
* Asst. Professor, Dept.of IT, P.R.Patil College of Engineering, Amravati, India
** Asst. Professor, Dept of IT, Govt. Polytechnic, Amravati, India

*** HOD, Dept.of Computer science SGBAU Amravati University Amravati, India

Signature Based Intrusion Detection by
using RIPPER Algorithm in Android OS
Chetan J. Shelke*, Pravin Karde** and V. M. Thakre***

ABSTRACT

As in recent era of internetworking, phone’s are used to in human daily life. These Smart phones having various
apps and features but these up to date features give chance to new malwares & threats. Android is newer OS since
it is tough to detect and prevent that viruses and malwares by using some old methods.

So security of these Smart phones is now becoming an issue of researchers. So to overcome these various pitfalls
we proposed an smart malicious app detector as a security concern. It uses signature based method and makes the
app malicious free.

Keywords: Android OS, Smart phones, Malwares, User feedback, Applications Security.

1. INTRODUCTION

With the rapid expansion of Android phone during the protect the network from malwares.. One of the
techniques used for making the network secure and detecting malware is user feedback method. It is a
mechanism that detects unauthorized and malicious activity from the app. Signature based detection
implements pattern matching techniques against a frequently updated past few decades, security has become
a crucial issue in the today’s era. The purpose of android security is to data. creation of virus is very fast so
many time signature is not present .

2. LITERATURE REVIEW

Detecting malicious code isn’t recent issue in security. first methods takes signatures to detect it. That was
consists of many features: name of file, strings, or machine code. work also focused on protecting the
system from the security perspectives that it created.

Persons were employed to analyse programs work. Using own knowledge, signature was found made a
malicious code example vary from other malicious code. this type of work was done by Spafford [24],
analyzed the Internet Worm & provide notes on attack over the Internet.

Although clear, this is over costly, and slow. If little code will ever given then that will work fluent, but
Wildlist [22] is repeatedly change and expand. The Wildlist is a list of code that are recently circulating at
all times.

At IBM, Kephart & Arnold [9] developed a method to extract malicious code signature, based on
verbal communication identification algorithms & shown to perform almost best a individual expert at
detect identified malicious code.

Lo et al. [15] offered a routine to filter hateful code based on “tell-tale signs” were manually engineered
based on observing the features of malicious code.

ISSN: 0974-5572I J C T A, 10(9), 2017, pp. 43-47
© International Science Press

44 Chetan J. Shelke, Pravin Karde and V. M. Thakre

Unfortunately, a new malicious program can not have any accessible signature so old methods can’t
spot a new malicious code. In challenge to solve this issue, the antivirus industry creates heuristic classifiers
by hand [8]. This can be even more costly than generating signatures, so finding self method to generate
code has been the topic of research in the antivirus community. To solve this issue, IBM researchers use
ANNs to find boot sector malicious binaries [25]. An ANN is a classifier who binds neural networks
explored in human cognition. By the drawbacks of the implementation of own classifier, they didn’t analyze
anything boot sector viruses which comprise about 4-5% of all malicious binaries.

Recognition system by Lee et al. [13][14]. Their method was applied to system calls and network data
to study how to detect new intrusions. They report good detection rates as a result of applying data mining
Using an ANN classifier with all bytes from the boot sector malicious code as input, IBM researchers were
able to identify 80–85% of unfamiliar boot sector malicious code successfully with a low false positive rate
(< 2%). They were incapable to find a way to relate ANNs to the other 95% of computer malicious binaries.

In similar work, Arnold and Tesauro [1] applied the same technique to Win32 binaries, but as of
boundaries of the ANN classifier they were unable to have the analogous accuracy over new Win32 binaries.

Our method is different because we analyze the en-tire set of malicious code instead of only boot-sector
viruses, or only Win32 binaries.

Our technique is similar to data mining techniques that have already been applied to Intrusion to the
problem of IDS.

