
I J C T A, 9(27), 2016, pp. 533-542
© International Science Press

1 Ph.D. Research Scholar, Bishop Heber College (Autonomous), Tiruchirappalli, Tamil Nadu, India.

2 Associate Professor and Head, Bishop Heber College (Autonomous), Tiruchirappalli, Tamil Nadu, India.

An Algorithmic Approach for QoS-based
Reusable Service Composition Optimal Selection

A.Florence Deepa1 and J.G.R. Sathiaseelan2

ABSTRACT

In recent years, most of the services are available on the internet and can just utilized anytime and anywhere. To
select an appropriate web service from different service providers offering the services, will play a vital role according
to web client’s need. A developer of web service who may create totally new service or extend an existing developed
service. To publish the common features as services and to reuse the already published services is a perfect
phenomenon in SOA. Reusability is one of the key objective when developing complex applications based on Web
Services. Consequently, service reusability has a high demand and will help to reduce cost and time of a new
development. Availability and reliability are the significant QoS parameters that are used to estimate service reusability
of a web service efficiently.In this paper, the major contribution is to propose an approach to predict the reusability
of a web service by quantifying availabilityand reliability of atomic services using the Weibull analysis and Linear
Regression. The result of the proposed work is two-fold. First, by calculating the service availability from total
uptime and total downtime of the service and the service reliability from mean time to failure of the web service.
Second, using the above result, service reusability is estimated which will decrease the complexity during the new
development.

Keywords: Availability, Reliability, Reusability, Weibull Analysis, Linear Regression, Kermack McKendrick model

1. INTRODUCTION

Web Service is the basic building block of Service Oriented Architecture (SOA). In web service architecture [1], the
service provider offers the web services that provide the tasks or business processes which are defined over the internet
that are invoked by the web clients. A web service requester articulates the requirements to find a suitable web service
[2]. Publishing, binding, and finding web services are the three major tasks in web service architecture. The service
providers offer the web services that satisfy the user’s needs, which are available in the internet. The web service
requestor is the web client who request for a web service [3]. The web service registry is a centralized directory of
services where the web service providers publish their web services information. The specified information is kept in the
registry and examined on submission of request by requester. Universal Description, Discovery and Integration (UDDI)
is the registry standard for web services [4].

A. QoS Requirements for Web Services

Web Services are self-independent application that exposes modular and distributed concepts [5]. Web services can be
developed at any irrespective platform and used by any application. Web service description is provided in WSDL
document, it can be accessed from internet using SOAP protocol. The ultimate goal of web services is to interpret and
normalize the application interoperability within and across the development of the operational skills and to cherish the
partner relationships.

According to W3C [6], Quality of Service (QoS) denotes the quality aspects of a web service such as
reliability, execution time, availability, response time, cost, performance, scalability, reusability and so on. Constraints

ISSN: 0974-5572

534 A. Florence Deepa and J.G.R. Sathiaseelan

are defined on the QoS, and these constraints can be utilized to select an optimal service for a requester. The
faultless combination of web services, business processes and applications over the internet calls an active e-
business visualization. Because of its vibrant and changeable nature, it is an essential and also a major challenge to
carry out the QoS on the internet. The dynamic e-business idea is to require a perfect arrangement of web
services, business procedures, and functions on the web [7]. Implementing quality of service on the web is a vital
and main test due to its exciting and variable character.

B. Stipulation for Web Service Selection

In fact, finding out the appropriate web services that the service registries don’t provide adequate query elements for
clients to clear relevant service queries, is one of the vital challenge that can encounter by the user’s requirements [8]. Still,
to find the appropriate web services could not be achieved using simple keyword-based search method mainly as web
services multiply. For example, service registries let the clients to carry out simple search queries such as searching by
service or business name [9]. Since little documented information is often made available in service discovery interfaces,
it is not practical to distinguish web services from each other using keyword corresponding techniques. Clients spend
hours of searching through possible service resources by themselves in discovering appropriate web services [10].
Consequently, a service broker is able to collect web service information from diverse environments (together with
service portals, service registries, and search engines) and offers a central access point for client to clear their search
queries in an inventive method.

