.4   A point *S   is said to be a regular efficient solution of (P) if there exists           
Ŝ   nA  such that 

jH ( *S ) + 



n

1r
SŜjr *

rr*S
,HD <  0   j, 1   j   m. 

Since for each i, 1   i   p and for every S  nA , iG (S) > 0, hence, problem (P) can be 
equivalently written as follows: 

(EP) V-minimize F(S)/G(S) = ( 1F (S)/ 1G (S), 2F (S)/ 2G (S), …, pF (S)/ pG (S)) 

 subject to   ijQ (S) = jH (S)/ iG (S)   0, 1   j   m, 1   i   p. 

Let Q(S) be a matrix of constraint functions of (EP) of order m  p with ith column given by 

iQ (S) = ( i1Q (S), i2Q (S), …, imQ (S) t) , 1   i   p 

We associate to the problem (EP) the following set of p-programming problems, (E *
kP ), 1   k   p, 

each with a single objective: 
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(E *
kP )  Minimize kF (S)/ kG (S) 

  subject to  iF (S)/ iG (S)   iF ( *S )/ iG ( *S ),  i  k, 1   i   p, 

                   ijQ (S)   0 , 1   j   m,  1   i   p. 

Lemma 2.1 [7]  *S  is an efficient solution for (P) (or equivalently to (EP)) if and only if it is an 
optimal solution for (E *

kP ), for each 1   k   p. 

Theorem 2.1 [1] (Necessary Optimality Conditions) Let *S  be a regular efficient solution for 
(P) (or equivalently to (EP)) and a regular solution for at least one (E *

kP ), 1   k   p. Then there 

exist *  pR , Ŷ   mpR  such that 

 *Siir

p

1i

*
i )G/F(D



  + *Sijr

m

1j

p

1i
ji )Q(Dŷ

 

, *
rr SS      0   rS   A, 1   r   n         (2.1) 

jiŷ ijQ ( *S ) = 0, 1   j   m , 1   i   p,                                         (2.2) 

          jiŷ    0, 1   j   m , 1   i   p,     (2.3) 

*   0,  
t* e = 1,  e = (1, 1, …, 1)t  pR     (2.4) 

 

where  Ŷ  = 





















mp2p1p

m22212

m12111

ŷ...ŷŷ
............

ŷ...ŷŷ
ŷ...ŷŷ

 = 





















p

2

1

Ŷ
...
Ŷ
Ŷ

   

is a matrix of Lagrange multipliers for the constraints of (P), iŶ  is the ith row consisting of the 
Lagrange multipliers for the ith column of constraint matrix Q(S). 

Set *
i

*
iY = iŶ ,  1   i   p. 

Then (2.1) – (2.3) can be rewritten as 

 rD ( *s
i

*
ii

p

1i

*
i )

G
HYF







 




, *
rr SS      0     rS   A,  1   r   n 

)S(G
)S(H

y *
i

*
j*

ji  = 0, 1   j   m , 1   i   p 

*
jiy    0,  1   j   m ,  1   i   p. 
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3.   MIXED LAGRANGIAN AND MIXED SADDLE POINT 

Let M = {1, 2, …, m}, let J  M and K = M \ J with J and K denote the cardinality of the sets 
J and K respectively. 

Then the constraint matrix of (EP) can be partitioned as 

Q(S) = 







)S(Q
)S(Q

K

J , 

where )S(QJ  is a matrix of order J  p with ith column given by 

( )S(QJ i)  =
t

i

J
)S(G

)S(H





 ,  1   i   p, 

and )S(QK  is a matrix of order K  p. 

Define a set  = { S  nA   kQ (S) = kH (S)/ iG (S)    0 ,   k  K,  1   i   p}. 

Note that   .  

We now introduce vector-valued Mixed Lagrange function (or Partial Lagrange Function) for the 
problem (P) (or equivalently for (EP)). 