3. SIGNATURE METHODS

System detect the malicious application by using its signature system firstly scan the particular application
for signature. Pattern of instruction present in android application downloaded from android market recognize
as the signature of app. If the signature is matched with global signature dataset of malicious application
then the system inform the user by notifying about malicious app. few points to be in consideration that
signature dataset of malicious app always updated for the new application i.e signature of new malicious
app is not present in global signature dataset then system uses RIPPER algorithm which can detect new
malicious app done by some hypothesis and few rule based condition.

Signature detector program extract the opcode from decompiled apk file opcode pattern consider as the
signature of app then the specific signature is matched with global dataset if match is found the input app
belong to family of malicious app.

1) Signature of malicious app present in local signature datasets: In signature based detection firstly
signature extracted from the application by using signature extraction method once the signature is extracted
from application that signature is matched with the local signature dataset to which contain signature of
malicious application if the signature is match then the application is blacklisted .

2) Signature is not present in local signature dataset: if the signature of malicious app is not present in
local dataset then system uses RIPPER algorithm to analyze the application is malicious or not by different
condition: Ripper algorithm predict the malicious app by ruled based hypothesis. i.e if, then .model is
trained on the basis of training a data set which have various condition like

- Has the extracted application taken more permission than required

- Has the application using malicious system call

- Has the application Background playing

The important property of any inductive learner is that no a priori assumption has been complete regarding
the final concept.

Signature Based Intrusion Detection by using RIPPER Algorithm in Android OS 45

RIPPER looks at both positive and negative examples to generate a set of hypotheses that more closely
approximate the target concept.

4. RESULT ANALYSIS

4.1. Battery power use

As we be familiar with any app that runs on a Smart Phones be supposed to use some amount of battery
power depending on its activities. Most of the android malware finding applications are runs in a background,
so it will consume additional battery power.

In proposed System, cloud is use as the main mace, all the processes like decompilation of a apk file,
Training the database, Testing a new APK file via Pattern Matching of signatures after uploading are done
on the cloud so no one process run on the background. Hence it takes less battery of user’s smartphones.

4.2. Less Storage space

Android applications which will installed on a smart phones requires different storage space to for storing
different important files required by these applications. The different malware detection applications available
requires certain amount of storage space to stores the signatures or information about the malwares, as we
know that new malwares are introduced daily so we have to update the database of a installed malware
application. Once we update the database it will increases the size of the application, so the required space
by application becomes increasing and it will causes the availability of storage space for the user.

To overcome such problems, proposed system maintains the database of the signatures on a cloud. That
means we can update the application database by training on a cloud, so it will minimizes the storage space
of the application.

Figure 1: Signature Based Detection

46 Chetan J. Shelke, Pravin Karde and V. M. Thakre

4.3. Centralized database

As the proposed system uses the cloud as a server and it contain database of all the signatures while training
and for the testing purpose proposed system uses the database for pattern matching so all users access the
remote server from different places. Hence database is centralized.

4.4. Comparison amongst the Existing Systems

Table 1
Comparison of systems

Cases Avast Antivirus Avg Antivirus Implemented system

Storage space on device 12.8 mb 27 mb 1.16 mb

Battery consumption 7 % 6% 2%

Database Database is on device Database is on device Database is on cloud

Ram 30 mb 22 mb 17.74 mb

Updation of database User has to install User has to install Admin has to install

Decompilation of app No No Yes

Background playing Yes Yes No

Centralized database No (only for one user) No (only for one user) Yes – available for all user

5. CONCLUSION

The proposed system uses signature based detection for the detection of malicious application from
Smartphone proposed system detect malicious app by extracting signature and comparing that signature
from global database if the signature is not found on the centralized server then for new application system
uses ripper algorithm which use rule based prediction as per the behavior of the application. We tried to
overcome the problem of existing malware detection app i.e existing method not catch the malicious app if
the signature is not updated or signature is not present in the global dataset our system uses the ripper
algorithm to catch new malicious program by training the program which uses the rule base approach for
new application.

REFERENCES

[1] William Arnold and Gerald Tesauro. Automatically Generated Win32 Heuristic Virus Detection. Pro-ceedings of the
2000 International Virus Bulletin Conference, 2000

[2] Fred Cohen. A Short Course on Computer Viruses. ASP Press, 1990.

