# ON THE STABILITY OF A FOUR SPECIES: A PREY-PREDATOR-HOST-COMMENSAL-SYN ECO-SYSTEM-VII (Host of the Prey Washed Out States) 

B. Hari Prasad and N. Ch. Pattabhi Ramacharyulu


#### Abstract

This paper deals with an investigation on a Four Species Syn-Ecological System (Host of the Prey washed out states). The System comprises of a Prey ( $S_{1}$ ), a Predator $\left(S_{2}\right)$ that survives upon $S_{1}$, two Hosts $S_{3}$ and $S_{4}$ for which $S_{1}, S_{2}$ are commensal respectively i.e., $S_{3}$ and $S_{4}$ benefit $S_{1}$ and $S_{2}$ respectively, without getting effected either positively or adversely. Further $S_{3}$ and $S_{4}$ are neutral. The model equations of the system constitute a set of four first order non-linear ordinary differential coupled equations. In all, there are sixteen equilibrium points. Criteria for the asymptotic stability of four of these sixteen equilibrium points: the Host of the Prey washed out states only are established in this paper. The linearized equations for the perturbations over the equilibrium points are analyzed to establish the criteria for stability and the trajectories are illustrated.


Keywords: Equillibrium point, Host, Prey, Predator, Trajectories, Unstable.

## 1. Introduction

Mathematical modeling of Eco-System was initiated in 1925 by Lotka [11] and in 1931 by Volterra [15]. The general concepts of modeling have been presented in the treatises of Meyer [12], Kushing [8], Kapur J. N. [6, 7] and several others. The ecological interactions can be broadly classified as Prey-Predation, Commensalism, Competition, Neutralism, Mutualism and so on. N. C. Srinivas [14] studied competitive eco-systems of two species and three species with limited and unlimited resources. Later Lakshminarayan [9], Lakshminarayan and Pattabhi Ramacharyulu [10] studied Prey Preadtor ecological models with partial cover for the Prey and alternate food for the predator. Recently, Archana Reddy [1] and Bhaskara Rama Sharma [2] investigated diverse problems related to two species competitive systems with time delay, employing analytical and numerical techniques. Further Phani Kumar, Seshagiri Rao and Pattabhi Ramacharyulu [13] studied the stability of a Host-A flourishing commensal species pair with limited resources. The present authors Hari Prasad and Pattabhi Ramacharyulu studied the stability of the fully washed out state [3], Prey and Predator washed out states [4] and co-existent state [5]. Continuation of this criteria for the stability of only the Host of the Prey of the system is presented in this paper.

Figure1 A Schematic Sketch of the system under investigation is shown here under Fig. 1.


Figure 1: Schematic Sketch of the Syn Eco-System

## 2. Basic Equations of the Model

## Notation Adopted:

| $S_{1}$ | $:$ Prey for $S_{2}$ and commensal for $S_{3}$. |
| :--- | :--- |
| $S_{2}$ | $:$ Predator surviving upon $S_{1}$ and commonsal for $S_{4}$. |
| $S_{3}$ | $:$ Host for the commonsal - Prey $\left(S_{1}\right)$. |
| $S_{4}$ | $:$ Host of the commonsal - Predator $\left(S_{2}\right)$. |
| $N_{1}(t)$ | $:$ The Population of the Prey $\left(S_{1}\right)$. |
| $N_{2}(t)$ | $:$ The Population of the Predator $\left(S_{2}\right)$. |
| $N_{3}(t)$ | $:$ The Population of the Host $\left(S_{3}\right)$ of the Prey $\left(S_{1}\right)$. |
| $N_{4}(t)$ | $:$ The Population of the Host $\left(S_{4}\right)$ of the Predator $\left(S_{2}\right)$ |
| $t$ | $:$ Time instant |
| $a_{1}, a_{2}, a_{3}, a_{4}$ | $:$ Natural growth rates of $S_{1}, S_{2}, S_{3}, S_{4}$ |
| $a_{11}, a_{22}, a_{33}, a_{44}$ | $:$ Self inhibition coefficients of $S_{1}, S_{2}, S_{3}, S_{4}$ |
| $a_{12}, a_{21}$ | $:$ Interaction (Prey-Predator) coefficients of $S_{1}$ due to $S_{2}$ and $S_{2}$ |
| due to $S_{1}$ |  |
| $a_{13}$ | $:$ Coefficient for commensal for $S_{1}$ due to the Host $S_{3}$ |
| $a_{24}$ | $:$ Coefficient for commensal for $S_{2}$ due to the Host $S_{4}$ |
| $\frac{a_{1}}{a_{11}}, \frac{a_{2}}{a_{22}}, \frac{a_{3}}{a_{33}}, \frac{a_{4}}{a_{44}}:$ | Carrying capacities of $S_{1}, S_{2}, S_{3}, S_{4}$ |

