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Abstract. Exponential processes in the Itô theory of stochastic integration
can be viewed in three aspects: multiplicative renormalization, martingales,

and stochastic differential equations. In this paper we initiate the study
of anticipating exponential processes from these aspects viewpoints. The
analogue of martingale property for anticipating stochastic integrals is the

near-martingale property. We use examples to illustrate essential ideas and
techniques in dealing with anticipating exponential processes and stochastic
differential equations. The situation is very different from the Itô theory.

1. Exponential Processes

Let B(t), 0 ≤ t ≤ T, be a fixed Brownian motion. Suppose {Ft; 0 ≤ t ≤ T} is
the filtration given by this Brownian motion, i.e., Ft = σ{B(s); 0 ≤ s ≤ t} for each
t ∈ [0, T ]. Take an {Ft}-adapted stochastic process h(t), 0 ≤ t ≤ T, satisfying the
Novikov condition, i.e.,

E exp
[1
2

∫ T

0

h(t)2 dt
]
< ∞. (1.1)

The exponential process given by h(t) is defined to be the stochastic process

Eh(t) = exp
[ ∫ t

0

h(s) dB(s)− 1

2

∫ t

0

h(s)2 ds
]
, 0 ≤ t ≤ T. (1.2)

Note that under the Novikov condition in equation (1.1) we have
∫ T

0
h(t)2 dt < ∞

almost surely so that the Itô integral
∫ t

0
h(s) dB(s) is defined for each t ∈ [0, T ]

(see Chapter 5 of the book [7].)
The exponential process Eh(t) plays a very important role in the Itô theory of

stochastic integration and is widely used in the mathematical finance. It can be
viewed and understood in the following three aspects.

(1) Multiplicative renormalization: The multiplicative renormalization of a
random variable X with nonzero expectation is defined to be the ran-
dom variable X/EX. Suppose h(t) is a deterministic function in L2[0, T ].
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Then the stochastic integral
∫ t

0
h(s) dB(s) is equation (1.2) is a Wiener

integral. Hence
∫ t

0
h(s) dB(s) is a Gaussian random variable with mean 0

and variance
∫ t

0
h(s)2 ds. This implies that

Ee
∫ t
0
h(s) dB(s) = e

1
2

∫ t
0
h(s)2 ds.

Thus the exponential process Eh(t) in equation (1.2) is the multiplicative

renormalization of e
∫ t
0
h(s) dB(s).

(2) Maringales: It is well known that the Novikov condition implies that
E
(
Eh(t)

)
= 1 for all t ∈ [0, T ] (see, e.g., page 137 [7]).) On the other hand,

we have the fact that E
(
Eh(t)

)
= 1 for all t ∈ [0, T ] if and only if the

exponential process Eh(t), 0 ≤ t ≤ T, is a martingale with respect to the
filtration {Ft}. Thus under the Novikov condition in equation (1.1) for a
stochastic process h(t) its associated exponential process Eh(t), 0 ≤ t ≤ T,
is a martingale. In particular, when h(t) is a deterministic function in
L2[0, T ], the Novikov condition is obviously satisfied for h(t). Hence its
associated exponential process Eh(t), 0 ≤ t ≤ T, is a martingale.

(3) Stochastic differential equations: Let Zt =
∫ t

0
h(s) dB(s) − 1

2

∫ t

0
h(s)2 ds.

Then we have Eh(t) = eZt . Apply Itô’s formula to the stochastic process
Zt and the function f(x) = ex to get

dEh(t) = df(Zt)

= f ′(Zt) dZt +
1

2
f ′′(Zt) (dZt)

2

= Eh(t)
(
h(t) dB(t)− 1

2
h(t)2 dt

)
+

1

2
Eh(t)h(t)2 dt

= h(t)Eh(t) dB(t).

which shows that the exponential process Eh(t) is a solution of the following
stochastic differential equation:

dXt = h(t)Xt dB(t), X0 = 1. (1.3)

It is easy to see the uniqueness of a solution of this stochastic differential
equation. Thus the exponential proces Eh(t), 0 ≤ t ≤ T , is the solution of
equation (1.3).

