Communication®n StochastidAnalysis 15\®\ Serials Publications
Vol. 10,No.1 (2016)1-12 A www.serialspublications.com

TIME-DEPENDENT NEUTRAL STOCHASTIC FUNCTIONAL
DIFFERENTIAL EQUATIONS DRIVEN BY A FRACTIONAL
BROWNIAN MOTION

B. BOUFOUSSI, S. HAJJI, AND E. LAKHEL

ABSTRACT. In this paper we consider a class of time-dependent neutral sto-
chastic functional differential equations with finite delay driven by a frac-
tional Brownian motion with Hurst parameter H € (%, 1), in a separable real
Hilbert space. We prove an existence and uniqueness result of mild solution
by means of the Banach fixed point principle. A practical example is provided
to illustrate the viability of the abstract result of this work.

1. Introduction

The stochastic functional differential equations have attracted much attention
because of their practical applications in many areas such as physics, medicine,
biology, finance, population dynamics, electrical engineering, telecommunication
networks, and other fields. For more details, one can see Da Prato and Zabczyk
[7], and Ren and Sun [14] and the references therein.

In many areas of science, there has been an increasing interest in the investi-
gation of the systems incorporating memory or aftereffect, i.e., there is the effect
of delay on state equations. Therefore, there is a real need to discuss stochastic
evolution systems with delay. In many mathematical models the claims often dis-
play long-range memories, possibly due to extreme weather, natural disasters, in
some cases, many stochastic dynamical systems depend not only on present and
past states, but also contain the derivatives with delays. Neutral functional dif-
ferential equations are often used to describe such systems. Very recently, neutral
stochastic functional differential equations driven by fractional Brownian motion
have attracted the interest of many researchers. One can see [4, 6, 10, 8, 9] and the
references therein. The literature concerning the existence and qualitative prop-
erties of solutions of time-dependent functional stochastic differential equations is
very restricted and limited to a very few articles. This fact is the main motivation
of our work. We mention here the recent paper by Ren et al. [13] concerning the
existence of mild solutions for a class of stochastic evolution equations driven by
fractional Brownian motion in Hilbert space.
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Motivated by the above works, this paper is concerned with the existence and
uniqueness of mild solutions for a class of time-dependent neutral functional sto-
chastic differential equations described in the form:

{ dla(t) + gt a(t — r(O))] = [A®)2(t) + f(t,a(t — p())dt + o (t)dB™ (1), 0< t < T,

z(t) = p(t), -1 <t <0,

(1.1)
in a real Hilbert space X with inner product < .,. > and norm |||, where A(%),
t € [0,T] is a family of linear closed operators from a space X into X that generates
an evolution system of operators {U(t,s), 0 < s <t < T}. B is a fractional
Brownian motion on a real and separable Hilbert space Y, r, p : [0, +00) — [0, 7]
(7 > 0) are continuous and f, g : [0,+00) x X — X, 0 : [0,+00) — LI(Y, X), are
appropriate functions. Here £9(Y, X) denotes the space of all Q-Hilbert-Schmidt
operators from Y into X (see section 2 below).

On the other hand, to the best of our knowledge, there is no paper which
investigates the study of time-dependent neutral stochastic functional differential
equations with delays driven by fractional Brownian motion. Thus we will make
the first attempt to study such problem in this paper. Our results are inspired by
the one in [4] where the existence and uniqueness of mild solutions to model (1.1)
with A(t) = A, Vt € [0,T], is studied, as well as some results on the asymptotic
behavior.

The substance of the paper is organized as follows. Section 2, recapitulate some
notations, basic concepts, and basic results about fractional Brownian motion,
Wiener integral over Hilbert spaces and we recall some preliminary results about
evolution operator. We need to prove a new technical lemma, for the L2 —estimate
of stochastic convolution integral which is different from that used by [4]. Section
3, gives sufficient conditions to prove the existence and uniqueness for the problem
(1.1). In Section 4 we give an example to illustrate the efficiency of the obtained
result.