C. Prerequisite for Web Services Composition

Web Services Composition is the interconnection of certain web services that satisfies the common business
process. The interconnection of web services to meet a certain business process is called Web Service Composition
[11]. The composition can be viewed as an aggregation of elementary or composite web services. The business
process of the client is implemented by several services when these web services are composed as a single service
[12]. A client can invoke a composite service itself be exposed as a web service. Composition rules specify the
order in which services are invoked and the conditions that some service may or may not be invoked. A main
feature of services is the reuse mechanism to build new applications and to compose the composition rules that
describe the coherent global services [13].

The remainder of the paper is organized as follows. Section II surveys some related work including QoS Aggregation
ontology, Composite patterns, and Aggregated Reliability of composite web service. Section III contains QoS parameter
specification such as web service standards, web service composition techniques, and other QoS constraint web
service composition research and briefly introduce the concept and notations used in the paper. Section IV describes
the model of proposed SISS QoS model, including basic definitions, constraints and their aggregation that provides
the basic notions for composite service and QoS based formulation according to the existing literature, which are
related to the proposed work. Section V depicts the design of ReUsable QoS-based Service Selection
(RUQSS)algorithm for the Composite Web Service and its complexity analysis, and QoS-based Web Service
Composition Framework. Section VI presents the evaluation setup, experiment results and analysis. In addition, a
comparison and discussion are made with other similar approaches. And finally, the conclusions and future work are
given in Section VII.

2. RELATED WORK:

The Composite Web Services technology plays a vital role in services computing that allows business processes by
composing elementary services under a shared workflow thereby providing the business process as a single-service. The
technical challenges for integrating the services in terms of compatibility and adaption are carried out in the earlier research
papers.

An Algorithmic Approach for QoS–based Reusable Service Composition Optimal Selection 535

A. QoS Aggregation Ontology

According to [1] [2], the composite QoS depends on two determinants: QoS parameters and workflow [11]. The first
determinant, QoS parameters are different with regard to number, name, data type, and conceptualization and rarely
adhere to any standard. A classification was proposed exclusively with regard to their aggregation, instead of contributing
to their harmonization, and it was constructed based on the following principle: If any two parameters allocate the same
aggregation function, then they are a member of the same parameter type, in spite of other characteristics. They apply that
principle results in five parameter types.

B. Composite Patterns:

The second determinant workflow was analyzed by means of workflow patterns. [12] analyzed workflows effect on
parameter aggregation and proposed seven composition patterns (CP), i.e., Sequence (CP

1
), Loop (CP

2
), XOR-

XOR (CP
3
), AND-AND (CP

4
), AND-DISC (CP

5
), OR-OR (CP

6
), and OR-DISC (CP

7
).

A composition model was resulted based on patterns derived from the workflow patterns identified in languages for
Web Service composition. The following composite patterns, Sequence (CP

1
), Loop (CP

2
), XOR-XOR (CP

3
), AND-

AND (CP
4
) and OR-OR (CP

6
) patterns that are capable to construct the aggregation function concept for the QoS

parameter typesto be proposed are applied.

3. QOS PARAMETER SPECIFICATION

In general, the web service interactions can be categorized as executable processes which models the actual behavior of
a participant in a business interaction and as abstract processes. In the Abstract Process (AP) [13], the basic patterns of
operations such as sequence, parallel, conditional and loop structure are used to construct the fundamental control flow
structures of business workflows and an composite process description can be represented by a directed acyclic graph
(DAG).

A. Web service QoS requirements

The important QoS attributes of service to select the optimal one according to the web client’s need that are identified in
this paper are: Availability and Reliability are used to examine the QoS-based Service Composition Optimal Selection
(SCOS) that satisfy the user requirements to build the complex applications.

