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Abstract: Controller Area Network (CAN) protocol uses cyclic redundancy check (CRC) code for error detections.

The main objective of this paper is to use an alternative error detection scheme with error correction implementation

called the enhanced error-detection correction code for CAN controller unit. It also aims to reduce the fixed number

of required redundancy bits r in CRC due to the required polynomial generator and to possibly increase the CAN’s

frame rate. The proposed algorithm will position the computed r right after the input bits, instead of placing it in the

power of 2 bit position similar to in Hamming code method. This enhanced error-detection correction code eliminates

the overhead of interspersing of the required r. The experimental results were synthesized using Xilinx Virtex 5

FPGA and showed a gain in CAN’s frame rate. The results also minimized both the overhead payload of interspersing

the computed r and the required bit stuff. It also revealed an increase in the detection of random errors. Therefore, this

proposed algorithm can be a better option for error detection and correction.
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1. INTRODUCTION

Several factors affect the transmission delay of any data system. Equation 1 shows these factors for the time to

propagate the signal across the medium t
prop

. The total number of bits in message as L, the speed of the digital

transmission system R and measured in bps, d and c are the distance measured in meters and speed of light,

respectively.

 prop

L d L
Delay t seconds

R c R
    (1)

Likewise, there are also several techniques that can be done to reduce this propagation delay, such as data

compression that reduce L [1–5] and the usage of higher speed modulation-demodulation to increase R [6].
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Some techniques used to compress the bit representations of similar symbols or any messages consist of sequence

of equivalent symbols and require a fewer bits. Doing these algorithms require a preservation of all the original

information while the compression should be lossless or reversible. Moreover, an error-free channel is required

when data compression is used.

The above equation also affects the Controller Area Network (CAN) transmission rate because it uses

cyclic redundancy checking (CRC) code [7]. CRC code implementation has a fixed number of required redundancy

bits r because of the assigned polynomial generator causing reduction of the transmission rate. A high fault

tolerance is required in real time applications of CAN. A demand in high rate proportionally deals with complexity

particularly in automotive industry, such as the Advanced Driver Assistance Systems (ADAS) that is designed

for road traffic safety to reduce the fatalities in road accidents. Therefore, reducing the total transmitted bits can

lead to a higher transmission rate and minimal occurrences of errors or corrupted bits.

Furthermore, a good error detection and correction scheme is required to secure a good error detection and

correction method, which CRC does not have because it only implements automatic repeat request (ARQ) [8]

when a data mismatch occurs during the detection process. A system without an error correction mechanism

cannot fit into an efficient system. Remarkable codes with error correction implementation like the Hamming

code exists [9]; however, the overhead payload of interspersing the computed r is used in Hamming code because

the bit position follows the power of two-bit system (20, 21, 22…).

Aside from CRC code limitation, CAN system itself has some disadvantages, particularly the limitation in

network length that follows the theory in (1), which is around 120 feet at 1-Mbps baud rate. Table 1 shows the

relationship between baud rates and CAN network lengths. The increase of data frame also contributes in the

decrease of the CAN’s frame rate [10].

Table 1

Baud rate vs. CAN network length

Baud Rate Bit Time Maximum Bus Length

1 Mbps 1 sec 25 m

800 kbps 1.25 sec 50 m

500 kbps 2 sec 100 m

250 kbps 4 sec 250 m

125 kbps 8 sec 500 m

50 kbps 20 sec 1 km

20 kbps 50 sec 2.5 km

10 kbps 100 sec 5 km

Embedding the proposed algorithm for CAN controller system inside an FPGA also has many advantages,

such as 100% embedded capability without any required external component. Similarly, this proposal also

represents an advancement in the state of the art related to the application of FPGAs in vehicular systems. It

further improves power consumption and savings in other factors, such as size and weight. Moreover, FPGAs

enable systems to be built with guaranteed deterministic results, which is particularly significant for safety –

critical in-vehicle systems, where reliability is primarily important.