2. Preliminaries

2.1. Evolution families. In this subsection we introduce the notion of evolution
family.

Definition 2.1. A set {U(¢,s): 0 < s <t < T} of bounded linear operators on a
Hilbert space X is called an evolution family if

(a) U(t,s)U(s,r) =U(t,r),U(s,s) =Tifr <s<t,

(b) (t,s) = U(t, s)x is strongly continuous for ¢ > s.

Let {A(t), t € [0,T]} be a family of closed densely defined linear unbounded
operators on the Hilbert space X and with domain D(A(¢)) independent of ¢,
satisfying the following conditions introduced by [1].

There exist constants \g > 0, 6 € (§,7), L, K > 0, and p, v € (0,1] with
1=+ v > 1 such that

Zg U{0} C p(A(t) = Xo),  [[R(AA() = Ao)ll < (2.1)

1+ A
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and
1(A(t) = X0)R(A, A(t) = Xo) [R(Xo, A(t)) — R(No, A(s))][| < LIt — s[*[A]7Y, (2.2)

for t, s € R, A € ¥y where 5y := {A € C— {0} : |arg \| < 6}.

It is well known, that this assumption implies that there exists a unique evolu-
tion family {U(¢,s) : 0 < s <t < T} on X such that (¢,s) — U(t,s) € L(X) is
continuous for t > s, U(+, s) € C1((s,00), L(X)), O U(t,s) = A(t)U(t, s), and

AR Ut s)| < Ot —5)7" (2.3)

for0 <t—s<1,k=010<a<pu z€ D(r— A(s)*), and a con-
stant C' depending only on the constants in (2.1)-(2.2). Moreover, 07U (t, s)x =
—Ul(t,s)A(s)z for t > s and © € D(A(s)) with A(s)z € D(A(s)). We say that A(-)
generates {U(t,s) : 0 < s <t < T}. Note that U(t, s) is exponentially bounded
by (2.3) with k& = 0.

Remark 2.2. If {A(t), t € [0,T]} is a second order differential operator A, that is
A(t) = A for each t € [0,T], then A generates a Cy—semigroup {e?*,t € [0,T]}.

For additional details on evolution system and their properties, we refer the
reader to [12].

2.2. Fractional Brownian Motion. Let (2, F,P) be a complete probability
space. A standard fractional Brownian motion (fBm) {8%(¢),t € R} with Hurst
parameter H € (0,1) is a zero mean Gaussian process with continuous sample
paths such that

Ru(t,s) =E[B7(t)p" (s)] = %(t2H + 2 — |t — 5?1, s,teR. (2.4)

Remark 2.3. In the case H > %, it follows from [11]that the second partial deriv-
ative of the covariance function

ORp _
- aH|t - S|2H 25

Otds

where ay = H(2H — 2), is integrable, and we can write

t s
Ry(t,s) = aH/ / lu — v|* 2 dudv. (2.5)
o Jo

Let X and Y be two real, separable Hilbert spaces and let £(Y, X) be the space
of bounded linear operator from Y to X. For the sake of convenience, we shall
use the same notation to denote the norms in X, Y and £(Y, X). Let Q € L(Y,Y)
be an operator defined by Qe, = \,e, with finite trace trQ) = Zf;l An < 00.
where A, > 0 (n = 1,2...) are non-negative real numbers and {e,} (n =1,2...) is
a complete orthonormal basis in Y.

We define the infinite dimensional fBm on Y with covariance @ as

oo

BY(t) = BE(t) = DV AneaB (8),

n=1



4 B. BOUFOUSSI, S. HAJJI, AND E. LAKHEL

where B are real, independent fBm’s. This process is Gaussian, it starts from 0,
has zero mean and covariance:

E(BR(t),z)(B"(s),y) = R(5,1){Q(2).y), w,y€Y, t,s€[0,T).