• Availability : Availability is the quality aspect of whether the Web service is present or ready for immediate
use [14]. It indicates the readiness of the service that provides the exact one. It also represents the
probability that a service is available. Larger values represent that the service is always ready to use
while smaller values indicate unpredictability of whether the service will be available at a particular time
[15].

• Reliability : Reliability is the quality aspect of a Web service that represents the degree of being capable
of maintaining the service and service quality [16]. Reliability denotes the probability that the service will
fail after a certain period of time. The number of failures per month or year represents a measure of
reliability of a Web service. In another sense, reliability refers to the assured and ordered delivery for
messages being sent and received by service requestors and service providers [17].

B. Service Reusability

The most challenging elementary principle of Service Oriented Architecture (SOA) is Reusability which represents
the capability of using the service again. Service reusability is the measure of easiness in which one can use already
existing developed services into an innovative applications. Erl [18] defined as, “Services contain and express
agnostic logic and can be positioned as reusable enterprise resources”. Designing a reusable service will increase
Return On Investment (ROI) and also reduces the cost associated with design, development, software testing and

536 A. Florence Deepa and J.G.R. Sathiaseelan

maintenance. In [19], the author defined as, “Reusability of service is the degree to which the service can be used
in more than one business process or service applications without having much overhead to discover configure and
invoke it.”

4. PROPOSED WORK

This section expresses the QoS model on the basis of theRUQSS algorithm. Here the aggregation function for the
QoS parameters and the concept definitions for the parameter aggregation are described.

A. The ReUsable QoS-based Service Selection (RUQSS) QoS Model

In this section the QoS model articulates the ReUsable QoS-based Service Selection (RUQSS) algorithm for
the Composite Web Service structure as Nodes – basic unit of a Composite Service and as Operations –
relationship between nodes that determines the behavior of the Composite service (directed acyclic graph,
DAG). The Operation relationship adopted from Jorge Cardoso’s Stochastic Workflow Reduction (SWR)
algorithm. The description of QoS aggregation ontology and the aggregation function that utilize this ontology,
demonstrate the usefulness of the proposed algorithm for the developers of composite services and assess its
computational efficiency.

Figure 1. Example Workflow as a Business Process

Consider a composite service according to the figure 1 shows an example, which contains six nodes and four
operation relations (represented as diamond shape). To instantiate the workflow as a business process for different
services, the nodes are separated from actual services by means of a binding (operationrelations).

Since the formalization of the aggregation is a combination of parameter and composition patterns, the parameter
types (Cost, Execution Time, Reliability and Availability), which are defined in section I, and composition
patterns (Sequence, Loop, AND-AND, OR-OR and XOR-XOR) that are proficient for the parameter types and
the generic aggregation functions, with x

1
,…,x

n
 denoting the parameter to be aggregated, which are related to the

parameter types that are used in Table 1 to assign a function to pair of parameter type P and the composite patterns
CP.

The QoS Aggregation relates the parameter types areidentified with generic aggregation formula and composition
patterns by means of description logic (DL). Based on the ontology, reasoning determines the parameter aggregation for
any given (annotated) QoS parameter and workflow pattern. Table 1 defines the aggregation function that can be
implemented to each pair of parameter type P and the composite patterns CP.

The concept Aggregation Function AF and its disjoint sub-concepts represent all generic aggregation functions
identified for the parameter types. Two functional roles Parameter Type forP and Composite Patterns forCP exist,
concerning their dependence.

An Algorithmic Approach for QoS–based Reusable Service Composition Optimal Selection 537

Table 1. Aggregation Functions for QoS parameters

Parameter Type Composite Patterns CP

P Sequence Parallel

Loop AND-AND OR-OR XOR-XOR

Cost χ
sum

χ
linear

χ
sum

χ
max

χ
max

Execution Time χ
sum

χ
linear

χ
sum

χ
max

χ
max

Availability χ
product

χ
min

χ
product

- χ
sum

Reliability χ
product

χ
min

χ
product

- χ
sum

Table 1 represents the valid parameter types and composition patterns, for an example, say that a composite pattern
Loop is aggregated with a sequence of parameter types (Reliability and Availability) by the aggregation function Min;
consequently, the concept Min is identical to the concept definition as follows.

