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1.INTRODUCTION

Consider the the following nonlinear implicit fractional differential equation of
the form:

D> x(f) = f{t, x(£), D* x(£)), 0 <t<b, (1.1)
D' x(t) |,_ = x, (1.2)

where 0 < a < 1, the unknown x(-) takes values in the real space R; f: € C((0, b] x
R xR, R), and and x, is a given element of R. The operator D* denotes the Riemann-
Liouville fractional derivative operator.

Fractional differential equations arise in variety of applications and their study
is of great interest. Several authors have studied the equations (1.1) in different
forms of non-integer differential equations and their special versions with different
view point, see [3, 7, 11, 12, 15, 17, 18, 26, 27, 28] and the reference are given
therein. Theory of fractional differential equations has been extensively studied in
recent years, refer the monographs of Abbas et al. [1, 2], Das [6], Kai Diethelm
[8], Kilbas et al. [16], Miller and Ross [19], Podlubny 1. [23], and Sabatier et al.
[24].
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The purpose of the present paper is to study the existence, uniqueness and
continuous dependence of solutions to the initial value problem (1.1)-(1.2). The
main tools employed in the analysis are based on the applications of the successive
approximations approach, the integral inequality and the Banach fixed point
theorem.

Furthermore, our aim is to generalize the some results presented by [4, 5, 22,
23, 25]. Also we extends the results studied for fractional differential equations
with Liouville-Caputo derivative by [13, 14, 20] to an implicit nonlinear equations
with Riemann-Liouville derivative.

The paper is organized as follows. In Section 2, we present the preliminaries.
Section 3 deal with the our main result and the qualitative properties of solutions
via successive approximations approach. Section 4 concern uniqueness of solution
and the properties of solutions via integral inequality. In section 5, we will prove
the existence and uniqueness of solution by fixe point theorem.

2. PRELIMINARIESAND HYPOTHESES

We shall setforth some preliminaries that will be used in our subsequent discussion.

Definition 2.1 A real function f(t),t>0, is said to be in the space C,ueR if
there exists a real number p > u, such that f{t) =’ g(t), where g(t) € C[0, «), and
it is said to be in the space C " if and only iffw e C,neN

Définition 2.2 4 function f € C,u=~1is said to be Riemann-Liouville fractional
integrable of order a € R* if

t (t—s)*1

1 = f; S

where T is the Euler gamma function and if o = 0, then ° f{¢) = f(¢).

f(s)ds < oo,

Definition 2.3 The fractional derivative in the Caputo sense is defined as

daf(t) _ n—-a dnf(t) _ 1 t _ n-a—-1¢m)
at® =1 ( den )_ [(n—-a) fO (t S) f (S)dS

forn-1<a<nneN,t>0andfeC".

Definition 2.4 A two-parameter function of the Mittag-Leffler type is defined
by the series expansion

Exu(®) = I rz > 01t > 0).

The following generalized singular integral inequality established by Hiping
Ye, Jianming Gao and Yongsheng Ding [9] is crucial in the proof of our results.
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Lemma 2.5 Suppose 8> 0, a(t) is be continuous function locally integrable
on 0<t<T (someT< ) and g(t) is a nonnegative, nondecreasing continuous
function defined on 0 <t < T, g(t) <M (constant), and suppose u(t) is nonnegative
and locally integrable on 0 <t < T with

u() < a(®) +g(®) [, (t—s)Pu(s)ds, te[o,T].

Then

t o INCDK _
u(®) <a(t) + f X0, %(t — §)"1g(s)]ds, 0 <t <T.

Lemma 2.6 Let a, B € [0, ©). Then

[ -1 _ —1 T@re)
fo 5@ 1(t _ S)ﬂ 1 ta+B 1 R
3. RESULTSVIA SUCCESSIVE APPROXIMATIONS

Let us suppose that f{¢,x,y) is defined in a domain D of a space (¢, x, y), and define
a region R(4, K) c D as a set of points (¢, x, y) € D, which satisfy the following
inequalities:

R(RLK):{0 <t <h, |t17%(t)— %| <K, y€eR]} (3.1)

where A and K are constants.

3.1. Existence and Uniqueness of Solution:

The following main result deals with existence and uniqueness of the solution for
the problem (1.1)-(1.2) by the ideas of successive approximations.

Theorem 3.1 Let f{t, x, y) be a real-valued continuous function, defined in the
domain D, satisfying in D the condition:

(H)) There exists peC([0, b], R,) and L € (0,1) such that
It x,y) = f(t.%%)| < p(D)|x — x| + Ly = yI.

(H2) max__, f(t, x,y) <M <oo, for all (¢, x, y) € D.