[3] William Cohen. Learning Trees and Rules with Set-Valued Features. American Association for Artificial Intelligence
(AAAI), 1996.

[4] R. Crawford, P. Kerchen, K. Levitt, R. Olsson, M. Archer, and M. Casillas. Automated Assistance for Detecting Malicious
Code. Proceedings of the 6th International Computer Virus and Security Conference, 1993.

[5] Cygnus. GNU Binutils Cygwin. Online publication,1999.http://sourceware.cygnus.com/cygwin.

[6] D.Michie, D.J. Spiegelhalter, and C.C.Taylor D. Machine learning of rules and trees. In Machine Learning,Neural and
Statistical Classification. Ellis Horwood,1994.

[7] Eleazar Eskin, William Noble Grundy, and Yoram Singer. Protein Family Classification using Sparse Markov Transducers.
Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology, 2000.

[8] Dmitry Gryaznov. Scanners of the Year 2000: Heuristics.Proceedings of the 5th International Virus Bulletin,1999.

[9] Jeffrey O. Kephart and William C. Arnold. AutomaticExtraction of Computer Virus Signatures. 4th Virus Bulletin
International Conference, pages 178-184, 1994.

[10] P. Kerchen, R. Lo, J. Crossley, G. Elkinbard, and R. Olsson. Static Analysis Virus Detection Tools for UNIX Systems.
Proceedings of the 13th National Computer Security Conference, pages 350–365, 1990.

Signature Based Intrusion Detection by using RIPPER Algorithm in Android OS 47

[11] Zou KH, Hall WJ, and Shapiro D. Smooth nonparametric ROC curves for continuous diagnostic tests. Statistics in
Medicine, 1997.

[12] R Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model selection. IJCAI,1995.

[13] W. Lee, S. J. Stolfo, and P. K. Chan. Learning patterns from UNIX processes execution traces for intrusion detection.
AAAIWorkshop on AI Approaches to Fraud Detection and RiskManagement, pages 50–56. AAAI Press, 1997.

[14] R.W. Lo, K.N. Levitt, and R.A. Olsson. MCF: a Malicious Code Filter. Computers & Security, 541 566., 1995.

[15] MacAfee. Homepage - MacAfee.com. Online publication,2000. http://www.mcafee.com.

[16] Microsoft. Portable Executable Format. Online publication,1999.http://support.microsoft.com/support/kb/articles/Q121/
4/60.asp.

[17] Peter Miller. Hexdump. Online publication, 2000.http://www.pcug.org.au/millerp/hexdump.html.

[18] MIT Lincoln Labs. 1999 DARPA intrusion detection evaluation.

[19] Tom Mitchell. Machine Learning. McGraw Hill,1997.

[20] Kamal Nigam, Andrew McCallum, Sebastian Thrun,and Tom Mitchell. Learning to Classify Text from Labeled and
Unlabled Documents. AAAI-98, 1998.

[21] Wildlist Organization. Virus descriptions of viruses in the wild. Online publication, 2000. http://www.fsecure.com/virus-
info/wild.html.

[22] REUTERS. Microsoft Hack Shows Companies Are Vulnerable. New York Times, October 29, 2000.

[23] Eugene H. Spafford. The Internet worm program: an analysis. Tech. Report CSD–TR–823, 1988. Department of Computer
Science, Purdue University.

[24] Gerald Tesauro, Jeffrey O. Kephart, and Gregory B.Sorkin. Neural Networks for Computer Virus Recognition.IEEE
Expert, 11(4):5–6. IEEE Computer Society,August, 1996.

[25] Steve R. White. Open Problems in Computer Virus Research. Virus Bulletin Conference, 1998.

[26] Steve R. White, Morton Swimmer, Edward J. Pring,William C. Arnold, David M. Chess, and John F.Morar. Anatomy of
a Commercial-Grade Immune System. IBM Research White Paper, 1999.