Table 2. Concept Definitions for Parameter Aggregations

Concept Inclusion

Sum ∃ for CP.Sequence∩ (

∀

for P.Cost ∪

∀

for P.Execution Time)

∩ for CP.ANAND ∩ (

∀

for P.Cost ∪

∀

for P.Execution Time)

∩ for CP.XORXOR (

∀

for P.Reliability ∪

∀

for P.Availability)

Product for CP.Sequence∩ (

∀

for P.Reliability ∪

∀

for P.Availability)

∩ for CP.ANAND

∩ (

∀

for P.Reliability ∪

∀

for P.Availability)

Max for CP.OROR ∩ (∀ for P.Cost ∪ ∀ for P.Execution Time) ∩ for CP.XORXOR

∩ (

∀

for P.Cost ∪

∀

for P.Execution Time)

Min for CP.Loop ∩ (

∀

for P.Reliability ∪

∀

for P.Availability)

Linear for CP.Loop ∩ (

∀

for P.Cost ∪

∀

for P.Execution Time)

As concept Min is valid for more than one combination of parameter type and composite pattern, the concept
definition consists actually of several pairs of universal restrictions being concatenated by a logical OR. Table 2 contains
the full definitions of all aggregation formula concepts.

Figure 2. An Overview of QoS aggregation ontology

At last, to verify the concept not only the aggregation type, but also the aggregation formula to be used are identified.
To define this principle, the ontology provides a concept F and a functional role defined as (AF, F): hasF as shown in the
Figure 2, depicted in the algorithms AggrQoS() and AggrValues().

538 A. Florence Deepa and J.G.R. Sathiaseelan

5. REUSABLE SERVICE SELECTION ALGORITHM

This section articulates the design of the RUQSS algorithm. Here describe the QoS criteria, aggregation functions,and
constraints are described.

A. Design of the RUQSS Algorithm

The service selection process of a SCOS proceeds the abstract processes as inputs, with the composite patterns
that are supported by composite web services. That is, for an abstract process AP containing nabstract services
AS

AP
, where AS

AP
= {as

1
, ..., as

n
}, there will be a set of composite patterns CP = {cp

1
, ..., cp

m
} associated with

each as
i
, where, each abstract service as

i
(i = 1, ..., n) has m

i
composite patterns. CP = {cp

i1
, ..., cp

im
} is a

composite pattern of as
i
. Each composite pattern cp

ij
 (j = 1, ..., m) ∈ P

i
is associated with a QoS parameter

(AV(cp
ij
), RE(cp

ij
), CT(cp

ij
), ET(cp

ij
)).The QoS constraints of the AP defined by users are QC = {qc

AV
, qc

RE
,

qc
CT

, qc
ET

}.

Based on the above analysis, a service selection process could be formulated as Eq. (1). Find X = (x
1
, ..., x

n
),]* x

i

∈ {1, ..., m
i
}, i = (1, ..., n) such that,

AV ({as
1
, af

1x1
), ..., (as

1
, af

1x1
)}, AP) ≥ qc

AV

RE ({as
1
, af

1x1
), ..., (as

1
, af

1x1
)}, AP) ≥ qc

RE

CT ({as
1
, af

1x1
), ..., (as

1
, af

1x1
)}, AP) ≤ qc

CT

ET ({as
1
, af

1x1
), ..., (as

1
, af

1x1
)}, AP) ≤ qc

CT
(1)

X is a vector representing the feasible solution that satisfies the reusability QoS constraints containing the indices of
selected composite patterns for every abstract service in AP. It can be viewed as a selection plan of AP. According to Eq.
(1), the service selection problem can be used to model for a SCOS solution.