In order to define Wiener integrals with respect to the @Q-fBm, we introduce the
space L9 := L9(Y, X) of all Q-Hilbert-Schmidt operators 1 : ¥ — X. We recall
that ¥ € L(Y, X) is called a Q-Hilbert-Schmidt operator, if

1l = D IV Antbenl® < oo,
n=1

and that the space L3 equipped with the inner product (¢, ) zg = 227 (wen, Pen)

is a separable Hilbert space. Let ¢(s); s € [0,7] be a function with values in
LY(Y, X), such that

o0

1
Z ||K*¢Q2en||%g < 0.
n=1

The Wiener integral of ¢ with respect to B is defined by

| o@ane) =3 [ Vete.s o). (2.6)

Now, we end this subsection by stating the following result which is fundamental
to prove our result. It can be proved by similar arguments as those used to prove
Lemma 2 in [6].

Lemma 2.4. If ¢ : [0,T] — L3(Y,X) satisfies fOT Hib(s)H%gds < oo, then the
above sum in (2.6) is well defined as a X -valued random variable and we have

t t
Bl [ w(aB” o) <2125 [ sy

2.3. The stochastic convolution integral. In this subsection we present a few
properties of the stochastic convolution integral of the form

Z(t):/o U(t,s)o(s)dB(s),  te0,T),

where o(s) € L(Y,X) and {U(t,s),0 < s <t < T} is an evolution system of
operators.

The properties of the process Z are crucial when regularity of the mild solu-
tion to stochastic evolution equation is studied, see [7] for asystematic account of
the theory of mild solutions to infinite-dimensional stochastic equations. Unfor-
tunately, the process Z is not a martingale, and standard tools of the martingale
theory, yielding e.g. continuity of the trajectories or L?—estimates are not avail-
able. The following result on the stochastic convolution integral Z holds.

Lemma 2.5. Suppose that o : [0,T] — LY(Y, X) satisfies sup,e(o. 7y [0 ()] 20 < 00,
’ 2
and suppose that {U(t,s),0 < s < t < T} is an evolution system of operators
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satisfying ||U(t,s)|| < Me=Pt=%) for some constants B > 0 and M > 1 for all
t > s. Then, we have

E| / (t,5)o(s)dB" (s)|* < CM*H( sup [lo(t)] cg)*.
te[0,T]

Proof. Let {e,}nen be the complete orthonormal basis of Y and {8X},cy is a
sequence of independent, real-valued standard fractional Brownian motion each

with the same Hurst parameter H € (%, 1). Thus using fractional It6 isometry one
can write

IE||/ (t,s)o(s)dB™ (s)||? = ZEH/ (t, )0 (s)endBH ()2
= Z/ / < Ul(t,s)o(s)en, Ut,r)o(r)e, >

x H(2H —1)|s — r|*H 2dsdr
< H(2H — 1)/ o, s)a(s)ll
/ U, 7)o (r)|l|s — >~ 2dr}ds
< H(2H — 1)M? / {e P o (s)]| ey

t
x/ e P15 — 1 PH=2 |0 (r) || codr }ds.
0

Since o is bounded, one can then conclude that

EH/ (9)0(5)dB" ()| < HEH ~ DM s [0()ey) /{e Bt=)

te[0,T

¢
x/ e P s — p2H=2gr ) ds.
0

Make the following change of variables, v = t — s for the first integral and u =t —7r
for the second. One can write

E| / (1, $)r(s)AB™ (s)|2 < HRH — )M2( sup._[lo(?)lles) / feb
tEOT

t
></ e Py — v 2 du}dv
0

< H(2H —1)M?( sup_|[o(t)]z9)?
t€[0,T

t et
X / / lu — v]*H 2 dudv.
0 Jo
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By using (2.5), we get that
t
]EII/ U(t,s)a(s)dB" (s)|> < CM*t*"( sup |lo(t)]|cg)*.
0

t€[0,T]
U

Remark 2.6. Thanks to Lemma 2.5, the stochastic integral Z(t) is well-defined.

3. Existence and Uniqueness of Mild Solutions

In this section we study the existence and uniqueness of mild solutions of equa-
tion (1.1). Henceforth we will assume that the family {A(¢), ¢t € [0,T]} of linear
operators generates an evolution system of operators {U(t,s),0 < s < ¢t < T}.
Before stating and proving the main result, we give the definition of mild solutions
for equation (1.1).