Further the variables $N_{1}, N_{2}, N_{3}, N_{4}$ are non-negative and the model parameters $a_{1}$, $a_{2}, a_{3}, a_{4} ; a_{11}, a_{22}, a_{33}, a_{44} ; a_{12}, a_{21}, a_{13}, a_{24}$ are assumed to be non-negative constants.

The model equations for the growth rates of $S_{1}, S_{2}, S_{3}, S_{4}$ are

$$
\begin{align*}
& \frac{d N_{1}}{d t}=a_{1} N_{1}-a_{11} N_{1}^{2}-a_{12} N_{1} N_{2}+a_{13} N_{1} N_{3}  \tag{2.1}\\
& \frac{d N_{2}}{d t}=a_{2} N_{2}-a_{22} N_{2}^{2}+a_{21} N_{1} N_{2}+a_{24} N_{2} N_{4}  \tag{2.2}\\
& \frac{d N_{3}}{d t}=a_{3} N_{3}-a_{33} N_{3}^{2}, \quad \frac{d N_{4}}{d t}=a_{4} N_{4}-a_{44} N_{4}^{2} \tag{2.3}
\end{align*}
$$

## 3. Equilibrium States

The system under investigation has sixteen equilibrium states defined by

$$
\begin{equation*}
\frac{d N_{i}}{d t}=0, \quad i=1,2,3,4 \tag{3.1}
\end{equation*}
$$

are given in the following Table 1.
Table 1

| S.No. | Equilibrium State | Equilibrium Point |
| :--- | :--- | :--- |
| 1 | Fully Washed out state | $\overline{N_{1}}=0, \overline{N_{2}}=0, \overline{N_{3}}=0, \overline{N_{4}}=0$ |
| 2 | Only the Host $\left(S_{4}\right)$ of $S_{2}$ survives | $\overline{N_{1}}=0, \overline{N_{2}}=0, \overline{N_{3}}=0, \overline{N_{4}}=\frac{a_{4}}{a_{44}}$ |
| 3 | Only the Host $\left(S_{3}\right)$ of $S_{1}$ survives | $\overline{N_{1}}=0, \overline{N_{2}}=0, \overline{N_{3}}=\frac{a_{3}}{a_{33}}, \overline{N_{4}}=0$ |
| 4 | Only the Predator $S_{2}$ survives | $\overline{N_{1}}=0, \overline{N_{2}}=\frac{a_{2}}{a_{22}}, \overline{N_{3}}=0, \overline{N_{4}}=0$ |
| 5 | Only the Prey $S_{1}$ survives | $\overline{N_{1}}=\frac{a_{1}}{a_{11}}, \overline{N_{2}}=0, \overline{N_{3}}=0, \overline{N_{4}}=0$ |
| 6 | Prey $\left(S_{1}\right)$ and Predator $\left(S_{2}\right)$ washed out | $\overline{N_{1}}=0, \overline{N_{2}}=0, \overline{N_{3}}=\frac{a_{3}}{a_{33}}, \overline{N_{4}}=\frac{a_{4}}{a_{44}}$ |
| 7 | Prey $\left(S_{1}\right)$ and Host $\left(S_{3}\right)$ of $S_{1}$ washed out | $\overline{N_{1}}=0, \overline{N_{2}}=\frac{a_{2} a_{44}+a_{4} a_{24}}{a_{22} a_{44}}, \overline{N_{3}}=0, \overline{N_{4}}=\frac{a_{4}}{a_{44}}$ |
| 8 | Prey $\left(S_{1}\right)$ and Host $\left(S_{4}\right)$ of $S_{2}$ washed out | $\overline{N_{1}}=0, \overline{N_{2}}=\frac{a_{2}}{a_{22}}, \overline{N_{3}}=\frac{a_{3}}{a_{33}}, \overline{N_{4}}=0$ |
| 9 | Predator $\left(S_{2}\right)$ and Host $\left(S_{3}\right)$ of $S_{1}$ washed out | $\overline{N_{1}}=\frac{a_{1}}{a_{11}}, \overline{N_{2}}=0, \overline{N_{3}}=0, \overline{N_{4}}=\frac{a_{4}}{a_{44}}$ |