The details of the RUQSS algorithm are shown in the algorithms AggrQoS(n), AggrValues(cp,N’)and
RUQSS(AS

AP
,n).There are three major steps in the RUQSS algorithm. The first step is used to categorize the

aggregated QoS constraints that are associated with the composite patterns of the workflow. The aggregation is
executed on workflow W. AlgorithmAggrQoS(n) depicts theexecution for W’s starts from the node n. If it begins
with an AND

split
/XOR

split
/OR

split
, the recursive process takes place for all branches. Then the aggregated nodes are

collected in the set N’.The actual aggregation is performed based on the respective pattern using the algorithm
AggrValues(cp,N’) and the result is stored in the join nodes.

The next process is to detect subsequent Sequence and Loop patterns. From the DAG results stored in the join
nodes are used to perform the task by the function getSeqNodes(n) works as follows: for task nodes, non-nested
XOR

split
, AND

split
, OR

split
, and subsequent task nodes are collected, whereas XOR

split
/AND

split/
OR

split
, nodes are recursively

aggregated. For the detection of nested Sequence patterns in XORXOR, ANDAND, as well as XORXOR patterns, the
DAG is traversed until the corresponding join node is reached for each branch of XOR

split
/AND

split
/OR

split
 nodes. Loop

nodes specify the multiple executions of the preceding node.

In the second step, the concrete aggregation is performed, which uses the aggregation ontology as depicted in
the algorithm AggrValues(cp,N’). To infer the right aggregation function, first it creates the individuals for parameter,
composition pattern and aggregation function. By relating these three individuals by the roles forP, forCP andforF,
the knowledge base is queried for all concept memberships of hasF, which returns the DL reasoning returns three
membershipsand specific one is denoted as f usedto calculate the parameter value by considering all the nodes
from the input set N’. The QoS parameter aggregation is calculated separately for each parameter.

In the final step of RUQSS, an empirical is proposed to find a feasible solution that satisfies the QoS constraints
in the Eq. (1) as depicted in the algorithm RUQSS(AS

AP
,n). The original motivation of RUQSS is to find out a feasible

solution which categories the existing web services that are could be reuse according with the user-defined requirements.

An Algorithmic Approach for QoS–based Reusable Service Composition Optimal Selection 539

To depict the process of the RUQSS algorithm, first calculate the quality values for both the QoS parameter types and
composite patterns using the Eq. (2) and Eq. (3) respectively. The quality constraint is then verified using the Eq. (4),
and stored in X

old
 initially.

qv (f or P
i
) =

f P f P

f P e
i i

i
f P ti

or *(or +1)

or + (or +1)β

(1)

qv (f or CP
i
) =

qv f P

hasF
i

i

(or)
(1)

qc (f or P
i
) =

qv f CP thersold ve criteria

qv f CP thersold ve criteria
i

i

(or) +

(or)

≥
≤ −

R
�
�

(1)

Algorithm RUQSS(AS
AP

,n)

1 for i ← 1 to n do

2 Calculate qv(forP
i
), qv(forCP

i
) using Eq. (2) and Eq. (3)

3 X
old

← qc(forP
i
) using Eq. (4)

4 next i

5 iteration ← 1, stop ← true

6 repeat

7 for i ← 1 to n do

8 for j ← 1 to m
i
do

9 X
cur

← AggrValues (X
curij

)

10 if (X
old

 ≠ X
cur

) then

11 X
new

 ← AggrValues(X
newij

)

12 if is Feasible(X
new

) then

13 X
old

 ← X
new

14 else

1 X
old

 ← X
cur

16 stop ← false

17 return the feasible solution X
old

18 next j

19 next i

20 iteration ← iteration + 1

21 until iteration > iteration
max

or stop

22 return the feasible solution X
old

The final step is implemented as an iterative process until the maximum iteration is reached or the stop is set as
false. For this, initialize the iteration as one and set stop as true. Now the results of the algorithm AggrValues(X

curij
)

are stored in X
cur

. If the X
cur

 is not defined in the existing one then the algorithm AggrValues(X
newij

) is executed with

540 A. Florence Deepa and J.G.R. Sathiaseelan

the new requirements that are preferred by the clients and the results are stored in X
new

. The function isFeasible(X
new

)
is used to check whether the solution is a feasible one or not. The feasible solutions are loaded in X

old
 and returned.

