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ABSTRACT

In this paper, we propose an optimization approach of Takagi-Sugeno-Kang fuzzy system using new improved

version of Particle Swarm Optimization. The novel version is based on two decoupled adaptive parameters including

in the velocity update function. A neuro-fuzzy structure is created in the form of a network which contains five

layers to exploit a various parameters of membership functions and rules conclusion. The new improved PSO have

been used in order to assess these parameters and choose the best of all the swarm particles (best model). Two

systems nonlinear are used to show the accuracy of the obtained model approach and compare it with other version

of PSO.

Keywords: Optimization, fuzzy system, neuro-fuzzy structure, membership functions, particle swarm optimization,

Takagi-Sugeno-Kang fuzzy system, etc.

1. INTRODUCTION

Inability of the mathematical tools to solve the problems of modeling of nonlinear systems, that the majority

of classical optimization methods is to reduce the order of the problem where the reduce order may be

unstable even though the original high order system is stable [1], appeals to intelligent methods. Thanks to

that, it can always exploit all available information, where embed the intuition and experience of a human

operator. Fuzzy modeling is a promising approach to model complex nonlinear systems [2-3] and it is

similar to neural network [4], because they can approximate any continuous function [5-6]. Among the

fuzzy modeling techniques that exists is that of Takagi-Sugeno-Kang, the model of TSK fuzzy system [7]

is one of the most used models; thanks to these good results in various fields of application. This model is

based on the IF-THEN rules with fuzzy antecedents and a mathematical function to the model output:
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where w
i
 is the firing strength of rule Ri defined by
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From Eq. (1), it is clear that the TSK model tries to decompose the input space into fuzzy region, and

then approximates the system in every region by simple linear equation. The main advantage of this model

is its representative power and its ability in describing a highly non-linear system using input/output data.

However, the TSK model includes too many parameters that most of them are located in the consequent

rules and may lead to a nonlinear programming problem [8].

The optimization of this type of model requires more adaptive optimization methods [9], where we

using a Particle Swarm Optimization that it do not require mathematical description of the optimization

problem and are capable to locate the global optimum in a difficult environment. The flexibility of PSO

able to adjust all parameters of fuzzy rules [10], and the PSO can improve the convergence and diversity

using a fuzzy logic [11]. A new version of the improved PSO with two adaptive parameters (where the first

parameter is used to control the speed of convergence and the other is to reduce the possibility of stocking

in a local minimum) is used to optimize the parameters of membership function and fuzzy rules. Some

recent control methods are described in [19-25].

This paper is organized as follows: in Section 2, we illustrate the structure of the fuzzy model. In Section

3, a brief overview on some versions of the Particle Swarm Optimization cited in literature is given. Section

4 is a description of the learning algorithm. In Section 5, we present the simulation results of the new improved

version of PSO and compared with other versions using two classicalidentification problem, where is divided

in stage of training data and testing stage. In the last section, we conclude the work.

2. STRUCTURE OF THE FUZZY MODEL

The model structure is presented as a multi-layer neural network [8] in order to facilitate the calculation of

various parameters and the error between the output and the desired model.

In this section, we given a description of the TSK fuzzy model, the structure is divided as five layers.

First layer:

No function is realized with the neurons in this layer. Each neuron transmits the input signal to the second

layer.

1 1 1,i i i iQ u u x  (4)

Second layer:

The neurons of this layer correspond to the membership functions (fuzzy sets). The output of each neuron

provides the degree of membership of an input variable to the fuzzy set corresponds to that neuron. It is

given by:
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where n
1
 = n

2
 = ... = n

r
 represents the number of fuzzy sets associated with the model variables; 2

ic  and 2

i

are the parameters of the Gaussian function of the ith neuron (the settings to adjust).



Optimization of TSK Fuzzy Model Using New Improved PSO 325

Third layer:

Each neuron of this layer corresponds to a fuzzy rule in the rule base unit. Its inputs come from all nodes in

layer 2 which participate in the premises part of that rule. The output of each node represents the firing

strength of rule and is calculated via the product operation:

3 3 3 2, ,  1,  2,  ...,  i i i i iQ u u Q i k    (7)

where k is the number of fuzzy rules, equal to n
1
 * n

2
 * ... * n

r
. The link weights in this layer are also set to

unity.

Fourth layer:

Each node in this layer performs a linear summation of the input variables as shown by the following

equation:
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in which 
i

ja  (j = 1, 2, ..., r and i = 1, 2, ..., k) are the parameters to be adjusted. Links from this layer to

output layer are equal equation to unity.