Definition 3.1. A X-valued process {z(t), t € [-7,T]}, is called a mild solution
of equation (1.1) if
i) () € C([-7.T],L*(Q, X)),
1) z(t) = p(t), —7 <t <0.
i7i) For arbitrary t € [0,T], z(t) satisfies the following integral equation:
(

z(t) = U(t,0)(¢(0) + g(0,(—7(0)))) — g(t,z(t —r(t)))
- /0 Ul(t,s)A(s)g(s,z(s —r(s)))ds + /0 U(t,s)f(s,z(s— p(s))ds

+/O U(t,s)o(s)dB" (s) P—a.s

We introduce the following assumptions:

(H.1) ¢) The evolution family is exponentially stable, that is, there exist two
constants 5 > 0 and M > 1 such that

Ut s)|| < Me= P02, forall t>s,
i1) There exist a constant M, > 0 such that
A=Y @t)|| < M. forall te0,T).

(H.2) The maps f,g:[0,7] x X — X are continuous functions and there exist
two positive constants C; and Cy, such that for all ¢ € [0, 7] and z,y € X:

i) [ (tx) — £tV lglt.x) - g(t.)] < Cilla — .
i) | £t o) VAR )g(t 2)|* < Co(1 + [l2]?), k=0,1.
(H.3) ¢) There exists a constant 0 < L, < ﬁ such that
[A)g(t, x) — At)g(t, y)ll < Lullz =y,

forall t € [0,T] and z,y € X.
i1) The function g is continuous in the quadratic mean sense: for all
z(.) € C([0,T], L*(Q, X)), we have

Jim Ellg(t, (1)) — g(s, 2(s) > = 0.
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(H.4) i) The map o : [0,7] — L(Y, X) is bounded, that is: there exists
a positive constant L such that |[o(t)||z9(v,x) < L uniformly in ¢ €
[0,7].
i1) Moreover, we assume that the initial data ¢ = {¢(t) : —7 <t < 0}
satisfies ¢ € C([—,0],L3(, X)).

The main result of this paper is given in the next theorem.

Theorem 3.2. Suppose that (H.1)-(H.4) hold. Then, for all T > 0, the equation
(1.1) has a unique mild solution on [—7,T].

Proof. Fix T > 0 and let Br := C([-7,T],L?(Q, X)) be the Banach space of all
continuous functions from [—7,7T] into L2(2, X)), equipped with the supremum
norm

(I, = Sup. Ellw(t w)]|*.

—7<

Let us consider the set
St(p) ={z € Br : z(s) = ¢(s), for s € [—7,0]}.

St(p) is a closed subset of By provided with the norm ||.||p,. We transform
(1.1) into a fixed-point problem. Consider the operator ¥ on St(¢) defined by
() (t) = p(t) for t € [—7,0] and for ¢ € [0, T

P(@)(t) = U(#0)((0) + 9(0, o(=7(0)))) — g(t, 2(t — (1))
/ Ult,s) (s,x(s —r(s)))ds—l—/ U(t,s)f(s,x(s — p(s))ds
0

/OU( $)o(s)dB" (s)
:Zli(t)

Clearly, the fixed points of the operator 1 are mild solutions of (1.1). The fact
that 1 has a fixed point will be proved in several steps. We will first prove that
the function 1) is well defined.

Step 1: ¢ is well defined. Let € St(p) and t € [0,T], we are going to show
that each function ¢t — I;(t) is continuous on [0, 7] in the L?(Q, X )-sense.

We can easily see that E||I;(¢t +h) — L;(1)||*> — 0,i=1,2,3 as h — 0.