Once all the operations are examined for their feasibility, if there found an infeasible solution, stop is set as false and the
RUQSS procedure is terminated.

B. Complexity analysis of RUQSS:

To simplify the complexity analysis, it is assumed that each abstract service has c composite patterns. Let nbe the total
number of abstract services in an abstract process and mbe the number of QoS parameter type. For the first step of
RUQSS, the complexity of the procedure AggrQoS is O(c.n). Similarly in the second step, the complexity for the
procedure AggrValues is O(c.n.m). Finally, there are n. (c - 1) composite patterns to be explored in the iteration process
to evaluate whether a feasible solution exists or not. If the maximum number of iterations is t, then the total complexity of
the third step is O(t.m.n.c). According to above analysis, the complexity of the RUQSS algorithm is O(t.m.n.c).

6. EXPERIMENTAL RESULTS

The proposed algorithms are implemented on Windows 7 platform using Microsoft Visual Studio .NET development
environment and Microsoft Visual C# as a programming language. Simple XML structures are used to create the service
ontologies, and executed them on an Intel (R) Core™ i3 CPU, M 350 @ 2.27 GHz, 3 GB RAM Laptop with 100 MB/
s Ethernet card. To generate the test instances, the abstract processes are randomly generated first, each contains two or
more control flow patterns. These abstract processes are organized with the composite patterns that are associated with
four QoS parameters namely execution time, cost, availability and reliability. The QoS constraint on each QoS criteria is
generated using the Eq. (1).

A. Experimental Results

RQSS [13] is a well-known heuristic algorithms for QWSC, it is implemented and compared with the proposed work
RUQSS here. From the proposed approach and algorithms mentioned, the following aspects related to the will be
illustrated in the experiments, as the failure rate is reduced in finding a feasible solution while the abstract service increased.The
strength of QoS constraints is increased while the time complexity is decreased and the number of iteration value will
improve the better performance of the algorithm.

Figure 3. Comparison of Failure Rate Figure 4. Comparison of Time Complexity

Figure 3 shows the experiment results of examining the failure rate between RUQSS and RQSS. The analysis of the
failure rate is focused on the number of abstract services in an abstract process that are associated with the composite
patterns and the strength of the QoS constraints. Figure 4 depicts the analysis of the time complexity between RQSS and

An Algorithmic Approach for QoS–based Reusable Service Composition Optimal Selection 541

RUQSS. Here, it is observed that the time complexity is decreased while the strength of the QoS constraints are
increased.

Table 3. Comparison of RQSS and RUQSS

RQSS RUQSS

Time Complexity O(t.m.n2.c) O(t.m.n.c)

Availability Middle High

Reliability Middle High

Execution Time High Low

Cost High Low

Table 3 depicts the comparison of the existing approach with the proposed one that is observed from the QoS
constraint on each QoS criteria by generating using the Eq. (1).Based on the comparison, the failure rate and the
availability has been proved that the RUQSS is ultimate superior to the existing approach from the simulation result. In
addition, it is observed that the RUQSS is also an optimal solution for Service Composition Optimal Selection (SCOS)
with lower failure rate and high availability.

7. CONCLUSION

Since, it is a challenging process to implement a development environment for users to reduce the complexity application
building based on the web service composition technology. Most researches or studies do not deal with the situation of
no suitable or feasible solution can be found during the service composition process.

The ReUsable QoS-based Service Selection (RUQSS) algorithm, is mainly proposed to get higher system reliability
and availability. The experiment results reveal that the failure rate of finding a feasible solution in RUQSS is much lower
than RQSS approach. In future work, the RUQSS algorithm can be extended for the dynamic service composition.