Fifth layer:

The node of this layer is the overall output of the model. The following equation is used for computing the

output:
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Several methods inspired by nature had been proposed for the optimization and handling

a neural network, fuzzy systems, such as, genetic algorithms [12] and the particle swarm optimization

[13].

Figure 1: Structure of the fuzzy model



326 Lamine Brikh, Ouahib Guenounou, Fatah Yahiaoui, Mohand-akli Kacimi and Ahmed Ouaret

3. PARTICLE SWARM OPTIMIZATION

During the past decade, Particle swarm optimization PSO [11] had been used to improve the performance

and minimize models of many systems nonlinear [14-16], because it can find the global optimum and

explore search spaces in maximum.

Typically, all the population’s members survive from the beginning of a trial until the end. Their

interactions result in iterative improvement of the quality of problem solutions over time. The particle

swarm is a population-based stochastic.

As its name suggests, the PSO is an optimization algorithm that is based on a set of particle (model).

After the random distribution of particles, each one is moving towards a solution in the search space

(local optimum local
par

), the entire swarm goes ahead towards the best solution of all (the global optimum

global
par

). Each particle’s position is evaluated as a possible solution. In a swarm with N particles, the

position of the ith particle is defined as a vector as it is given in Eq. (9).
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 are the centers and the variances of membership functions respectively

(settings antecedents) and a
0
, a
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the conclusions settings. n and r are the number of membership

function and the number of input respectively.

3.1. Standard PSO

A standard PSO was proposed by Eberhart [13], defined by the equations (11) and (12) in order to exploit

these advantages over other methods (it requires few parameters, it converges faster), in every iteration the

velocity and the location of particles are updated.

          1 1 2 21 * *i i par i par ivel k C vel k C r local Par k C r global Par k      (11)

where C is constriction factor, C
1
 and C

2 
are the acceleration coefficient; r

1 
and r

2 
are random numbers

uniformly distributed in [0 1].

     1 1i i iPar k Par k vel k    (12)

4. IMPROVED PSO ALGORITHM

After, several researchers have proposed improved versions to make it more efficient, M. A. Cavuslu, C.

Karakuza and F. Karakaya [14] proposed a version improved that adding an external term to the updated

function equation’s velocity (13) reduces the possibility of stocking in local minimum.

            1 1 2 2 31 * * *i i par i par ivel k C vel k C r local Par k C r global Par k C k       (13)

where  is called additive learning constant, C
3
 is a normally distributed random number vector.

Another version was improved by D. P. Kanungo, B. Naik, J. Nayak, S. Badoo and H. S. Behera [17],

in PSO, the inertia weight used to balance the global and local search ability. A large inertia weight facilitates

a global search, while a small inertia weight facilitates a local search. By changing the inertia weight

dynamically, the search ability is dynamically adjusted to introduce new parameter called inertia weight

adaptive (14) to control both the local and global search behavior.

          1 1 2 21 * * *i i par i par ivel k C W vel k C r local Par k C r global Par k      (14)
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5. NEW IMPROVED PSO ALGORITHM

The version of this paper is a combination of [10-16], in order to use the advantages of each one, it exploits the

parameter of the adaptive inertia to control the speed of convergence and the external term at the same time to

reduce the possibility of stocking in a local minimum in the velocity update function given by Eq. (15)

            1 1 2 2 31 * * * *i i par i par ivel k C W vel k C r local Par k C r global Par k C k       (15)

6. LEARNING ALGORITHM

In this section, the toolbox GetFis in MATLAB is used to create the structure of neuro-fuzzy to build the

particle parameters ‘‘(7)’’ in the first stage, as a matrix of N columns (number of individuals) and r * n +

(r + 1) * k rows (the individual length) is initialized randomly.

The main square error criterion from the output signal in the last layer is used in order to calculate the

fitness given by the equation:

    
2

1 1M
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where j represents a simple index, yd(k + 1) is the desired output and yd(k + 1) is the real output of the fuzzy

model TSK. This error will be useful to perform the model.

After the adjustment of parameters, these particles are evaluated by the fitness function (16) which is

the adaptation criterion, we compute the new position of each particle by (12). PSO uses the operator min

to extract the minimum value in the vector cost E and calculate its average. At first, we consider all the

particles as local particles and their cost as local minima. Retrieving the minimum value of the cost vector

is used to locate the best particle in the matrix Par
i
 (the global minimum).