Definition 3.1   A vector-valued function L:    JpR 
   pR  defined as 

L(S, JY ) = ( 1L (S, 1J )Y( ), 2L (S, 2J )Y( ), …, pL (S, pJ )Y( ) ) , 

where iL (S, iJ )Y( ) = 
)S(G

)S(H)Y()S(F

i

JiJi 
 ,   1   i   p , 

iJ )Y(  is the ith row of matrix JY  of order p  J, 

is called Mixed Lagrange function for (P). 

Definition 3.2  A point ( *S , *
JY )     JpR 

  is said to be a mixed saddle point of the Mixed 
Lagrange function  L  if the following conditions hold 

L( *S , JY )   L( *S , *
JY )   JY   JpR 

  

L( *S , *
JY )   L(S, *

JY )   S  . 

Following theorem ensures the existence of a mixed saddle point of L for (P) under                     
(,, )-convexity assumptions. 

Theorem 3.1   Let *S  be a regular efficient solution for (P) and regular efficient solution for at least 
one (E *

kP ), 1   k   p. Also, for each i, 1   i   p,  j  J, k  K, let ( iF / iG ) be (, i , )-convex 

at *S ; ( jH / iG ) be (, ij , )-convex at *S ; ( kH / iG ) be (, ik , )-convex at *S . Further, let 
the sublinear functional    satisfy the following assumption 
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(C)           For  = ),...,,( n21   X(Ln
1 , nA , ), 




n

1r

 r , *
rr SS    0,  rS   A, 1  r  n      (S, *S ; )   0. 

Then there exist *  pR , *
JY   JpR 

  such that ( *S , *
JY ) is a mixed saddle point of (P) provided 

we have *  > 0 and 



p

1i

*
i ( i  + 

Jj

*
jiy ij  + 

Kk

*
kiy ik )   0. 

Proof. By Theorem 2.1, there exist *  pR , Ŷ   mpR  such that 

 rD ( *s
i

*
ii

p

1i

*
i )

G
HYF







 




, *
rr SS      0     rS   A, 1   r   n                 (3.1) 

)S(G
)S(H

y *
i

*
j*

ji  = 0, 1   j   m, 1   i   p                              (3.2)  

*
jiy    0,  1   j   m , 1   i   p, *   0, 

t* e = 1. 

From (3.1), we have 




n

1r
 rD ( *S , *

rr SS      0      rS   A 

which along with condition (C) on  implies 

(S, *S ; D ( *s
i

*
ii

p

1i

*
i )

G
HYF







 




)   0   S  nA .   (3.3) 

Now,  let S . Then by given hypotheses, we have 

)S(G
)S(F

i

i   
)S(G
)S(F

*
i

*
i    (S, *S ; D (

*si

i

G
F









) + i

2d ((S, *S )),  1   i   p                     (3.4) 

)S(G
)S(H

i

j   
)S(G
)S(H

*
i

*
j    (S, *S ; D (

*si

j

G
H









) + ij 2d ((S, *S )),  j  J, 1   i   p         (3.5) 

)S(G
)S(H

i

k   
)S(G
)S(H

*
i

*
k    (S, *S ; D (

*si

k

G
H









) + ik

2d ((S, *S )), k  K, 1   i   p       (3.6) 

Multiply (3.5) by *
jiy    0,  j  J, (3.6) by *

kiy    0, k  K and using (3.2), sublinearity of , together 
with the fact that S  , we get 

*
jiy

)S(G
)S(H

i

j    (S, *S ; D (
*si

j*
ji G
H

y 







) + *

jiy ij 2d ((S, *S )),   j  J          (3.7) 
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             0   (S, *S ; D (
*si

k*
ki G

H
y 








) + *

kiy ik
2d ((S, *S )),  k  K                       (3.8) 

It follows from (3.4), (3.7), and (3.8) together with *
i  > 0, 1   i   p, sublinearity of , that 





p

1i

*
i (

)S(G
)S(F

i

i   
)S(G
)S(F

*
i

*
i  + 

)S(G
)S(H)Y(

i

Ji
*
J ) 

(S, *S ; 



p

1i

*
i( (

i

Ki
*
KJi

*
Ji

G
H)Y(H)Y(F 

) *S
) ) 

                                                   + 



p

1i

*
i ( i  + 

Jj

*
jiy ij  + 

Kk

*
kiy ik ) 2d ((S, *S )). 