REFERENCES
[1] P. Karaenke, J. Leukel and S. Vijayan, “Ontology-based QoS Aggregation for Composite Web Services”, 11th International

Conference on Wirschatinformatik, Germany, 1343-1357, 2013.

[2] P. Karaenke and J. Leukel, “Towards Ontology-based QoS Aggregation for Composite Web Services”, Informatik, GI,
Bonn, 175, 120-125, 2010.

[3] N. Saikaladevi and L. Arockiam, “Reliability Evaluation Model for Composite Web services”, International Journal of
Web & semantic Technology, 1(2), 16-21, 2010.

[4] M. Alrifai, D. Skoutas and T. Risse, “Selecting Skyline Services for QoS based Web Service Composition”, World Wide
Web Conference, Raleigh, North Carolina, 2010.

[5] Jiang Ma and Hao-peng Chen, “A Reliability Evaluation Framework on Composite Web Service”, International Symposium
on Service-Oriented System Engineering, 123-128, 2008.

[6] Hangjung Zo, D.L. Nazareth and H.K. Jain, “Measuring Reliability of Applications Composed of Web Services”, 40th
Annual Hawaii International Conference System Sciences, 2007.

[7] F. Baader, I. Horrocks and U. Sattler, “Description Logic”, Handbook of Knowledge Representation, Elsevier, Amsterdam,
2007.

[8] Zhenyu Liu, Ning Gu and Genxing Yang, “A Reliability Evaluation Framework on Service Oriented Architecture”, 2nd

International Conference on Pervasive Computing and Applications, 466- 471, 2007.

[9] M.C. Jaeger, G. Rojec-Goldmann and G. Mühl, “QoS Aggregation for Web Service Composition using Workflow Patterns”,
8th IEEE Enterprise Distributed Object Computing Conference , IEEE Press, New York, 149–159, 2004.

[10] J. Cardoso, A.P. Sheth, J.A. Miller, J. Arnold, K. Kochut, “Quality of service for work-flows and web service processes”,
Journal of Web Semantics, 1, 281–308, 2004.

[11] S. Dustdar, “Web Services Workflows - Composition, Co-Ordination, and Transactions in Service-Oriented Computing”,
Concurrent Engineering, 12(3), 2004, 237-245, 2004.

542 A. Florence Deepa and J.G.R. Sathiaseelan

[12] J. Cardoso, A.P. Sheth, J.A. Miller and J. Arnold, “Modeling Quality of Service for Workflows and Web Service Processes”,
Technical Report #02-002, LSDIS Lab, Computer Science, University of Georgia, 2002.

[13] Chia-Feng Lin, Ruey-Kai Sheu, Yue-Shan Chang and Shyan-Ming Yuan, “A relaxable service selection algorithm for QoS-
based web service composition”, Journal of Information and Software Technology, 53, 1370 - 1381, 2011.

[14] “Application guide to the specification of dependability requirements”. IEC standard 60300-3-4, Sep. 2007.

[15] P. Axer, M. Sebastian, and R. Ernst. “Reliability analysis for MPSoCs with mixed-critical, hard real-time constraints”, 9th
International Conference on Hardware/Software Codesign and System Synthesis, 149–158, 2011.

[16] H. Mcheick and Y. Qi, “Quality attributes and design decisions in service-oriented computing,” Proc. Innovations in
Information Technology (IIT) Conference, Abu Dhabi, 283-287, 2012.

[17] K. C. Lee, J. H. Jeon, W. S. Lee, D. Min, M. N. An, S. Kim, S. H. Jeong, and S. W. Park, “QoS for web services: Requirements
and possible approaches”, W3C Working Group Note, 2003.

[18] Thomas Erl, “SOA Principles of service Design”, Pearson Education, 2009.

[19] Si Won Choi and Soo Dong Kim, “A Quality Model for Evaluating Reusability of Services in SOA”, 10th IEEE Conference
on E-Commerce Technology and the fifth IEEE conference on Enterprise Computing, E-commerce and E-services.