Now, suppose the stochastic process h(t) in equation (1.3) may not be adaptive
(called anticipating from now on.) For example, take h(t) = B(1) for 0 ≤ t ≤ 1.
Then we have the stochastic differential equation

dXt = B(1)Xt dB(t), X0 = 1. (1.4)

Is the solution of this equation given by equation (1.2) with h(t) = B(1), i.e.,

EB(1)(t) = exp
[ ∫ t

0

B(1) dB(s)− 1

2

∫ t

0

B(1)2 ds
]
, 0 ≤ t ≤ 1 ? (1.5)

Observe that the stochastic integral
∫ t

0
B(1) dB(s) is not an Itô integral since

the integrand B(1) is not adapted with respect to the filtration {Ft} given by
the Brownian motion. Hence we first need to know what the stochastic integral
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ANTICIPATING EXPONENTIAL PROCESSES AND SDES 3

∫ t

0
B(1) dB(s) is. We will briefly review an extension of the Itô integral in section

2. In section 3 we will study equation (1.4).
On the other hand, the non-adaptedness of a solution may due to an anticipating

initial condition. For example, consider equation (1.3) with h(t) ≡ 1 and X0 =
B(1), namely,

dXt = Xt dB(t), X0 = B(1). (1.6)

Is the solution, in view of equation (1.2), given by

Xt = B(1)eB(t)− 1
2 t ?

Note that if we apply the Picard’s iteration method to solve equation (1.6), then
we have the first two approximations given by

X
(0)
t = B(1),

X
(1)
t = B(1) +

∫ t

0

B(1) dB(s).

Thus the new stochastic integral
∫ t

0
B(1) dB(s) comes up again. But this time it

comes up from the initial condition.
In this paper we will introduce some ideas for studying exponential processes. It

seems to us that the anticipating exponential process arising from renormalization
may be different from the one given by the solution of the corresponding stochastic
differential equation.

2. Anticipating Stochastic Integrals

In this section we briefly review the stochastic integral first introduced by Ayed
and Kuo [1] (see also [3].) Let [a, b] be a fixed interval, in particular, a = 0 and
b = T as given in section 1.

A stochastic process φ(t), a ≤ t ≤ b, is called instantly independent with respect
to a filtration {Ft; a ≤ t ≤ b} if for each t ∈ [a, b] the random variable φ(t) and
the σ-field Ft are independent. It is easy to check that if φ(t) is both adapted and
instantly independent, then it must be a deterministic function.

The class of stochastic processes for which we can define an extension of the
Itô integral consists of those stochastic processes which can be approximated in
probability by a sequence of sums of finitely many terms with each term being
the products of an adapted process and an instantly independent process. More
precisely, we define this new stochastic integral in three steps:

Step 1. Suppose f(t) and φ(t) are continuous stochastic processes with f(t)
being {Ft}-adapted and φ(t) instantly independent with respect to {Ft}. Then
the stochastic integral of f(t)φ(t) is defined by

∫ b

a

f(t)φ(t) dB(t) = lim
∥∆n∥→0

n∑
i=1

f(ti−1)φ(ti)
(
B(ti)−B(ti−1)

)
, (2.1)

provided that the limit in probability exists. It is easy to check that the new
stochastic integral is well defined.
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Example 2.1. Let us evaluate the stochastic integral
∫ t

0
B(s)

(
B(T )−B(s)

)
dB(s)

for 0 ≤ t ≤ T . Take f(s) = B(s), φ(s) = B(T )−B(s) for equation (2.1) to get

∫ t

0

B(s)
(
B(T )−B(s)

)
dB(s)

≈
n∑

i=1

B(si−1)
(
B(T )−B(si)

)(
B(si)−B(si−1)

)

=

n∑
i=1

B(si−1)
{
B(T )−

(
B(si)−B(si−1)

)
−B(si−1)

}(
B(si)−B(si−1)

)

≈ B(T )

∫ t

0

B(s) dB(s)−
∫ t

0

B(s) ds−
∫ t

0

B(s)2 dB(s). (2.2)