S.No. Equilibrium State

Equilibrium Point
10 Predator $\left(S_{2}\right)$ and Host $\left(S_{4}\right)$ of $S_{2}$ washed out
11 Prey $\left(S_{1}\right)$ and Predator $\left(S_{2}\right)$ survives

$$
\begin{align*}
& \overline{N_{1}}=\frac{a_{1} a_{33}+a_{3} a_{13}}{a_{11} a_{13}}, \overline{N_{2}}=0, \overline{N_{3}}=\frac{a_{3}}{a_{33}}, \overline{N_{4}}=0 \\
& \overline{N_{1}}=\frac{a_{1} a_{22}+a_{2} a_{12}}{a_{11} a_{13}+a_{12} a_{21}}, \overline{N_{2}}=\frac{a_{1} a_{21}+a_{2} a_{11}}{a_{11} a_{22}+a_{12} a_{21}}, \\
& \overline{N_{3}}=0, \overline{N_{4}}=0 \\
& \overline{N_{1}}=0, \overline{N_{2}}=\frac{a_{2} a_{44}+a_{4} a_{24}}{a_{22} a_{44}}, \overline{N_{3}}=\frac{a_{3}}{a_{33}}, \overline{N_{4}}=\frac{a_{4}}{a_{44}}  \tag{12}\\
& \overline{N_{1}}=\frac{a_{1} a_{23}+a_{3} a_{13}}{a_{11} a_{13}}, \overline{N_{2}}=0, \overline{N_{3}}=\frac{a_{3}}{a_{33}}, \overline{N_{4}}=\frac{a_{4}}{a_{44}}  \tag{13}\\
& \overline{N_{1}}=\frac{\delta_{2}}{\delta_{1}}, \overline{N_{2}}=\frac{\delta_{3}}{\delta_{1}}, \overline{N_{3}}=0, \overline{N_{4}}=\frac{a_{4}}{a_{44}}
\end{align*}
$$

14 Only the Host $\left(S_{3}\right)$ of $S_{1}$ washed out

$$
\text { where } \delta_{1}=a_{44}\left(a_{11} a_{22}+a_{12} a_{21}\right)>0
$$

$$
\delta_{2}=a_{22}\left(a_{1} a_{33}+a_{3} a_{13}\right)-a_{2} a_{12} a_{33}
$$

$$
\left.\delta_{3}=a_{21} a_{1} a_{33}+a_{3} a_{13}\right)+a_{2} a_{12} a_{33}>0
$$