The rest of this paper is organized as follows. Section II gives a brief introduction of CAN protocol and its

error management methods described in the literature and the related work in this area and it covers the CRC and

Hamming code implementations. Section III describes the proposed algorithm as an alternative error detection-

correction code and its implementations. Section IV shows the experimental results and interpretation, and

Section V discusses the conclusion of the study.
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2. CAN PROTOCOL AND RELATED WORK

2.1. CAN Protocol

CAN is a serial communications bus used in various industrial applications. It is a multimaster message broadcast

system that specifies a maximum signaling rate of 1 Mbps. The CAN bus specification calls for high immunity

to electrical interference and ability to self-diagnose for data errors. This communication protocol is a carrier

sense multiple access (CSMA) protocol with collision detection and arbitration on message priority. CSMA

causes each node on a bus to wait for a prescribed period of inactivity before attempting to send a message. It

helps avoid collisions through a bit-wise arbitration based on a preprogrammed priority of each message in the

identifier field of a message. The higher priority identifier always wins bus access. The standard CAN frame, as

seen in Fig. 1, shows the standard 11-bit identifier that provides the signaling rates from 125 kbps to 1 Mbps.

Figure 1: Standard CAN Data Frame (2.0 A Frame)

2.2. CAN Error Management

Error management in the CAN protocol plays an important part in evaluating the performance of the CAN bus.

Every node connected to CAN bus has the capability of detecting an error within the frame. The node that detected

the error raises an error flag, halting the transmission on the bus [7]. When a corruption is detected, it immediately

signal for retransmission automatically, and based according to priority. Five error detection techniques for error

detection are defined in CAN protocol. Below are the different mechanisms used by CAN [11].

A. Bit Monitoring

This transmitting unit monitors the CAN bus and detects an error. Whenever the bit level actually read differs

from the transmitted bit, a bit error is signaled.

B. Bit Stuffing

Whenever a CAN transmitter detects five consecutive identical bits in the bit stream, it automatically inserts a

complementary bit at the sixth bit position before the bit stream is transmitted. The receivers will remove this

extra bit, and if more than five consecutive bits of the same level occurs on the bus, a Stuff Error is signaled.

C. Frame Check

Some parts of the CAN message have a fixed format, such as the CRC Delimiter, ACK Delimiter, End of Frame

(EOF), and interframe space (IFS) bits. These frames follow special error checking rules. If a CAN controller

detects an invalid value in one of these fixed fields, a Form Error is signaled.
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D. Acknowledgment Check

An acknowledgment error error is detected by a transmitter whenever it does not monitor a dominant (logic 0)

bit at the Acknowledge Slot [12]. If this bit is recessive (logic 1), it means that none of the nodes received the

message properly. Then, an Acknowledgement Error is signaled.

E. Cyclic Redundancy Check

This 15-bit CRC segment in a data or remote frame contains the frame check sequence from start of frame SOF

to data field [13]. A CRC error is detected if the result is not the same CRC sequence. This group of bits or

remainder is called a syndrome [14].

2.3. CRC and Hamming Code Implementation

A. CRC Code

As shown in Fig. 1, the CRC sequence frame occupies fixed 15 bits because of the required polynomial generator.

Minimizing this CRC frame might help to increase the transmission rate. CRC code is an example of a polynomial

code referring to the corresponding polynomial of a codeword [15]; thus, the CRC generator used in CAN is

CRC-15 with a generating polynomial of X15 + X14 + X10 + X8 + X7 + X4 + X3 + 1. The idea is to represent every

codeword C(x) = C
n-1

C
n-2

…C
0
 as a polynomial of degree n-1. That is, we write

 
1

0

n
i

i

i

C x C x




 (2)

The encoding process is to construct a message polynomial m(x) from a given message using the same

method as Eq. (2) to ensure that every valid polynomial code is a multiple of a polynomial generator g(x).

   
 

 

n k

n k
x m x

C x x m x R
g x




  

   
  

(3)

Equation (3) shows the straightforward construction of CRC. Taking the input message, assemble the

m(x). Next, multiply by xn-k, and finally, divide by g(x). The remainder R forms the check bits, acting as the

digest for the entire message, and will be appended to the message. The decoding process is identical to the

encoding step, it separates each word received into the message and the remainder portion, and then verifies

Figure 2: (a) A correct DLC with proper CRC field location.