But we have the following well-known Itô integrals:

∫ t

0

B(s) dB(s) =
1

2

(
B(t)2 − t

)
, (2.3)

∫ t

0

B(s)2 dB(s) =
1

3
B(t)3 −

∫ t

0

B(s) ds (2.4)

Putting equations (2.3) and (2.4) into equation (2.2), we immediately obtain

∫ t

0

B(s)
(
B(T )−B(s)

)
dB(s) =

1

2
B(T )

(
B(t)2 − t

)
− 1

3
B(t)3, 0 ≤ t ≤ T. (2.5)

Step 2. Suppose Φ(t) is a finite sum of products of the form in Step 1, i.e.,

Φ(t) =
m∑
i=1

fi(t)φi(t), a ≤ t ≤ b, (2.6)

Then we define the stochastic integral of Φ(t) by

∫ b

a

Φ(t) dB(t) =

m∑
i=1

∫ b

a

fi(t)φi(t) dB(t). (2.7)

This stochastic integral is well defined (see, e.g., Lemma 2.1 in [3]), namely, the
value in the right-hand side of equation (2.7) is independent of the representation
of Φ(t) in equation (2.6).

Example 2.2. Take Φ =
∫ T

0
B(u) du and let us evaluate the stochastic integral∫ t

0
Φ dB(s) for 0 ≤ t ≤ T . First we need a decomposition of Φ:

Φ =

∫ T

0

B(u) du =

∫ T

0

(T − u) dB(u) =

∫ s

0

(T − u) dB(u) +

∫ T

s

(T − u) dB(u),

where in the right-hand side, the first term is adapted and the second term is
instantly independent. Hence for 0 ≤ t ≤ T ,
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ANTICIPATING EXPONENTIAL PROCESSES AND SDES 5

∫ t

0

Φ dB(s) =

∫ t

0

{∫ s

0

(T − u) dB(u) +

∫ T

s

(T − u) dB(u)
}
dB(s) (2.8)

≈
n∑

i=1

{∫ si−1

0

(T − u) dB(u) +

∫ T

si

(T − u) dB(u)
}
∆Bi

=

n∑
i=1

{∫ T

0

(T − u) dB(u)−
∫ si

si−1

(T − u) dB(u)
}
∆Bi

≈
n∑

i=1

{∫ T

0

(T − u) dB(u)− (T − si−1)∆Bi

}
∆Bi

≈ B(t)

∫ T

0

(T − u) dB(u)−
n∑

i=1

(T − si−1)∆si

≈ B(t)

∫ T

0

(T − u) dB(u)−
∫ t

0

(T − s) ds

= B(t)

∫ T

0

(T − u) dB(u)− tT +
1

2
t2

= B(t)

∫ T

0

B(u) du− tT +
1

2
t2.

where ∆Bi = B(si)−B(si−1) and ∆si = si − si−1. Thus we have

∫ t

0

Φ dB(s) = B(t)

∫ T

0

B(u) du− tT +
1

2
t2, 0 ≤ t ≤ T,

namely,

∫ t

0

(∫ T

0

B(u) du
)
dB(s) = B(t)

∫ T

0

B(u) du− tT +
1

2
t2, 0 ≤ t ≤ T. (2.9)

Step 3. Suppose Φ(t), a ≤ t ≤ b, is a stochastic process such that there is a
sequence {Φn(t)}∞n=1 of stochastic processes of the form in Step 2 satisfying the
following conditions:

(a)
∫ b

a
|Φ(t)− Φn(t)|2 dt −→ 0 almost surely as n → ∞,

(b)
∫ b

a
Φn(t) dB(t) converges in probability as n → ∞.

The stochastic integral
∫ b

a
Φn(t) dB(t) is defined for each n ≥ 1 as in Step 2. Then

the stochastic integral of Φ(t) is defined by

∫ b

a

Φ(t) dB(t) = lim
n→∞

∫ b

a

Φn(t) dB(t), in probability. (2.10)

It can be easily checked that this stochastic integral is well defined. Moreover, it is
obvious that this stochastic integral reduces to the Itô integral when the integrand
is adapted.
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Now, recall that an essential property in the Itô theory of stochastic integration
is the martingale property. The extension of this property to the new stochastic
integral is the near-martingale property introduced in [10].