15 Only the Host $\left(S_{4}\right)$ of $S_{2}$ washed out

$$
\overline{N_{1}}=\frac{\delta_{2}}{\delta_{1}}, \overline{N_{2}}=\frac{\delta_{2}}{\delta_{1}}, \overline{N_{3}}=\frac{a_{3}}{a_{33}}, \overline{N_{4}}=0
$$

$$
\text { where } \sigma_{1}=a_{33}\left(a_{11} a_{22}+a_{12} a_{21}\right)>0
$$

$$
\sigma_{2}=a_{22}\left(a_{1} a_{33}+a_{3} a_{13}\right)-a_{2} a_{12} a_{33}
$$

$$
\sigma_{3}=a_{21}\left(a_{1} a_{33}+a_{3} a_{13}\right)+a_{2} a_{12} a_{33}>0
$$

16 The co-existent state
(or)

$$
\bar{N}_{1}=\frac{a_{22} a_{41} \psi_{1}+a_{12} a_{33} \psi_{2}}{\psi_{3}}, \overline{N_{2}}=\frac{a_{21} a_{4} \psi_{1}+a_{22} a_{33} \psi_{2}}{\psi_{3}},
$$

Normal steady state

$$
\overline{N_{3}}=\frac{a_{3}}{a_{33}}, \overline{N_{4}}=\frac{a_{4}}{a_{44}}
$$

where $\psi_{1}=a_{1} a_{33}+a_{3} a_{13}>0$

$$
\begin{aligned}
& \psi_{2}=a_{2} a_{44}+a_{4} a_{24}>0 \\
& \Psi_{3}=a_{33} a_{44}\left(a_{11} a_{22}+a_{12} a_{21}\right)>0
\end{aligned}
$$

## 4. Stability of the Host $\left(S_{3}\right)$ of the Prey $\left(S_{1}\right)$ Only is Washed out States

## (Sl. Nos. 2, 7, 9, 14 in the above table)

The equilibrium point $\bar{N}_{1}=0, \bar{N}_{2}=0, \bar{N}_{3}=0, \bar{N}_{4}=\frac{a_{4}}{a_{44}}$ (Sl. No. 2) was already discussed in the paper "On the Stability of a four Species: a Prey Predator-Host-Commensal-Syn Eco-System-II", and published in "International eJournal of Mathematics and Engineering." 5, (2010), 60-74. Also the equilibrium points $\bar{N}_{1}=0, \bar{N}_{2}=\frac{a_{2} a_{44}+a_{4} a_{24}}{a_{22} a_{44}}, \bar{N}_{3}=0, \bar{N}_{4}=\frac{a_{4}}{a_{44}}$ and $\bar{N}_{1}=\frac{a_{1}}{a_{11}}, \bar{N}_{2}=0, \bar{N}_{3}=0, \bar{N}_{4}=\frac{a_{4}}{a_{44}}$ (Sl. No.s 7 and 9) were discussed in the papers "On the Stability of a four Species: a Prey-Predator-Host-Commensal-Syn Eco-System-V and VI", communicated to "International eJournal of Mathematics and Engineering".

### 4.1 Equilibrium Point

$$
\bar{N}_{1}=\frac{\delta_{2}}{\delta_{1}}, \bar{N}_{2}=\frac{\delta_{3}}{\delta_{1}}, \bar{N}_{3}=0, \bar{N}_{4}=\frac{a_{4}}{a_{44}}
$$

where

$$
\begin{gather*}
\delta_{1}=a_{44}\left(a_{11} a_{22}+a_{12} a_{21}\right)>0  \tag{4.1.1}\\
\delta_{2}=a_{1} a_{22} a_{44}-a_{12}\left(a_{2} a_{44}+a_{4} a_{24}\right), \delta_{3}=a_{1} a_{21} a_{44}-a_{11}\left(a_{2} a_{44}+a_{4} a_{24}\right) \tag{4.1.2}
\end{gather*}
$$

Let us consider small deviations from the steady state

$$
\begin{equation*}
\text { i.e, } \quad N_{i}(t)=\bar{N}_{i}+u_{i}(t), \quad i=1,2,3,4 \tag{4.1.3}
\end{equation*}
$$

where $u_{i}(t)$ is a small perturabations in the species $S_{i}$.
Substituting (4.13) in (2.1), (2.2), (2.3) and neglecting products and higher power of $u_{1}, u_{2}, u_{3}, u_{4}$.