Using (3.3) and assumption that 



p

1i

*
i ( i  + 

Jj

*
jiy ij  +

Kk

*
kiy ik )   0, we get 

 



p

1i

*
i (L(S, *

JY )  L ( *S , *
JY ))   0      S .               (3.9) 

As *  > 0, from (3.9) we get that, for any S , 

 L ( *S , *
JY )   L(S, *

JY ).                                      (3.10) 

Further, for any JY   JpR 
 , 

iL ( *S , JY )  iL ( *S , *
JY ) = 

)S(G
)S(H)Y(

*
i

*
JiJ   

)S(G
)S(H)Y(

*
i

*
Ji

*
J  

which together with (3.2) and the facts that JY   0, *S   and G ( *S ) > 0, yields 

iL ( *S , JY )  iL ( *S , *
JY )   0,        1   i   p. 

This completes the proof of the Theorem. 

Next theorem does not require any convexity conditions on the functions and hence its proof 
follows along the similar lines as the proof of Theorem 6 in [6]. 

Theorem 3.2   Let ( *S , *
JY ) be a mixed saddle point of mixed L. Then *S is feasible to (P),           

*
iY H ( *S ) = 0, 1  i  p, and *S  is an efficient solution of (P). 

4.   MIXED DUAL AND DUALITY 
Necessary optimality conditions for an efficient solution of (P) (Theorem 2.1), developed in Section 
2, motivate us to introduce the following mixed dual for (P) (or equivalently for (EP)). 

(D) V-maximize ( 1L (S, 1J )Y( ), 2L (S, 2J )Y( ), …, pL (S, pJ )Y( ) ) 
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 subject to        rD ( T
i

ii
p

1i
i )

G
HYF







 




, 
rr TS     0  rS   A, 1   r   n   (4.1) 

   
)T(G

)T(H)Y(

i

KiK    0, 1   i   p                                              (4.2) 

Y = ( JY , KY )   0, JY  JpR  , KY  KpR  ,    0, t e = 1, T  nA . 

Theorem 4.1 (Weak Duality) Let S be feasible for (P) and let (T, Y,) be feasible for (D). Further, 
let the following conditions be satisfied 





p

1i
i (

i

JiJi

G
H)Y(F 

) is (,,)-pseudoconvex at T, 
i

KiK

G
H)Y(

is (, i ,)-quasiconvex at T, for 

each i,  > 0 with   + i

p

1i
i



   0. 

Also, let the sublinear functional    satisfies the assumption 

 (S, T; D(



p

1i
i (

i

ii

G
HYF 

) T) )  >  0.                                   (4.3) 

Then we have             
)S(G
)S(F

   L(S, JY ). 

Proof. On the contrary, let 
)S(G
)S(F

  L(S, JY ).Then there exists an index r such that 

 
)S(G
)S(F

i

i    iL (T, iJ )Y( ),  i, 1   i   p, i  r                  (4.4) 

                                                    
)S(G
)S(F

r

r  < rL (T, rJ )Y( )                                          (4.5) 

Now, as S is feasible for (P), we have  
)S(G
)S(H

i

j     0,  jJ. Also, jiy    0,  jJ, 1   i   p, hence, 

we get 

 
)S(G

)S(H)Y(

i

JiJ    0, 1   i   p.                            (4.6) 

It follows from (4.4), (4.5) and (4.6) together with  > 0 that 





p

1i
i (

)S(G
)S(H)Y()S(F

i

JiJi 
)  <  




p

1i
i (

)T(G
)T(H)Y()T(F

i

JiJi 
) 
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Using (, , )-pseudoconvexity of  



p

1i
i (

i

JiJi

G
H)Y(F 

)   at T, we get 

 (S, T; D(



p

1i
i (

i

JiJi

G
H)Y(F 

) T) )  <   2d ((S, T)).                   (4.7) 

Also feasibility of S along with jiy    0,  jJ, and (4.2) gives 


Kk

kiy
)S(G
)S(H

i

k     
Kk

kiy
)T(G
)T(H

i

k . 