(b) A corrupted DLC will lead to an incorrect position for CRC field.
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whether the calculated remainder from the message matches the sent bits. A mismatch means that an error has

occurred and the receiver will request for retransmission (ARQ) of message [8].Furthermore, CAN does not

protect length field. A corrupted data length code (DLC) field will point to a wrong location for CRC or give a

different result for CRC syndrome. Figures 2(a) and (b) shows the difference of having a correct DLC field to a

corrupted one.

Although this polynomial code is the basis for powerful error-correction methods and simple implementation

of binary hardware, it is not suitable for protecting against intentional alteration of data. An overflow of data is

also possible to occur in CRC because of its fixed number of check bits. Based on the nth degree of the generator

polynomial required to be attached during transmission, it reduces the transmission rate of the network.

Additionally, CRC arithmetic performs XOR operation in specific values and uses shifting technique called

linear feedback shift registers (LFSR) and serial transmission mode [16] that causes a slow throughput of the

system. Moreover, CRC codes do not implement correction, it only enforces retransmission whenever an error

is detected. Without the error correction mechanism, it is not recommended for an efficient system. Therefore,

replacing this fixed 15-CRC bits by a shorter bit length of any alternative error detection method can increase

the frame rate of CAN communication.

2.4. Hamming Code

This is a class of error-correcting and linear block codes used to detect and correct error bits that occur during

transmission. It can also detect up to two simultaneous error bits and correct single error bit [17]. In Hamming

code, the redundancy bit r ora parity bit is added to an n-bit data word (D), forming a new word of D + r bits. It

is described by an ordered set (D + r, D). The redundancy bit matrix can be expressed as:

[R] = [D] . [G] (4)

where [D] is the data matrix and [G] is the generator matrix, which is composed of an identity matrix [ I] and a

creation matrix [C].

[G] = [I : C] (5)

The minimum number of r required for a single bit error correction is derived from the following inequality:

2r  D + r + 1 (6)

These redundancy bits are to be distributed at bit positions of power of 2 with the original data bits. Next,

all other bit positions are assigned for the data to be encoded (for example, 3, 5, 6, 7, 9, 11, 13, 14, 15, 17, etc.).

As a result, there is an increase in overhead because of interspersing the redundancy bits both for the transmitter

and receiver parts.

To detect errors, the codeword vector multiplies with the transpose of the generator matrix to produce an 8-

bit vector [S], known as the syndrome vector.

[S] = [D, R] . [G’] (7)

If all of the elements of the syndrome vector are zeros, no error is reported. Any other non-zero result

represents the bit error type and provides the location of any single bit error. It is then used to correct the original

incoming data.

Hamming code is also effective on networks where the data streams are prone to single-bit errors as one of

its advantages. However, if multiple errors occur, the errors can be detected but the resultant could cause another

bit that is correct to be changed, causing the data to occur another error. Moreover, the redundancy bits are

needed to be interspersed at power of 2 bit positions with the original data bits, which causes an overhead

payload.
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3. PROPOSED ALGORITHM

3.1. Enhanced-Error Detection-Correction (EEDC) codes

The proposed algorithm is a modified version of the conventional Hamming code. Each valid codeword of C

bits contains the valid input data bits D
i
. In any valid D

i 
entity, there are C bits that can be changed to give an

invalid codeword. Thus, the total number of codewords corresponding to a valid data entity is C + 1. As there are

2Di valid data patterns, the total number of codewords is (C + 1)2Di
.
 In D

i
 bit codewords, the possible number of

patterns is 2C, which limits the number of valid plus invalid codes that can exist. Thus,

(C + 1)2Di  2C (8)

and it can be written by

C = D
i
 + r (9)

and

(D
i
 + r + 1)2Di  2Di+r (10)

so that the total number of the required redundancy bits should satisfy the given condition of the inequality below

(D
i 
+ r + 1)  2r (11)

Both the data information D
i 
and the required r will be constructed into a polynomial form with a degree of

n-1, such as

 
1

0

n
i

i

i

D x D x




 (12)

and

 
1

0

n
i

i

i

r x r x




 (13)

Then, the degree of polynomial D(x) will increase with the nth value of r, such that

G(x) = D(x) . Xn (14)

Thus, to complete the form of EEDC codes, it follows Eq. (15).