Let also

Mh
~ ra+a)’

Then the initial value problem (1.1)-(1.2) has a unique and continuous solution
on (0, A].
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Proof. Following the fractional calculus and results proved in, one can say
that the equation

X(0) = 22t b oL [ (- ) (5, x(5), DU(s)ds (32)

is equivalent to the initial value problem (1.1)-(1.2).

The method of proof of this theorem is based on the ideas due to M. A. Al-
Bassam [4], E. Pitcher and W. E. Sewell [22] and 1. Podlubny [23].

Now we are set to define certain approximation to a solution of (1.1)-(1.2).
First of all we stat with an approximation to a solution and improve it by iteration.
It is expected that these iterations converge to a solution of (1.1)-(1.2) in the
limit. The importance of equation (3.2) now springs up. In this connection, we
mention that the estimates can be handled easily with integrals rather that
derivatives.

A rough approximation to a solution of (1.1)-(1.2) is just given condition:

xot@ 1

%o(t) =5 (3.3)

We may get a better approximation by substituting x, (¢) in the right of sides of
(3.2), thus obtaining a new approximation x, (¢) give by

X1 (8) = %o(0) + 1 fy (=) (5,%0(5), D%o())ds.  (3.4)

To get a still better approximation we repeat the process thereby defining
1t -
x,(6) = X0(6) + 55 fy (€= DT (5,201(), D1 ()ds. (3.5)

In general,

10 (8) = X0(6) + 1 fy (= )T (5,%0-1(5), DXy ())ds, m =12, (3.6)

We will show that lim _ ) x (7) exists and gives the desired solution x(7) of the
equation (3.2) on (0, 4].

First, it can be shown by induction that for 0 <7 <&, we have x _(¢) € R(h, K)
for all n. Indeed,

1-a _ %o Mh
£ %xn (0) F(a)lSF(1+a)

<K, foralln=12,- (3.7)

Then for n = 1 and using hypothesis (#7,), we have
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1:1 et -
|17 % (1) — _F(oc) STw Jo =) THf(s,x0(5), D¥xo(s))|ds
t _
S M [, (t—s)*"ds

tl—L‘( t-(X

~T@
Mt

tl—rx

- r(1+a) (3-8)
Mh
= r(1+a)

< K.

This proves (3.7) is true for n = 1. Now we assume that for n = m, x_(7) is
defined on 0 < 7 < £ satisfies the (3.7). Therefore x | is defined on 0 <7</ and
from (3.6), we obtain

|2 X1 (0) — @ —%f (t = TS (s, Xm(5), D % (5)) | ds

SN [ (- 5)%1ds
~ T(a) 0
tl—a ta

= I'(a)
i (3.9)

= (1+a)
Mh
— Ir(i+a)

<K.

Thus x _ satisfies (3.7).

Further, it can be shown by induction that for all »
P n—1 (ta’)n
X0 (O) = X1 | S MG vy (Ostsh) (3.10)

r(i+ne)’

In fact, using (3.6) and (#,), for n = 1, we have

%1 () = xo| < F(a)f( — $)*Hf (s, x0(5), D¥xo(s))ds

na-1
F(a)f (t —s)* ds
_ M
“T@ « (3.11)
Mt*
= m, (O <t< h)

Also for n = 2, using (3.6) and (H,), we observe that
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|x2(2) = x1(8)] < Tla)fot (& = )M f (5, %1(5), D¥x,(5)) — f(5,20(5), D¥x0(5))|ds
<l €= 9" PO)Ix1(8) = xo(5)| + LID“ (x1 (5) = xo(s))1ds.
(3.12)
But by hypothesis (H)), for any ¢ € [0, h] and x, (¢), x, (t) € R(h, K), we have

ID* (1 (8) = %0 ()] = |f (£, %1 (£), D¥x1(£)) = f (£, %0 (£), D¥x0(1))]
< [p(®O1x1(8) = x0(O)] + LD (x1(£) = x0(D))]].

This implies

ID%(x, (£) — %0(8))] < 22, (£) — %0 (2)). (3.13)

1-L

Using (3.13) in (3.12) and recall (3.11), we get

[x,(t) —x1(®)| < %fot (t— s)a-l[p(s)|x1(s) —x0(8)| + L%PQ(S) — xo(s)]]ds
- ﬁfor (t- s)a_l[%“?ﬁ(s) —xo(s)|ds
<t G o (€= x(s) = xo(s)lds

B R
= (@) Gy fo (t=s) Tra 25
1

— B N L

_MF(1+0¢) I'(a) (1—L) fO (t—5)*s%s
1 L(L) T(QT(1+) |, 2¢

ri+a)'(a) "1-L° T'(1+2a)

— v Py _9?
- M(l—L) r(+2a)

(3.14)

where P = max{p(¢): t € [0, b]}. This proves the result in (3.10) is true for n = 2.
Let us assume that this result holds for n = n—1, 1.e.