We get,

$$
\begin{align*}
& \frac{d u_{1}}{d t}=\phi_{1} u_{1}-\frac{a_{12} \delta_{2}}{\delta_{1}} u_{2}+\frac{a_{12} \delta_{12}}{\delta_{1}} u_{3}  \tag{4.1.4}\\
& \frac{d u_{2}}{d t}=\frac{a_{12} \delta_{3}}{\delta_{1}} u_{1}+\phi_{2} u_{2}+\frac{a_{24} \delta_{3}}{\delta_{1}} u_{4}  \tag{4.1.5}\\
& \frac{d u_{3}}{d t}=a_{3} u_{3}, \quad \frac{d u_{4}}{d t}=-a_{4} u_{4} \tag{4.1.6}
\end{align*}
$$

where

$$
\begin{equation*}
\phi_{1}=a_{1}-\frac{2 a_{11} \delta_{2}}{\delta_{1}}-\frac{a_{12} \delta_{3}}{\delta_{1}}, \quad \phi_{2}=a_{2}-\frac{2 a_{22} \delta_{3}}{\delta_{1}}+\frac{a_{21} \delta_{2}}{\delta_{1}}+\frac{a_{4} a_{24}}{a_{44}} . \tag{4.1.7}
\end{equation*}
$$

The characteristic equation for which is

$$
\begin{equation*}
\left[\lambda^{2}-\left(\phi_{1}+\phi_{2}\right) \lambda+\phi_{1} \phi_{2}-\frac{a_{12} a_{21} \delta_{2} \delta_{3}}{\delta_{1}}\right]\left(\lambda-a_{3}\right)\left(\lambda+a_{4}\right)=0 . \tag{4.1.8}
\end{equation*}
$$

One of the four roots $a_{3}$ is positive and $-a_{4}$ is negative. Hence the steady state is unstable.

Let $\lambda_{1}, \lambda_{2}$ be the zeros of the quadratic polynomial on the L.H.S. of the above equation (4.1.8).

Case (A): When the roots $\lambda_{1}$ and $\lambda_{2}$ have opposite signs.
The solutions of the equations (4.1.4), (4.1.5), (4.1.6) are:

$$
\begin{align*}
u_{1}= & {\left[\frac{a_{12} \delta_{2}\left(\beta-u_{20}\right)-\left(\alpha-u_{10}\right)\left(\phi_{1}-\lambda_{2}\right) \delta_{1}}{\delta_{1}\left(\lambda_{1}-\lambda_{2}\right)}\right] e^{\lambda_{1} t} } \\
& +\left[\frac{a_{12} \delta_{2}\left(\beta-u_{20}\right)-\left(\alpha-u_{10}\right)\left(\phi_{1}-\lambda_{1}\right) \delta_{1}}{\delta_{1}\left(\lambda_{2}-\lambda_{1}\right)}\right] e^{\lambda_{2} t}+A_{2} e^{a_{3} t}+B_{2} e^{-a_{4} t}  \tag{4.1.9}\\
u_{2}= & {\left[\frac{a_{12} \delta_{2}\left(\beta-u_{20}\right)-\left(\alpha-u_{10}\right)\left(\phi_{1}-\lambda_{2}\right) \delta_{1}}{a_{12} \delta_{2}\left(\lambda_{1}-\lambda_{2}\right)}\right]\left(\phi_{1}-\lambda_{1}\right) e^{\lambda_{1} t} } \\
& +\left[\frac{a_{12} \delta_{2}\left(\beta-u_{20}\right)-\left(\alpha-u_{10}\right)\left(\phi_{1}-\lambda_{1}\right) \delta_{1}}{a_{12} \delta_{2}\left(\lambda_{2}-\lambda_{1}\right)}\right]\left(\phi_{1}-\lambda_{2}\right) e^{\lambda_{2} t} \\
& +\left[\frac{A_{2} \delta_{1}\left(\phi_{1}-a_{3}\right)}{a_{12} \delta_{2}}+\frac{a_{13} u_{30}}{a_{12}}\right] e^{a_{3} t}+\frac{B_{2} \delta_{1}}{a_{12} \delta_{2}}\left(\phi_{1}+a_{4}\right) e^{-a_{4} t}  \tag{4.1.10}\\
u_{3}= & u_{30} e^{a_{3} t}, \quad u_{4}=u_{40} e^{-a_{4} t} \tag{4.1.11}
\end{align*}
$$