By (, i , )-quasiconvexity of 
Kk

kiy
i

k

G
H

 at T, we get 

 (S, T; D( 
Kk

kiy
i

k

G
H

T) )  <  i  2d ((S, T)).            (4.8) 

Multiplying (4.8) by  i  > 0 and summing over i, adding it to (4.7) and using sublinearity of , gives 

(S, T; D(



p

1i
i (

i

ii

G
HYF 

) T) )     (   + 



p

1i
i i ) 2d ((S, T)) 

which in view of hypothesis (iii) implies 

(S, T; D(



p

1i
i (

i

ii

G
HYF 

) T) )     0. 

This contradicts (4.3). Hence the result. 

Remark 4.1   Weak Duality theorem can also be proved if along with condition (4.3) any one of the 
following sets of conditions holds 

(I)   



p

1i
i (

i

JiJi

G
H)Y(F 

) is strictly (, , )-pseudoconvex at T, 
i

KiK

G
H)Y(

is (, i , )-

quasiconvex at T,  i, 1   i   p,  + i

p

1i
i



   0. 

(II)  



p

1i
i (

i

JiJi

G
H)Y(F 

) is (, , )-quasiconvex at T, 
r

KrK

G
H)Y(

 is strictly (, r , )-

quasiconvex at T, for atleast one r, with  r  > 0, 
i

KiK

G
H)Y(

is (, i , )-quasiconvex at T,  i, i  r, 

 + i

p

1i
i



   0. 
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Theorem 4.2 (Strong Duality)   Let  *S  be a regular efficient solution of (P) and regular optimal 
solution for at least one (E *

kP ), 1   k   p. Then there exist  *   pR  and *Y   mpR  such that   

( *S , * , *Y ) is feasible for (D). Furthermore, if any of the sets of conditions of Weak Duality 
theorem (Theorem 4.1 and Remark 4.1) holds, then ( *S , * , *Y ) is an efficient solution for (D). 

Proof. It follows from Theorem 3.1 that there exist *  pR  and *Y  mpR  such that 

 rD ( *s
i

*
ii

p

1i

*
i )

G
HYF







 




, *
rr SS      0      rS   A, 1   r   n 

)S(G
)S(H

y *
i

*
j*

ji  = 0, 1   j   m , 1   i   p                              (4.9)  

*
jiy    0, 1   j   m, 1   i   p, *   0,  

t* e = 1. 

Let M = {1, 2, …, m} be partitioned into two disjoint subsets J and K such that K = M \ J. Then 
from (4.9), we have 

)S(G
)S(H)Y(

*
i

*
KiK  = 

Kk

*
kiy

)S(G
)S(H

*
i

*
k  = 0     i, 1   i   p. 

Hence ( *S , * , *Y ) is feasible for (D). Moreover, in view of (4.9), we have 

)S(G
)S(F

*
i

*
i   =  

)S(G
)S(H)Y()S(F

*
i

*
Ji

*
J

*
i 

 = iL ( *S , *
JY ),  i, 1   i   p. 

Thus,  
)S(G
)S(F

*

*

 = L ( *S , *
JY ). 

That is, the value of (P)-objective at *S  is equal to the value of (D)-objective at ( *S , *Y , * ). Hence, 
it follows from the Weak Duality theorem that ( *S , *Y , * ) is an efficient solution for (D). 
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