(ta)n—l
r+m-1a)’

X1 (6) = Xnoz| < MG ©<t<h) (19

Then using (3.6), (H,) and (3.15), we have
1 t
1% (8) = Xp—1 (D] < mfo (t = ) f (5, %n-1(8), D¥xp—1(5)) = f (S, Xp—2(5), Dxn_2(s))|ds

< s fy (€= ) PONn-1(5) = Xn2(S)] + LID* (o 1(5) = Xn2())]ds
<ty €= P()n-1(5) = Xz ()] + L2 x4 (5) = Xn—o(5) 1ds
= ﬁfot (t = ) D x4 (5) — X2 (5)]ds

< G I €= 9 s (5) — T (s
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(Sa)n—l
T(+(n-1)a)
(;%L)n—l J‘Ot (t _ S)a—ls(n—l)ads

Pyt~ oyatpyPoyn-2
<Gy €= MED)
1 1

=M r(1+(n—-1)a) ['(a)

1 1 i n—1 T@r+(n-1)a) , no
r(1+m-1)a) I'(a) (1—L) I(1+na) t (3' 16)
= M(E)nt (Gl
1-L r(1+na)’

This means that the result in (3.10) is true for all .

Now let us consider the series
Lim [x, () — x0(6)] = Yier [x(®) — x-1(D)]- (3.17)

According to the estimate (3.10), for 0 < ¢ < h, the absolute value of terms of
the series (3.10) are less than the corresponding terms of the convergent numeric
series

P i P i i
G/ T M e W ma-l P oy
F(1+ja) ﬁzf:l r(i+je) P [Eea(Gh") — 1], (3.18)

MY5%,

where E is the Mittag-Leffler function. This shows that the series converges
uniformly and absolutely on the interval 0 < ¢ < A. Obviously, each term [x; (¢) —
X, (#)] of the series is a continuous function of t for 0 < ¢ < 4. Therefore, the sum
of the series x" (¢), is a continuous function for 0 < ¢ < /4, and hence we have

x(®) = Jimx, () = %o(0) +x°(0),

1s a continuous function for 0 <¢< 7

We now show that the limit function x(¢) satisfies the fractional integral (3.2).
By the definition of successive approximations

X (£) = %0(8) + 15 fy (€= YT (5,215, DX s (5))ds. (3.19)

In view of (3.19), we have

() = 20(6) = J; (£ = )" (5,x(s), D"x(s)) s
= 2(0) = xa(0) + 15 Jy (€= )T F (5 Xn1 (), D Xna (5))dls
~Jy (E= )£ (s,x(s), D*x(s))ds]
< x(8) = 2 (O + 5 fy (€= )M, 20-1(8), D1 (5)) = £ (5, %(), Dx(s)lds
t

< |x() =50 (O] + 15 fy (€ = ) Do () = x(9)]ds
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= 1x(0) = (O + G i do €= 9 tnoa(8) = x(s)lds
< 12(0) = %0 (O] + () 1y 3% X (O = x (O] fy (¢ = )% 2ds

I'(a) 0<t h

= |x(®) — % (O] + (ﬁ)%o ax |xn—1(t) — x(t)l "

< [x () — xp (O] + (ﬁ) ax [xn_1 (£) — x()[h*. (3.20)

l"(1+£¥) 02teh

The uniform convergence of x_ to x(f) now implies that the right hand side of
(3.20) tend to zero as n — oo. But the left side of (3.20) is independent of n. Thus
x(?) satisfies the fractional integral equation (3.2). This proves the existence of
solutionin 0 < ¢ < h.

Let us now prove that if x(¢) and x(¢) are any two solutions of the problem
(1.1)-(1.2), then they coincide on 0 < ¢ < h. Therefore, x(t) and x(¢) as solution we
have

thu

X(6) = 2 4 o [ (£ = ) f (5, x(5), DUx())ds,  (3.21)

and

Xot%~

R(t) = 20+ [ (6= ) (5, F (), DUR(N)s, 0 < t < ). (3.22)

We shall now prove by mathematical induction that

|x(t) = xn (O] = (ﬁ)" thm =12, (3.23)

F(1+na)

Since x(f) € R(h, K), we have [x(¢) — x, (£)| <K for 0 <¢<h. Then for n=1, we
have

HOREAGIE ﬁf ) (6= ) f (5, %(5), DUR()) = (5, %0(), Do (s))lds
< F(a)f (¢ =) GIT(S) = xo(s)]ds
%(—)f (t —s)*Kds
F(a) (—)f (t—s)*"ds