where

$$
\begin{align*}
& A_{1}=\frac{a_{12} \delta_{2} u_{30}}{\delta_{1}}\left(a_{3}-\phi_{2}\right), \quad B_{1}=\frac{a_{12} a_{24} \delta_{2} \delta_{3}}{\delta_{1}^{2}} u_{40}  \tag{4.1.12}\\
& \alpha=A_{2}+B_{2}, \quad \phi_{3}=\phi_{1} \phi_{2}+\frac{a_{12} a_{21} \delta_{2} \delta_{3}}{\delta_{1}^{2}}  \tag{4.1.13}\\
& \beta=\left[A_{2}\left(\phi_{1}-a_{3}\right)+B_{2}\left(\phi_{1}+a_{4}\right)+\frac{\delta_{13} \delta_{2}}{\delta_{1}} u_{30}\right] \frac{\delta_{1}}{a_{12} \delta_{2}}  \tag{4.1.14}\\
& A_{2}=\frac{A_{1}}{a_{3}^{2}-\left(\phi_{1}+\phi_{2}\right) a_{3}+\phi_{3}}, \quad B_{2}=\frac{B_{1}}{a_{4}^{2}+\left(\phi_{1}+\phi_{2}\right) a_{4}+\phi_{3}} \tag{4.1.15}
\end{align*}
$$

and $u_{10}, u_{20}, u_{30}, u_{40}$ are the initial values of $u_{1}, u_{2}, u_{3}, u_{4}$ respectively.
There would arise in all 576 cases depending upon the ordering the magnitudes of the growth rates $a_{1}, a_{2}, a_{3}, a_{4}$ and the initial values of the perturbations $u_{10}(t), u_{20}(t)$, $u_{30}(t), u_{40}(t)$ of the spaces $S_{1}, S_{2}, S_{3}, S_{4}$. Of these 576 situations some typical variations
are illustrated through respective solution curves that would facilitate to make some reasonable observations. And the solution curves are illustrated in the Figs. 2 to 5.

Case (i): If $u_{10}<u_{40}<u_{20}<u_{30}$ and $a_{2}<a_{1}<a_{4}<a_{3}$
In this case the Host $\left(S_{4}\right)$ of $S_{2}$ has the least natural birth rate. Initially it is dominated over by the Prey $\left(S_{1}\right)$ till the time instant $t_{14}^{*}$ and there after the dominance is reversed. Also the Predator $\left(S_{2}\right)$ dominates over the Prey $\left(S_{1}\right)$ till the time instant $t_{12}^{*}$ and the dominance gets reversed thereafter.

Case (ii): If $u_{20}<u_{30}<u_{40}<u_{10}$ and $a_{2}<a_{3}<a_{4}<a_{1}$
In this case the Host $\left(S_{4}\right)$ of $S_{1}$ has the least natural birth rate. Initially it is dominated over by the Host $\left(S_{3}\right)$ of $S_{1}$, Predator $\left(S_{2}\right)$ till the time instant $t_{34}^{*}, t_{24}^{*}$ respectively and there after the dominance is reversed.