Definition 2.3. [10] A stochastic processXt, a ≤ t ≤ b, is called a near-martingale
with respect to a filtration {Ft} if

E[Xt|Fs] = E[Xs|Fs], a.s., ∀a ≤ s ≤ t ≤ b.

Obviously, a stochastic process is a martingale if and only if it is adapted and
is a near-martingale. We state two theorems from [10].

Theorem 2.4. (Theorem 3.5 [10]) Let f(x) and φ(x) be continuous functions.
Assume that the stochastic integral

Xt =

∫ t

a

f(B(s))φ(B(b)−B(s)) dB(s), a ≤ t ≤ b,

exists and E|Xt| < ∞ for all t ∈ [a, b]. Then the stochastic process Xt, a ≤ t ≤ b,
is a near-martingale with respect to the filtration {Ft} given by the Brownian
motion B(t).

Theorem 2.5. (Theorem 3.6 [10]) Let f(x) and φ(x) be continuous functions.
Assume that the stochastic integral

Y (t) =

∫ b

t

f(B(s))φ(B(b)−B(s)) dB(s), a ≤ t ≤ b,

exists and E|Y (t)| < ∞ for all t ∈ [a, b]. Then the stochastic process Y (t), a ≤ t ≤
b, is a near-martingale with respect to the filtration {Ft} given by the Brownian
motion B(t).

A very simple and useful connection between martingales and near-martingales
is the following theorem from [4].

Theorem 2.6. [4] Suppose Xt, a ≤ t ≤ b, is a stochastic process with E|Xt| < ∞
for all t ∈ [a, b]. Then Xt, a ≤ t ≤ b, is a near-martingale if and only if the
stochastic process E[Xt|Ft], a ≤ t ≤ b, is a martingale.

Example 2.7. Consider the stochastic process given by the right-hand side of
equation (2.5)

Xt =
1

2
B(T )

(
B(t)2 − t

)
− 1

3
B(t)3, 0 ≤ t ≤ T. (2.11)

Note that by equation (2.5), we have

Xt =

∫ t

0

B(s)
(
B(T )−B(s)

)
dB(s), 0 ≤ t ≤ T.
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ANTICIPATING EXPONENTIAL PROCESSES AND SDES 7

Hence by Theorem 2.4 Xt is a near-martingale. On the other hand, we can easily
prove this fact by using Theorem 2.6. Note that from equation (2.11) we get

E[Xt|Ft] =
1

2

(
B(t)2 − t

)
E[B(T )|Ft]−

1

3
B(t)3

=
1

2

(
B(t)2 − t

)
B(t)− 1

3
B(t)3

=
1

6

(
B(t)3 − 3tB(t)

)
.

It is well known that B(t)3−3tB(t), 0 ≤ t ≤ T, is a martingale. Hence by Theorem
2.6, the stochastic process Xt defined by equation (2.11) is a near-martingale.

Example 2.8. Let Yt be the stochastic process given by the right-hand side of
equation (2.9), i.e.,

Yt = B(t)

∫ T

0

B(u) du− tT +
1

2
t2, 0 ≤ t ≤ T. (2.12)

By equation (2.8) we have

Yt =

∫ t

0

{∫ s

0

(T − u) dB(u) +

∫ T

s

(T − u) dB(u)
}
dB(s)

=

∫ t

0

(∫ s

0

(T − u) dB(u)
)
dB(s) +

∫ t

0

(∫ T

s

(T − u) dB(u)
)
dB(s),

where the last two integrals are not quite in the forms of Theorems 2.4 and 2.5,
respectively, but are limits of the forms in these two theorems. Hence it is plausible
that Yt is a near-martingale.

On the other hand, we can apply Theorem 2.6 to see that Yt is a near-martingale
as follows. It is easy to check that

E
[ ∫ T

0

B(u) du
���Ft

]
=

∫ t

0

B(u) du+ (T − t)B(t).