IA

m(ﬁ p,

_ Kt® (P
T r(i+a) “1-L

), (3.24)
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which is (3.23) for n = 1. We assume it is true for n = n—1 and prove it for exactly
n. Then for n = n—1, we have

— P _ K -
[X(@) = Xp-1 (O] = D" 1mf(” e, (3.25)

Hence we have for exactly n

[x(€) — % (O] < %f; (t = $)*7Hf (s, %(s), D¥x(5)) — f (5, Xn-1(5), D Xp—1.(5))|ds

Lot e a1 P Nizrey —
< g do E= D THEDIEES) — xnoa(9)lds
L i t — a—-1 in—1 K (n—i)a
< te @ Jo €= rroeos S ds
-1 K Pynrlt_ ye-l(n-Da
_I"(a)r‘(1+(n71)a)(1 p fo (t=s)*"s ds
p a\n
(=t

r(1+na)’

(3.26)

Thus by induction the inequality (3.23) holds for all # on (0, 4]. In the right
hand side, we recognize-up to the constant multiplier K-the general term of the

series for the Mittag-Leffler function Ea,1(ﬁ t*)", and therefore for all ¢

lim (—t%)" = 0. (3.27)

n-ooo 1—L

Taking the limit of (3.23) or (3.26) asn — o, we have
x(t) = limx,(t), (0<t<h). (3.28)
n—oo

But recall that lim,,_, x,(t) = x(¢t), (0 <t < h). Thus x(t) = x(t), (0<t<h).
This proves the uniqueness of the solution of the problem (1.1)-(1.2), which
completing the proof of the theorem.

3.2.Dependence on Initial Conditions

In this section, we study the continuous dependence of solutions of the initial value
problem (1.1)-(1.2). For this we consider the changes in the solutions which are
caused by small changes in the conditions (1.2):

D x(t)] =0 = X0 + 6, (3.29)
where § is arbitrary constant.

The following theorem is a generalization of M. A. Al-Bassam and 1. Podlubny
results and deals with the continuous dependence of solutions of equation (1.1) on
given initial conditions.
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Theorem 3.2 Let the assumptions of Theorem 3.1 hold. If x(t) is a solution of
the equation (1.1) satisfying the initial condition (1.2), and x(t) is a solution of the
same equation satisfying the initial condition (3.29), then for 0 <t <h the following
holds:

x(©) = X(O)] < 1816 Eqa Gt (3.30)

Proof. In accordance with Theorem 3.1, we have

x(t) = limx, (1), (3.31)
x ta—l
X (8) =~ (3.32)
10 (8) = Xo(6) + 1 fy (&= ) (5, %0-1(5), DXy ()ls, 1 =,1,2,..(3.33)
and

x(t) = limx, (t), (3.34)

— (xg+8)te1
Xo() == (3.35)

Xn(t) = Xo(t) + %fot (t — )L (5, %no1(5), D% pr (s))ds, n=,1,2,..
(3.36)
From (3.32) and (3.35), it directly follows that

Xota_l _ (XO+§)ta_1
I'(a) I'(a)

a—1

lxg(t) — X (D)| < |

< @ |xg — x0 — O] (3.37)

|5|ta—1
M@

Using subsequently the relationships (3.33) and (3.36), hypothesis (/,), the
inequality (3.37), and the rule for the Riemann-Liouville fractional differentiation
of the power function, we obtain

a(0) = B (0] < 254 2 = )5 (50 ) Dra(5)) — (5, To(5), DUFo(s)) s
< B [ (= 9% (e (s) ~ Fo(9)lds

|5\ta_1 |é~|sa—1

I | i
S I'(a) +I‘(a)f0 (t S) (1—L) I'(a) ds
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< G (e
_ |5]£a1 (_) |§|t2a-1
T(a) F(Za) (338)
6 a—-1 ( L) tla
=181t X O r((+nay
Similarly, we have
() = (0] < X L (- )@ () (5) — Fo () dls
2 2 = T F(oz) 1-1/ 171 1
P
|81e* a-1, P a-1y1 Gt
= I'(a) F(Ol)f (t ) (1—L)[|5|S Zj:o I‘((j+1)a)]ds
|5)t*t L |51 “1.a-1
= I'(a) 1 L l"(a)2f ( S)a s ds
L 2 18] a—l 2a-1
+(1 L [‘(a)F(Za)f (t S) ds
_ st |5]t2 2 8[e3*t
T I (1 L) I‘(Za) +( ) rGa)
plee-t 32y =
= 19] J=0 r(j+1)ay
(3.39)
and by induction
a1 P )'tfa
|xn(t) — Xn(t)l < |5|t Z] 0 m n=12,-- (340)
Taking the limit of (3.40) as n — oo, we obtain
x(t) — E(O)] < 8]0 5, T
x(t) — x ALt
j=0
F((1+1)a) (3.41)

= |5|ta_1Ea,a(E ta)

which ends the proof of Theorem 3.2.