For the fourth term I4(h), we suppose h > 0 (similar calculus for h < 0). We
have

[Is(t + h) — I4(t)] < /0 (U(t+h,s)=Ul(t,s))f(s,z(s— p(s)))ds
t+h
| [ W) st = pls))is
< Iy (h) + Laa(h).
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By Holder’s inequality, we have

t
El Ly (R)]| < tE/ Ut + h.s) = U(t, ) f(s,2(s — p(s)) | *ds.
0
Again exploiting properties of Definition 2.1, we obtain
lim (U(t+ h,s) —U(t,s))f(s,z(s— p(s))) =0,
h—0
and
< MemPU=)(e=Ph - 1)|| f(s,2(s — p(s))]| € L*().
Then we conclude by the Lebesgue dominated theorem that
lim E|[14 (h)|* = 0.
h—0
On the other hand, by (H.1) , (H.2), and the Holder’s inequality, we have

9 _ 6_2Bh t+h
thgﬂ >[ (14 Elz(s — p(s))[|*)ds

El[Zs2(R)| <
Thus

lim I5(h) = 0.
h—0

Now, for the term I5(h), we have
t
L) < w/@W+m@—Uw@dwwH@u

+||/ U(t + h,s)o(s)dB(s)|
< Isi(h) + Is2(h).
By Lemma 2.4, we get that
t
Bl (W) < 2Ht2H*1/ WUt + by 5) — U(E, 8)|o()|[2ds.
0 2

Since

lim ||[[U(t+ h,s) — U(t, s)]o(s)]|%0 =0

h—0 2
and

[(U(t+ h,s) = U(t, 8)o(s)|l g < MLe =)=+l e L([0,T], ds),
we conclude, by the dominated convergence theorem that,
. 2
lim E|T51 () = 0.

Again by Lemma 2.4, we get that
2HPH=ILM?(1 — e=28M)

Bl (h)? < .

Thus
lim E|I52(h)|? = 0.
h—0
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The above arguments show that }lLin%)]EHzZJ(x)(t +h) —(z)(#)||* = 0. Hence, we
—
conclude that the function ¢ — 1 (z)(t) is continuous on [0, 7] in the L?-sense.

Step 2: Now, we are going to show that v is a contraction mapping in St (¢)
with some T} < T to be speciﬁed later. Let z,y € Sr(p), by using the inequality
(a+b+c)? < La+ ;2% + 12 ¢, where v := L, M, < 1, we obtain for any fixed
tel0,T]

o) (1) — () 0P
< gttt — r(t)) — gt y(t — ()P

* %” / U(t, 5)A(s)(g(s, x(s — () = g(s,y(s —7(s)))ds|?
0
el / Ut ) (5,5 — p(s))) — £ (5,05 — p(5)))ds]?
3
=2

By using the fact that the operator ||[(A~1(t))|| is bounded, combined with the
condition (#.3), we obtain that

EIAG] < LA OIPEIA@g( 2t — (1) — ADg(t,ylt — (1)
2 2
< EER|n(t - o) — y(t (1)
< v osup Elz(s) - y(s)|*.

se[—,t]

By hypothesis (H.3) combined with Holder’s inequality, we get that

E[l:@)] < EH/ (t,s) [A()g(t,z(t — (1)) — A)g(t,y(t —r(1)))] ds|
< 1—’//0 M?Ze—28(t= s)ds/o E|z(s —7) —y(s — r)|*ds
2721 _ o~ 26t
< HEELITC T s Elels) - y(o)]%

1-v 23 sE[—T,t]

Moreover, by hypothesis (#.2) combined with the Holder’s inequality, we can
conclude that

EllJs@0 < EII/O U(t,s) [f(s,2(s = p(s))) = f(s,y(s — p(s)))] ds]*

207 [ 2 apii-s) ' 2
— | M-e ds | Ellz(s—7r)—y(s—r)||°ds
1—-vJ, 0

2M2C? 1 — e 28t
t sup Elz(s) —y(s)|>.
ot o Elle) — )l

IN
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Hence
sup  El|y()(s) — () (s)|> <y(t) sup Efa(s) - y(s)ll*,

s€[—,t] s€[—,t]
where
2M?% 1 — e 2Pt

t)=v+[L2+CF —t

9O = v+ (L2 + R
By condition (#.3), we have ¥(0) = v = L, M, < 1. Then there exists 0 < Ty < T
such that 0 < v(T1) < 1 and 9 is a contraction mapping on St, (¢) and therefore
has a unique fixed point, which is a mild solution of equation (1.1) on [—7,T}]. This

procedure can be repeated in order to extend the solution to the entire interval
[—7,T)] in finitely many steps. This completes the proof. |