Hence by equation (2.12) we have

E[Yt|Ft] = B(t)

∫ t

0

B(u) du+ (T − t)B(t)2 − tT +
1

2
t2.

For simplicity, let Zt = E[Yt|Ft]. Apply Itô’s formula to show that the stochastic
differential of Zt is given by

dZt =
(∫ t

0

B(u) du+ 2(T − t)B(t)
)
dB(t),

which together with the initial condition Z0 = 0 implies that

Zt =

∫ t

0

(∫ s

0

B(u) du+ 2(T − s)B(s)
)
dB(s).

Therefore, Zt is a martingale, i.e., E[Yt|Ft] is a martingale. Hence by Theorem
2.6 Yt is a near-martingale.
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The next theorem gives a practical method to check when a stochastic process
is a near-martingale and will be very useful, e.g., for the study of anticipating
exponential processes.

Theorem 2.9. Assume that Xt, a ≤ t ≤ b, is a martingale with E(|Xt|2) < ∞
for all t and Φ(t) is an instantly independent process with E(|Φ(t)|2) < ∞. Then
the product XtΦ(t) is a near-martingale if and only if E(Φ(t)) is a constant.

Proof. Let Yt = XtΦ(t). Then we have

E[Yt|Ft] = E[XtΦ(t)|Ft] = XtE[Φ(t)|Ft] = XtE(Φ(t)),

which shows that E[Yt|Ft] is a martingale if and only if E(Φ(t)) is a constant.
Thus by Theorem 2.6, the product Yt = XtΦ(t) is a near-martingale if and only if
E(Φ(t)) is a constant. □

Now, we turn to extensions of Itô’s formula to anticipating stochastic integral.
There are several special cases in [1, 9, 11]. We state below a general Itô’s formula
from [3]. First let Xt and Y (t) be stochastic processes of the form

Xt = Xa +

∫ t

a

g(s) dB(s) +

∫ t

a

h(s) ds (2.13)

Y (t) = Y (b) +

∫ b

t

ξ(s) dB(s) +

∫ b

t

η(s) ds, (2.14)

where g(t) and h(t) are adapted such that Xt is an Itô process, and ξ(t) and η(t)
are instantly independent such that Y (t) is also instantly independent.

Theorem 2.10. (Theorem 3.2 [3]) Suppose X
(i)
t , 1 ≤ i ≤ n, and Y

(t)
j , 1 ≤ j ≤

m, are stochastic processes of the forms given by equations (2.13) and (2.14),
respectively. Assume that θ(t, x1, . . . , xn, y1, . . . , ym) is a real-valued function being
C1 in t and C2 in the variables xi’s and yj’s. Then the stochastic differential of

θ(t,X
(1)
t , . . . , X

(n)
t , Y

(t)
1 , . . . , Y

(t)
m ) is given by

dθ(t,X
(1)
t , . . . , X

(n)
t , Y

(t)
1 , . . . , Y (t)

m )

= θt dt+

n∑
i=1

θxi dX
(i)
t +

1

2

n∑
i,j=1

θxixj (dX
(i)
t )(dX

(j)
t )

+
m∑

k=1

θyk
dY

(t)
k − 1

2

m∑
k,ℓ=1

θykyℓ
(dY

(t)
k )(dY

(t)
ℓ ).

In the next section we will use the following corollary.

Corollary 2.11. Suppose Xt, a ≤ t ≤ b, is an Itô process and ψ(t, x, y) is a
C1-function in t and C2-function in x and y. Then the stochastic differential of
ψ
(
t,Xt, B(b)

)
is give by

dψ
(
t,Xt, B(b)

)
= ψt dt+ ψxdXt +

1

2
ψxx (dXt)

2 + ψxy(dXt)
(
dB(t)

)
. (2.15)
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ANTICIPATING EXPONENTIAL PROCESSES AND SDES 9

Proof. Note that B(b) has the following decomposition as a sum of an adapted
process and an instantly independent process

B(b) = B(t) +
{
B(b)−B(t)

}
, a ≤ t ≤ b.