Remark 3.3 It follows from this theorem that for every ? between 0 and h
small changes in initial conditions (1.2) cause only small changes of the solution
in the closed interval [& h] (which does not contain zero).

On other hand, the solution may change significantly in [0, &£]. Indeed, if the
non-disturbed initial conditions (1.2) are zero (i.e. . x,= 0, then the non-disturbed
solution y(¢) is continuous in [0, &] and therefore bounded. However, the solution
x(¢) corresponding to the disturbed initial conditions, may contain terms of the

a—-1

form %, which for o < 1 will make the disturbed solution unbounded at ¢ = 0.



136 HariBHAU L. TiDKE AND R. P. MAHAJAN

Remark 3.4 The inequality (3.30) shows continuous dependence of solutions
of the problem (1.1)-(1.2) on initial values. This also provides the uniqueness of
the solution by putting the arbitrary constant Sis equal zero.

3.3. Dependence on Functions Involved Therein:

In this section, we study the continuous dependence of solutions of (1.1) on the
given initial data, and function involved therein.

Now, we consider the initial value problem (1.1)-(1.2) with
D%y(t) = F(t,y(t),D%(t)), 0<t<h, (3.42)
D 1y (t)|pmo = %o + 6, (3.43)

where 9 is an arbitrary constant and ' € C((0, b] X R x R, R).

The next theorem deals with the closeness of solutions of initial value problem
(1.1)-(1.2) and initial value problem (3.42)-(3.43).

Theorem 3.5 Suppose that fin (1.1)satisfy the hypotheses (H )-(H,). Further
suppose, for arbitrarily small constant &> 0, that

| £ (¢, x(£), D* x(1)) — F(¢, x(¢), D* (£))| < e. (3.44)

Then the solution x(¢) of the initial value problem (1.1)-(1.2) depends
continuously on the functions involved in the right hand side of the equation(1.1).

Proof. Let us define the approximations for the problems (1.1)-(1.2) and (3.42)-
(3.43) respectively:

x(t) = limx, (¢), (3.45)
_ xot® 1
% (t) =~ (3.46)

Xn(t) = x0(t) + %f; (t =) (s, xp_1(5), D%xp_1(s))ds, n=,12,..

(3.47)
and
y(&) = limy, (), (3.48)
(xg+8)t¥ 1
Yolt) = =5 0— (3.49)

Yn(£) = yo(t) + %f; (t = S)*LF (S, Yn-1(8), D¥yn-1(s))ds, n=,12,..(3.50)
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By following a similar arguments as in the proof of Theorem 3.2 and from the
hypotheses, it follows that

_ tha_l _ (x0+6)t“_1
%0 (8) = yo ()] < | r@ @)
tu—l
= T %o ~ %0~ 0 (3.51)
|5|ta—1
- (o)

Using subsequently the relationships (3.47) and (3.50), assumption (3.44) , the
inequality (3.51), and the rule for the Riemann-Liouville fractional differentiation

of the power function, we obtain

(8 = 71 (O] S T 2 7 (6= )% (5,20 (5), D70 (5)) — F (s, %0(5), D<o(s))ds
< B o ) (€= %5, x0(), Do (5)) = £(5,70(5), DVo(5))]ds

7 (£ = (5,708, DY) = F (5. 0(5), DYo(s))lds

§|ex1t 1t _1, P _
< +@f (t = )" (EDIx0() = Yo(©)lds + s fy (¢ = )™ eds
18]¢%~2 _1, P\ [8]s%1
= I r(1+a) F(a)f (t=9)" (1—L) (@)
et® |8]t% P 18] _ —1.a-1
T r(i+a)  T(a) (1—L)1"(a)2f0 (t—s)*"s* " ds
et R i L
- F(1+a) T'(a) (1 L) I"(Za)
— St 1 )jtja
l"(1+a) +18]t ZJ =0 F((1+1)a)'
(3.52)
Similarly, we have
et®
pa(®) = 72 (O] < B+ 4 o [ (=)™ 1(—)|x1(s> y()lds
ey A (R T CLe e
- I'(a) I(l1+a) T(a)’0 F(1+a)
e
—ya—1l, T ¢ g~ 1yl a-rf 7
sy (€= 9L GEDIISIs ey L ds
et P 181t~ P18t L Na-1lca-1
~ I'(1+a) (1 L) F(1+2a) I'(a) + (l—L) I'(a)? fo (t s) § ds
L 2 18l a-1.2a-1
(1 L r(a)r(m)f (t=9)%"s ds
( ) itja |§|ta—1 P |6|t2“ 1 |é‘|t3""1
a P P 2
= et 1 0 P(1+(j+1)a) I'(a) +( ) I‘(er) ( ) r'(3a)
P vjija jeix
— Eta (1 L) |6|ta 12 )