4. An Example

In recent years, the interest in neutral systems has been growing rapidly due
to their successful applications in practical fields such as physics, chemical tech-
nology, bioengineering, and electrical networks. We consider the following sto-
chastic partial neutral functional differential equation with finite delays 7 and 7o
(0< 7 <7< o0, i=1,2), driven by a cylindrical fractional Brownian motion:

Afult, ) + Gt u(t = 11,0)) = | Fpult, €) +b(t, u(t,C)
+F(t,u(t — 72, C))}dt +o(t)dBH(t),0<t<T,0< (<,
(4.1)
u(t,0) =u(t,m) =0, 0<t<T,

u(t7<) = @(taC)’ te [_T’ 0]’ 0<¢<m,

where B is a fractional Brownian motion, b(¢,() is a continuous function and is
uniformly Holder continuous in ¢, F', G : RT x R — R are continuous functions.
To study this system, we consider the space X = L?([0,7]) and the operator
A:D(A) C X — X given by Ay = ¢ with
D(A)={yeX:y" € X, y(0))=y(r)=0}

It is well known that A is the infinitesimal generator of an analytic semigroup

(T'(t))t>0 on X. Furthermore, A has discrete spectrum with eigenvalues —n?,

n € N and the corresponding normalized eigenfunctions given by e,, := \/% sin nzx,

n=1,2,..., in addition (e, )nen is a complete orthonormal basis in X and

oo
T(t)x = Z et < xen > en,

n=1
forx € X and t > 0.
Now, we define an operator A(t) : D(A) C X — X by

A(t)a(¢) = Az(¢) + b(t, Q)z(C)-
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By assuming that b(.,.) is continuous and that b(¢,{) < —vy (v > 0) for every
t € R, ¢ €[0,7], it follows that the system

{ u'(t) = A(t)u(t), t>s,

u(s) =uzelX,

has an associated evolution family given by

U(t.92(0) = [t~ syl | 00r:6irse]

From this expression, it follows that U(t, s) is a compact linear operator and that
for every s,t € [0,T] with ¢ > s

Ut 8)] < e”OFDE=),

In addition, A(t) satisfies the assumption H; (see [2]).
To rewrite the initial-boundary value problem (4.1) in the abstract form we
assume the following:

i) The substitution operator f : [0,7] x X — X defined by f(¢,u)(.) =
F(t,u(.)) is continuous and we impose suitable conditions on F to verify
assumption Hs.

1) The substitution operator g : [0,7] x X — X defined by g(t,u)(.) =
G(t,u(.)) is continuous and we impose suitable conditions on G to verify
assumptions Ho and Hs.

iii) The function o : [0,T] — L3(L?([0,7]), L?([0,7])) is bounded, that is,
there exists a positive constant L such that [|o(t)]zo < L < oo, where
L := supiepo,rje”". uniformly in ¢ € [0,7].

If we put
u(t)(Q) = u(t.), ¢ € 0.7, ¢ € 0,7],

u(t,€) = ¢(t,¢), t € [-7,0], ¢ € [0,7],
then the problem (4.1) can be written in the abstract form

dlz(t) + g(t, (t — r(t))] = [A(t)x(t) + f(t, 2(t — p(t))]dt + o (t)dBT (1),

x(t) = o(t), -7 <t <0.

Furthermore, if we assume that the initial data ¢ = {¢(t) : —7 < t < 0}
satisfies ¢ € C([—7,0],L?(£, X)), thus all the assumptions of Theorem 3.2 are
fulfilled. Therefore, we conclude that the system (4.1) has a unique mild solution
on [—7,T].

Acknowledgements: The authors would like to thank the referee for valuable
comments and suggestions on this work.
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