Initialization
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1
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2

<<1 / ( max( eig( X*Xt ) )

min_cost = min (min (E)); mean_cost = mean (E)

global
min

= min_cost; local
par

= Par
i
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= E

K = 0

while k<maxit

k = k + 1

w = ( maxit-k)/maxit 15 12 16

local
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cost
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cost 

)

if temp<global
cost

global
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<Par
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(t , :)

index = t

global
cost 

= temp

end

[k global
par

 global
cost

]

min_cost(k+1) = min(E)

global
min

(k+1) = global
cost

end
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7. SIMULATION AND DISCUSSION

In this section, we apply the new improved PSO to shown the performance of the proposed approach, a two

classical identification problem given by Narendra and Parthasarathy [16] and [12] were applied to evaluate

the velocity update function for each version.

In this case, the two plant are described by the difference equation

 
      

   
 2 2
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These plants have three inputs u(k-1), y(k-1) and y(k-2) and single output y(k). Each version was

implemented in Matlab with the same parameters presented in table II:

Table 1

Parameters of simulation

Parameters Values

Maxitr 1500

MF 3

Popsize 100

C
1

2.1

C
2

2.1

C
3

0.1

C 0.76

This section is divided into two stages as a follow:

7.1. Stage of training data

The input data training of 300 points is generated by a sequence of pulses of random amplitude in range

[-1 1] and a random period between [1 4] for the first plant. However, the input data training of 200 points

Figure 2: The input signal of the first plant.
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Figure 3: The input signal of the second plant.

Figure 4: The output signal of the system and fuzzy model of the first plant

Figure 5: The output signal of the system and fuzzy model of the second plant
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is generated by a sequence of pulses of random amplitude in range [-1 1] and a random period between [1

20] for the second plant, see Figure 2 and 3.

Figure 6 and 7 shows the evolution of the objective function (MSE_Train, MSE_Test are mean square

error training and mean square error test) for each version of PSO.However, simulation results are drawn

from the three hundredth iterations to show the difference between each curve.

In the first problem the convergence of standard PSO is very slow (after 1470 generation) with a large

MSE_train = 0.0053 the improved PSO with external term minimizes the MSE_train = 0.0092 but with a

slow convergence (after 1488 generation), the improved PSO with adaptive inertia corrects the problem of

convergence (after 1079 generation), but with a significant MSE_train = 0.1000*10-4. However, in the first

problem the convergence of standard PSO is very slow (after 1329 generation) with a large MSE_train =

0.0.4266*10-4, the improved PSO with external term minimizes the MSE_train = 0.2578*10-4 but with a

slow convergence (after 928 generation), the improved PSO with adaptive inertia corrects the problem of

convergence (after 516 generation), but with a significant MSE_train = 0.1000*10-4. So, this approach is a

Figure 6: The evaluation of each version of PSO of the first plant

Figure 7: The evaluation of each version of PSO of the second plant
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correction for both problems recognized in previous versions where the MSE_train=0.0020 after only 914

generation and MSE_train=0.0530*10-4 in after only 370 for the first and second problem respectively.

Hence, overall results of simulation in this stage, we see the new improved PSO able to optimize the TSK

fuzzy with any complex nonlinear system.

7.2. Testing stage

When the learning process is finished, a sinusoidal input signal u
k
 = sin(2k/25) was applied to both plants

to test our contribution, the output of these system and that of the model are shown for each plant in Figure

8 and 9. Here, the table I give the mean square error of simulation result’s in this stage

Table 2

The result of simulation

Standard PSO Improved PSO Improved PSO New

with external with adaptive improved

term inertia PSO

First Plant 0.0042 0.0078 0.0091 0.0019

Second Plant 0.0037 0.0019 4.96*10-3 4.51*10-4

Figure 8: The output of TSK fuzzy model and system of the first plant.

Figure 9: The output of TSK fuzzy model and system of the first plant
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According to the values mean square error given in table II, it is noted that the contribution of this paper

can reduce the error from 1/2 to 1/4 compared to other contributions for the first plant, whereas, for the

second plant the minimum order of reducing the error is in order 1/10.

8. CONCLUSION

This paper presents an optimized Neuro-fuzzy approach by the new improved PSOfor modeling dynamic

nonlinear systems, which a proposed version of PSO including two adaptive parameters, the inertia factor

decreases from one generation to another to accelerate the convergence and an external term add to reduce

the possibility to stocking in the minimum local.

The results of training and testing simulation shown the efficiently to our proposed new improved PSO

and the method can be applied to any complex system which can exploit all parameters of this systems.
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