1 0 r+(j+1)a) j=0 l"((}+1)oz)

(3.53)
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and by induction for all #, we have

P \jija

L Y
_ ayn-1_1-L
ea () = Y (B)] < £ B3 A

(L)jtf“
T ls|ee Ty, (3.54)

J=0 r(G+Day

Taking the limit of (3.54) as n — o, we obtain

a g (J%L)jtja a-1yo (ﬁ)jtja
[x(1) —y(O)] = et Xio rasrGena 181t 20 r((j+1)a)
P _ P
= gtaEa,a+1(E t*) +16]¢* 1Ea,a(ata)- (3.55)

From (3.55) it follows that the solutions of the initial value problem (1.1)-(1.2)
depends continuously on the functions involved in the right hand side of (1.1).
This completes the proof of Theorem 3.5.

Remark 3.6 The result given in Theorem 4.3 relates the solutions of the initial
value problem (1.1)-(1.2) and (3.42)-(3.43) in the sense that if fis close to F, x,, is
close to x,+ & (i.e. depends upon Sand as dis smaller and smaller), then not only
the solutions of initial value problem (1.1)-(1.2) and (3.42)-(3.43) are close to
each other, but also depends continuously on the functions involved the right hand

side of (1.1).

Next, consider the initial value problem (1.1)-(1.2) together with system of
equations:

D%y(t) = fi(t,y(t),D*y(t)), t€[0,b] (3.56)
Dty () |e=o = Xo + Sk, (3.57)
where f, € C((0, b] x R x R, R) and §, is sequence of elements in R for k= 1,2,?.

The next corollary deals with the convergence of solutions of initial value
problem (1.1)-(1.2) and initial value problem (3.56)-(3.57).

As an immediate consequence of Theorem 3.5, we have the following corollary.
Corollary 3.7 Suppose that f'in (1.1)satisfy the hypotheses (H )-(H,). Further

suppose, for arbitrarily small constants >0, that
I (£, x(6), DEx(6)) — fie (&, X(£), D(O))] < &, (3.58)

where g, — 0,and 6, — 0 as k — oo. If x(¢) and y, (¢) (k= 1, 2,...) are respectively the
solutions of initial value problem (1.1)-(1.2) and (3.56)-(3.57) on J. Then as k —
©,y, () > x(f)on 0 <t<h.

Proof. For k= 1,2, ..., the conditions of Theorem 3.5 hold. As an application of
Theorem 3.5 yields
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18 ee Dy

a \n—-1 (%)jtja
|xn(t) - Ykn(t)l < gt j=0 r((j+Da)

J=0 r(1+(j+1)a)

(3.59)

where x_(7) and y, (?) are iterations as defined in Theorem 3.5 forn =0, 1, 2,... .
Now we allow n — oo, we have

t _ t < ta ZOO (%)]t]a + 6 ta—l ZOO (J;L)]t]a
[X(®) = ¥ (O] < &ct® 2jzo r(1+(+Da) |3l J=0 r((j+1)a)
P _ P
= 5ktaEaf,a+1(E ta) + |5k|ta 1Eﬂ,a(§ ta). (360)

As k — oo, the required result follows from (3.60).

Remark 3.8 The result obtained in Corollary provide sufficient conditions
that ensures solutions of initial value problem (3.56)-(3.57) will converge to the
solutions of initial value problem (1.1)-(1.2).

3.4.Dependence on Parameters

In this section, we study the continuous dependence of solutions on certain
parameters.

We consider the differential equations of fractional order:
D x(t) = G(t, x(t), D* x(1), 1), (3.61)
D= y(1) = G(t, y(1), D* p(2), 1,), (3.62)

for ¢ € (0, b], where G € C((0, b] x R x R x R, R), and p, p, are real parameters
and with initial condition given by (1.2).

The following theorem states the continuous dependency of solutions to (3.61)-
(1.2) and (3.62)-(1.2) on parameters.