Define a function
θ(t, x1, x2, y) = ψ(t, x1, x2 + y)

and let X
(1)
t = Xt, X

(2)
t = B(t), and Y (t) = B(b) − B(t). Then apply the above

Theorem 2.10 to obtain equation (2.15). □

3. Anticipating Exponential Processes

Recall that the solution of the stochastic differential equation (1.3) with h(t)
being adapted and satisfying the Novikov condition is given by the exponential
process Eh(t) in equation (1.2). Moreover, Eh(t) is a martingale.

Now suppose the stochastic process h(t) is anticipating. Then the stochastic
differential equation (1.3) is very different and much harder to handle. Consider
the case with h(t) = B(1), i.e., the following stochastic differential equation:

dXt = B(1)Xt dB(t), X0 = 1, 0 ≤ t ≤ 1.

Is the solution given by EB(1)(t) = exp{
∫ t

0
B(1) dB(s)− 1

2

∫ t

0
B(1)2 ds}? Note

that the stochastic integral
∫ t

0
B(1) dB(s) is not an Itô integral, but rather a new

integral with the value
∫ t

0

B(1) dB(s) = B(1)B(t)− t, 0 ≤ t ≤ 1, (3.1)

(see [1].) In fact, the solution is not given by EB(1)(t). It is the one given in the
next theorem.

Theorem 3.1. The solution of the stochastic differential equation

dXt = B(1)Xt dB(t), X0 = 1, 0 ≤ t ≤ 1. (3.2)

is given by the following anticipating exponential process

Xt = exp
[
B(1)

∫ t

0

e−(t−s) dB(s)− 1

4
B(1)2(1− e−2t)− t

]
, 0 ≤ t ≤ 1. (3.3)

Moreover, the stochastic process Xt is a near-martingale.

Remark 3.2. In [2] Buckdahn regarded equation (3.2) as in the sense of Skorokhod’s
integral and derived the solution in equation (3.3). On the other hand, in the book
[6], the equation (3.2) is interpreted as a white nose equation as follows:

dXt = ∂∗
t

(
B(1)Xt

)
dt, X0 = 1, 0 ≤ t ≤ 1,

where ∂∗
t is the adjoint of the white noise differentiation operator ∂t. The solution

in equation (3.3) is derived using white noise methods in [6].

Proof. From the last two lines on page 287 of the book [6] the solution of equation
(3.2) must be of the form:

Qt = exp
[
B(1)f(t)

∫ t

0

1

f(s)
dB(s)− 1

2
B(1)2f(t)2

∫ t

0

1

f(s)2
ds− g(t)

]
, (3.4)
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where f(t) and g(t) are deterministic functions with f(0) = 1 (without loss of
generality) and g(0) = 0 (in order to have Q0 = 1). The functions f(t) and g(t)
are to be derived so that Qt is a solution of equation (3.2).

Let Xt =
∫ t

0
1

f(s) dB(s) and define a function

ψ(t, x, y) = exp
[
f(t)xy − 1

2
f(t)2y2

∫ t

0

1

f(s)2
ds− g(t)

]
.

Then we have the following partial derivatives:

ψt = ψ ×
(
f ′(t)xy − 1

2

[
2f(t)f ′(t)

∫ t

0

1

f(s)2
ds+ 1

]
− g′(t)

)

ψx = ψ ×
(
f(t)y

)

ψxx = ψ ×
(
f(t)2y2

)

ψxy = ψ ×
(
f(t) + f(t)y

[
f(t)x− f(t)2y

∫ t

0

1

f(s)2
ds
])

.

Apply Corollary 2.11 to obtain the stochastic differential of Qt:

dQt = B(1)Qt dB(t)+Qt

{
1− g′(t)+

(
f(t)+ f ′(t)

)[
xy− f(t)2y2

∫ t

0

1

f(s)2
ds
]}

dt.