Case (iii): If $u_{30}<u_{10}<u_{40}<u_{20}$ and $a_{4}<a_{2}<a_{1}<a_{3}$
In this case the Host $\left(S_{4}\right)$ of $S_{2}$ has the least natural birth rate. Initially it is dominated over by the Prey $\left(S_{1}\right)$, $\operatorname{Host}\left(S_{3}\right)$ of $S_{1}$ till the time instant $t_{14}^{*}, t_{34}^{*}$ respectively and thereafter the dominance is reversed. Also the Predator $\left(S_{2}\right)$ dominates over the Prey $\left(S_{1}\right)$, Host $\left(S_{3}\right)$ of $S_{1}$ till the time instant $t_{12}^{*}, t_{32}^{*}$ respectively and thereafter the dominance is reversed. Similarly the Prey $\left(S_{1}\right)$ dominates its Host $\left(S_{3}\right)$ till the time instant $t_{31}^{*}$ and the dominance gets reversed thereafter.

Case (iv): If $u_{40}<u_{30}<u_{20}<u_{10}$ and $a_{3}<a_{1}<a_{4}<a_{2}$
In this case the Host $\left(S_{4}\right)$ of $S_{2}$ has the least natural birth rate. Initially the Prey $\left(S_{1}\right)$ dominates over the Predator $\left(S_{3}\right)$ till the time instant $t_{21}^{*}$ and thereafter the dominance is reversed.

Case (B): When the roots $\lambda_{1}$ and $\lambda_{2}$ have same signs.
The solutions in this case are same as in Case (A) and the solution curves are illustrated in the Figs. 6 to 9.

Case (i): If $u_{10}<u_{20}<u_{30}<u_{40}$ and $a_{1}<a_{2}<a_{3}<a_{4}$
In this case the Host $\left(S_{4}\right)$ of $S_{2}$ has the least natural birth rate. Initially it is dominated over by the Predator $\left(S_{2}\right)$, Host $\left(S_{3}\right)$ of $S_{1}$, Prey $\left(S_{1}\right)$ till the time instant $t_{24}^{*} t_{14}^{*}, t_{34}^{*}$ respectively and thereafter the dominance is reversed. Also the Predator $\left(S_{2}\right)$ dominates over the Host $\left(S_{3}\right)$ of $S_{1}$ till the time instant $t_{32}^{*}$ and the dominance gets reversed thereafter.

Case (ii): If $u_{20}<u_{40}<u_{30}<u_{10}$ and $a_{3}<a_{4}<a_{1}<a_{2}$
In this case the Host $\left(S_{4}\right)$ of $S_{2}$ has the least natural birth rate. Initially it is dominated over by the Predator $\left(S_{2}\right)$ till the time instant $t_{24}^{*}$ and thereafter the dominance is reversed. Also the Prey $\left(S_{1}\right)$ and its Host $\left(S_{3}\right)$ dominates over the Predator $\left(S_{2}\right)$ till the time instant $t_{21}^{*}, t_{23}^{*}$ respectively and the dominance gets reversed thereafter.

Case (iii): If $u_{30}<u_{10}<u_{40}<u_{20}$ and $a_{2}<a_{3}<a_{4}<a_{1}$
In this case the Host $\left(S_{4}\right)$ of $S_{2}$ has the least natural birth rate. Initially it is dominated over by the Prey $\left(S_{1}\right)$, Host $\left(S_{3}\right)$ of $S_{1}$ till the time instant $t_{14}^{*}, t_{34}^{*}$ respectively and thereafter the dominance is reversed. Also the Predator $\left(S_{2}\right)$ dominates over the Prey $\left(S_{1}\right)$ and its Host $\left(S_{3}\right)$ till the time instant $t_{12}^{*}, t_{32}^{*}$ respectively and the dominance gets reversed thereafter.