Theorem 3.9 Let G(t, x, y, 1) be a real-valued continuous function satisfy:
(H3) There exists ¢ € C([0, ], R) and L € (0, 1) such that

Gt %, y,1) = GEX, Y, W] < q(O)|x %] + L]y = JI.
(H4) There exists n € C([0, b], R,) such that
1G(&x,y, 1) — Gt x,y, 1) S n(B)|py — e 2]
If x(¢) and y(¢) are respectively solutions of (3.61) and (3.62), then
Q
() = YO < Nty = 13|t Eg 41 =), (3.63)

where Q = max{q(?): t € [0, b]} and N = max{n(¢): t € [0, b]}.
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Proof. By following a similar arguments as in the proof of Theorem 3.5 and
from the hypotheses, it follows that

Q@ yjiix
't

1%, (1) = Y (D] < Ny — po]t* X755 TarGrnD" (3.64)
where x (7) and y, (?) are iterations as defined in Theorem 3.5 forn=1, 2, ... . Now
we allow n — oo, we have

e
- - ayo _al
lx(6) = y(O)] < Nlpg — pa|t* X2 Tar(TDD)
Q
= Nlpy = sz |t Eq a1 (%) (3.65)

From (3.65), it follows that the solutions (3.61) and (3.62) with (1.2) depend
continuously on the parameters p , p,.

Remark 3.10 The result dealing with the property of a solution called
"dependence of solutions on parameters". Here the parameters are scalars. Notice
that the initial conditions do not involve parameters. The dependence on parameters
are an important aspect in various physical problems.

4. RESULTSVIAINTEGRAL
INEQUALITY

Integral inequalities play an important role in the qualitative analysis of the
solutions to differential and integral equations.The method of inequalities which
provides explicit estimates on unknown functions has been a significant source
in the study of many qualitative properties of solutions of various differential,
integral and finite difference equations. It enable us to obtain valuable information
about solutions without explicit knowledge of the solution process. In many cases
while studying the behavior of solutions, the method which works very effectively
to establish existence does not yield other properties of the solutions in
ready fashion and one often needs some new ideas and methods in the analysis.
The theory of integral inequalities with explicit estimates has emerged as an
interesting and fascinating topic of applicable analysis with a wide range of
applications.

Therefore, in this, section we will prove uniqueness of solution and continuous
dependence on the orders of equations and initial conditions; on parameters and
function involved therein via integral inequality. According to N. Heymans and 1.
Podlubny [10], it is possible to discuss the physical interpretation about initial
conditions expressed in terms of Riemann-Liouville fractional derivatives and hence,
our discussion here is meaningful.
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4.1. Uniqueness of Solution

The existence and uniqueness of the initial value problem (1.1)-(1.2) have been
discussed in the previous section. The following theorem proves the uniqueness of
solutions to (1.1)-(1.2) without the existence part.

Theorem 4.1 If the hypothesis (H)) is holds, then the initial value problem
(1.1)-(1.2) has at most one mild solution on (0, b], (b < ).

Proof. Let x(7) and y(f) be any two solutions of the initial value problem (1.1)-
(1.2) and u(?) = [x(¢) — y(¢)|. Then by hypothesis, we have

u(®) < g fy (6= ) f (5,x(5), D°x(5)) — £ (5,¥(5), D“¥(s))Ids
< ﬁfot (t— s)a—1(£)|x(s) —y(s)|ds @
= %(1%) fot (t — ) x(s) — y(s)|ds.

P
Now a suitable application of Lemma 2.5 (with g(t) = % (=) and () = 0) to

(4.1) yields
u(?) = (1) = (0| < 0,

which implies x(f) = y(¢) for ¢ € (0, b]. Thus there is at most one solution to the
initial value problem (1.1)-(1.2) on (0, b].

4.2. Dependence on Order and Initial Conditions

In this section, we shall consider the solutions of two initial value problems with
neighboring orders and neighboring initial values. It is important to note that here
we are considering a question which does not arise in the solution of differential
equations of integer order.

The following theorem dealt with the dependence of the solution on the order
and the initial condition to a certain implicit fractional differential equation with
Riemann-Liouville fractional derivatives via integral inequality.

Theorem 4.2 Let a. >0 and B > 0 such that 0 < o.— B < o< 1. Let the function
fin (1.1) satisfy the hypotheses (H,) and (H,). For 0 < t < b, assume that x(t) and
V(1) are respectively solutions of the initial value problems (1.1)-(1.2) and

D Py(t) = f(t,y(t),D%y(t)), 0<t<bh, 4.2)
D F1%(O) |e=0 = Yo, 4.3)
Then, for 0 < ¢ < b, the following holds:

G Gpr @Yy

rGamy - $)/ @B 1w(s)]ds, (4.4)

ly(t) —x(@®O] < w(®) + [ (£,
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where

tzz—ﬁ _ ta
(a=p)T(a=p) T(+a)

1
T'(a-p)

_ Yo a-f-1 _ X0 ja-1
w(O) = ;25 st |

M4t _ 1
M+ 251 M.