EEDC codes = G(x)+ r(x) (15)

Let us consider using this proposed EEDC codes in a 7-bit data information 1001110. Its polynomial form

is X6 + X3 + X2 + X. Therefore, the least number of r to satisfy the above inequality of (8) is 4. Its polynomial

form is r
3
X3 + r

2
X2 + r

1
X + r

0
, while the polynomial in (11), G(x), is X10 + X7 + X5 + X4.

Next, identify the appropriate bit of the redundancy bits. Considering the above example,  r
3
, r

2
, r

1
, and r

0
are

in positions 8, 9, 10 and 11, respectively. Below are the solutions in identifying the values of these redundancy bits.

The check bits in position 8 are 1, 3, 5 and 7 positions. Even parity, so r
3
 is set to 0.

The check bits in position 9 are 2, 3, 6, and 7 positions. Odd parity, so r
2
 is set to 1.

The check bits in position 10 are 4, 5, 6, and 7 positions. Odd parity, so r
1
 is set to 1.

The check bits in position 11 occurs only on the redundancy bits r
3
, r

2
, and r

1
. Even parity, so r

0
 is set to 0.

Therefore, the EEDC codes for this 11-bit data to be transmitted as X10 + X7 + X5 + X4 +X2 + Xin polynomial

form is equivalent to  1001110r
3
r

2
r

1
r

0
, where the bit values of r

3
, r

2
, r

1
, and r

0
 are 0110respectively. The required

redundancy bits are to be appended at bit positions 8, 9, 10, and 11. Thus, the 11-bit data to be transmitted will

be 10011100110.
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4. EXPERIMENTAL RESULTS

To validate our designed algorithm and to measure the actual performance on hardware, we implemented the

design in a low-power Xilinx Virtex5 FPGA by using Xilinx ISE. We chose the Spartan 6 because it is a low-cost

and low-power device, which would be a likely choice for an automotive implementation.

To test the network aspects, we emulated a CAN bus in the FPGA using captured raw bus transactions from

a real CAN network communicating using a predefined CAN information. These information are stored in

onboard memory. The tested information is replayed to create an accurate transactions on the bus. The modified

communication controller is tested into the CAN bus and configured with the same CAN parameters.

Table 2 shows the comparison results of the simulated transmission rate between CRC, Hamming codes and the

proposed EEDC in an 8-bit to 8-byte data. It was tested into three implementations to verify which appropriate error

detection-correction codes will give higher data rate. It shows that the transmission rate of the proposed implementation

is faster as compared to CRC and Hamming codes. Moreover, the designed hardware was subjected to a random input

data to analyze the results where the codes will detect more corrupted information. Figure 3 shows the error detection

performance of this proposed algorithm is better to compare with CRC and Hamming codes.

Table 2

Data rate comparison between CRC, Hamming and the proposed EEDC codes.

Data rate(bits per second)

Transmitted data(bytes) CRC Hamming code EEDC

1 16,640 19,600 21,040

2 14,280 16,392 20,032

3 12,656 14,280 15,648

4 11,232 12,496 12,800

5 10,200 11,104 11,376

6 9,256 10,000 11,184

7 8,472 9,088 10,752

8 7,872 8,400 8,952

Figure 3: Error detection performance of CRC, Hamming and EEDC codes.
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5. CONCLUSION

The proposed enhanced error correction and detection (EEDC) codes can be used as an alternative error detection

and correction scheme for CAN protocol. The authors designed a customized CAN controller that takes advantage

of the heterogeneous resources on modern FPGAs, resulting to  less logic requirements and low power

consumption. The experimental results showed that the objectives met its target of faster transmission rate when

compared with the implementation of CRC because of the fixed data frame of the required polynomial generator

and prevention of the overhead payload that exists in the conventional Hamming codes. Moreover, the study

showed that the error detection performance is more efficient.

The authors plan to develop a more flexible CAN controller that are more prone to noise and errors. It

should also allow the authors to investigate more advanced error detection and codes that are appropriate for

CAN implementation.
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