Case (iv): If $u_{40}<u_{20}<u_{10}<u_{30}$ and $a_{2}<a_{1}<a_{3}<a_{4}$
In this case the Host $\left(S_{4}\right)$ of $S_{2}$ has the least natural birth rate and the Host of $S_{1}$ dominates the Prey $\left(S_{1}\right)$, Predator $\left(S_{2}\right)$, Host $\left(S_{4}\right)$ of $S_{2}$ in natural growth rate as well as in its population strength.

### 4.2 Trajectories



Figure 2


Figure 4


Figure 3


Figure 5


Figure 6


Figure 8


Figure 7


Figure 9

## References

[1] Archana Reddy R., "On the Stability of Some Mathematical Models in BioSciences Interacting Species", Ph.D.Thesis, J.N.T.U., (2010).
[2] Bhaskara Rama Sharma B., "Some Mathematical Models in Competitive Eco-Systems", Ph.D. Thesis, Dravidian University, (2010).
[3] Hari Prasad B., and Pattabhi Ramacharyulu N. Ch., "On the Stability of a Four Species: A Prey-Predator-Host-Commensal-Syn Eco-System-I" (Fully Washed out State), International eJournal of Mathematics and Engineering, 11, (2010), 122-132.
[4] Hari Prasad B., and Pattabhi Ramacharyulu N. Ch., "On the Stability of a Four Species: A Prey-Predator-Host-Commensal-Syn Eco-System-II" (Prey and Predator Washed out States), International eJournal of Mathematics and Engineering, 5, (2010), 60-74.
[5] Hari Prasad B, and Pattabhi Ramacharyulu N. Ch., "On the Stability of a Four Species: A Prey-Predator-Host-Commensal-Syn Eco-System-III" (Co-Existent State), International eJournal of Mathematics and Engineering, 16, (2010), 163-173.
[6] Kapur J. N., Mathematical Modelling in Biology and Medicine, Affiliated East West, (1985).
[7] Kapur J. N., Mathematical Modelling, Wiley Easter, (1985).
[8] Kushing J.M., Integro-Differential Equations and Delay Models in Population Dynamics, Lecture Notes in Bio-Mathematics, Springer Verlag, 20, (1977).
[9] Lakshmi Narayan K., A. Mathematical Study of a Prey-Predator Ecological Model with a Partial Cover for the Prey and Alternate Food for the Predator, Ph.D. Thesis, J.N.T.U., (2005).
[10] Lakshmi Narayan K., and Pattabhiramacharyulu N. Ch., "A Prey-Predator Model with Cover for Prey and Alternate Food for the Predator and Time Delay," International Journal of Scientific Computing, 1, (2007), 7-14.
[11] Lotka A. J., Elements of Physical Biology, Williams \& Wilking, Baltimore, (1925).
[12] Meyer W. J., Concepts of Mathematical Modeling, Mc. Grawhill, (1985).
[13] Phani Kumar, Seshagiri Rao, and Pattabhi Ramacharyulu N. Ch., "On the Stability of a Host - A Flourishing Commensal Species Pair with Limited Resources", International Journal of Logic Based Intelligent Systems, 3(1), January-June 2009.
[14] Srinivas N. C., "Some Mathematical Aspects of Modeling in Bio-Medical Sciences" Ph.D Thesis, Kakatiya University, (1991).
[15] Volterra V., Leconssen La Theorie Mathematique De La Leitte Pou Lavie, Gauthier-Villars, Paris, (1931).

## B. Hari Prasad

Dept. of Mathematics,
Chaitanya Degree College,
Hanamkonda-506 001, India.
E-mail: sumathi_prasad73@yahoo.com

## N. Ch. Pattabhi Ramacharyulu

Former Faculty, Dept. of Mathematics, NIT Warangal-506004, India.