In order for Qt to be a solution of equation (3.2) we must have

g′(t) = 1, f(t) + f ′(t) = 0,

which, together with the initial conditions f(0) = 1 and g(0) = 0, leads to
f(t) = e−t and g(t) = t. Put these two functions into equation (3.4). Then
we immediately obtain equation (3.3).

By using Theorem 2.5 and taking the limit of a sequence of near-martingales,
we can easily see that Xt is a near-martingale. □

As for the anticipating exponential process EB(1)(t), 0 ≤ t ≤ 1, we have the
following theorem.

Theorem 3.3. The anticipating exponential process

EB(1)(t) = exp
[ ∫ t

0

B(1) dB(s)− 1

2

∫ t

0

B(1)2 ds
]
, 0 ≤ t ≤ 1,

is the solution of the linear stochastic differential equation

dXt = B(1)Xt dB(t) +B(1)
{
B(t)− tB(1)

}
Xt dt, X0 = 1, 0 ≤ t ≤ 1. (3.5)

Proof. By equation (3.1), we have

EB(1)(t) = eB(1)B(t)−t− 1
2B(1)2t.

Then apply Corollary 2.11 in the same way as in the proof of Theorem 3.1 to show
that EB(1)(t) is the solution of equation (3.5). □

Observe that in equations (3.2) and (3.5) the anticipating part B(1) appears as
a coefficient in the underlined stochastic differential equation. We now address the
situation when an anticipating part appears in the initial condition. We will just
give two simple examples from [4] and [5] to illustrate the ideas and techniques.

422



ANTICIPATING EXPONENTIAL PROCESSES AND SDES 11

Example 3.4. Consider a stochastic differential equation

dXt = Xt dB(t), X0 = B(1), 0 ≤ t ≤ 1. (3.6)

It is shown in [5] (see also [4]) that the solution is given by

Xt =
(
B(1)− t

)
eB(t)− 1

2 t, 0 ≤ t ≤ 1. (3.7)

We claim that this solution is a near-martingale. To prove this fact, let

Yt = E[Xt|Ft], 0 ≤ t ≤ 1.

Obviously, we have

Yt = E[
(
B(1)− t

)
eB(t)− 1

2 t|Ft]

= eB(t)− 1
2 tE[B(1)− t|Ft]

=
(
B(t)− t

)
eB(t)− 1

2 t.

Then we apply Itô’s formula to obtain the stochastic differential of Yt,

dYt =
(
1 +B(t)− t

)
eB(t)− 1

2 t dB(t)

Note that Y0 = E[X0|F0] = E[B(1)|F0] = B(0) = 0. Hence Yt is given by

Yt =

∫ t

0

(
1 +B(s)− s

)
eB(s)− 1

2 s dB(s).

Thus Yt, 0 ≤ t ≤ 1, is a martingale. Then by Theorem 2.6 the stochastic process
Xt, 0 ≤ t ≤ 1, in equation (3.7) is a near-martingale.

Example 3.5. Consider a stochastic differential equation

dXt = Xt dB(t), X0 = B(1)2, 0 ≤ t ≤ 1. (3.8)

It is shown in [5] (see also [4]) that the solution is given by

Xt =
(
B(1)− t

)2
eB(t)− 1

2 t, 0 ≤ t ≤ 1. (3.9)

By the same arguments as those in example 3.4, we can show that the conditional
expectation Yt = E[Xt|ϕt] is given by

Yt =
(
B(t)2 − t− 2tB(t) + t2 + 1

)
eB(t)− 1

2 t.

Then apply Itô’s formula to derive the stochastic differential of Yt:

dYt =
(
B(t)2 + 2(1− t)B(t) + 1− 3t+ t2

)
eB(t)− 1

2 t dB(t).

It is easy to see that Y0 = 0. Thus we have

Yt =

∫ t

0

(
B(s)2 + 2(1− s)B(s) + 1− 3s+ s2

)
eB(s)− 1

2 s dB(s).

This shows that Yt, 0 ≤ t ≤ 1, is a martingale. Then by Theorem 2.6 the stochastic
process Xt, 0 ≤ t ≤ 1, in equation (3.9) is a near-martingale.
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