4.5
Proof. The solutions of the initial value problems (1.1)-(1.2) and (4.2)-(4.3)
are respectively given by

x(6) = 2 2 [ (6= ) f 5, x(5), DOx())ds, (4.6)

and

X(0) = 72t B 4 s [ (6= ) P (5, y(9), DOy, (4.7)

Let u(?) = [y(f) — x(¢)|. Then by hypothesis, we have

x_ﬂta—1|

w0 <l 5t g

g Jo €= P f(5,9(5), D%y($))ds — o= fy (= )71 (s,(5), DY (s))ds|
sy (€= ) (5,y(), DUy (5))ds — = [y (¢ = $)*F7f (5,x(5), Dx(s))ds]
+| ﬁfot (t — $)*B-1£(s,x(s), D*x(s))ds — %fot (£ =) 7 f(s,x(s), D*x(s))ds|

< Iyt =t e~ e M

e g~ M + w5 (6= 9P Iy (s) —x()lds

= w(t) + 5 G2 Jy (€= )P u(s)ds.

(4.8)

Now a suitable application of Lemma 2.5 (with g(t) = %(ﬁ) and a(?) =
w(f), w(f) as given in (4.5)), to (4.8) which gives

(DT @)Y

Gy E— P w(e)lds. (4.9)

u(®) S w(t) + [ [X2,

This concludes the theorem.

Remark 4.3 It follows from Theorem 4.2 that for every & between 0 and b
small changes in order of differential equations and initial conditions cause only
small changes of the solution in the closed interval [ &, b] (Which does not contain
zero).

Corollary 4.4 Under the hypotheses of Theorem 4.2, if = 0 andy,= x,+ &,
where Sis an arbitrary constant, then
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Y(© = x(O] < 18It EqaGt), O<<D).  (4.10)
S a—1
Proof. If B = 0 and y, = x,+ 8, then from (4.5) we have w(t) = % By
recalling the discussion of Theorem 4.2, we obtain
(g DT @) ja—1 1815
u(t) < F(a) +J, 25 T)p-(t =) T lds
I 2’ o _ yja-1ca-1
) r(a>f Zf 1 roa) (¢ =) s ds
_ |§|ta_1 |6| co ja—1.a-1
T @ @ 121 rua) Tl (¢ sy tse s
j ; (J+Da-1
B + 15/ Gz L) r(jo)(a)t

r@ L T@rge TG+
|8t a1 It
T INa) +|5|t 2 j=1 F(U+1)a)]

= ol xS

J=0 r((1+1)a)
= |6|ta_1Ea,a(Eta)'

Remark 4.5 It follows from Corollary 4.4 that for every & between 0 and b
small changes initial conditions cause only small changes of the solution in the
closed interval [g b] (which does not contain zero). Also we observer that the
estimates on solutions in case of successive approximations approach and integral

inequality are identical. Further, the Corollary 4.4 generalize the results studied
inf[4,9 22 23].

4.3. Dependence on Functions Involved Therein

In this section, we study the continuous dependence of solutions of (1.1) on the
given initial data, and function involved therein.

The next theorem deals with the closeness of solutions of initial value problem
(1.1)-(1.2) and initial value problem (3.42)-(3.43).

Theorem 4.6 Suppose all assumptions of Theorem 3.5 are satisfied. Then the
solution x(t) of the initial value problem (1.1)-(1.2) depends continuously on the
functions involved in the right hand side of the equation(1.1).

Proof. Suppose x(#) and y(¢) are respectively solutions of the problems (1.1)-
(1.2) and (3.42)-(3.43). Let u(t) = |x(¢) — y(¢)|. Then by hypotheses, we obtain
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x(0) = y()] < B *igpda (€= )15, D) = F(5, (), Dy (s)lds

|81e** a- a a
<B4 5 o (6= 9% U (5,x(5), Dx(s)) = £(5,(5), Dy(s))ds

*rigJo (6= IFGYE DY) = Fs,y(), DY ()lds
|5|Le-1

< Bt =T DI —¥(@)ds + s fy (¢ = ) eds
|§|te-t et® 1 _ a-1, P
<@ et mf (t = )% (x(s) = y(s)lds
< &t® |5|t Py 1 _ aa-1
< oot et D g o (6= 97 x() = y()lds.
(4.12)
Hence by a suitable application of Lemma 2.5 (with g(t) = F(a) (—) and
et |8|t*
a(t) = T + @ t (4.12) yields
P
et% |5|t )] ja-1 6|Sa—1
u(® = fro | @ f (X5 F(]a)( s) (F(1+a) I'(a) ))ds
R Ll )’ _ gyja-1ga 18] ja-1ca—1
oo T T@ + 2 l"(]a) F(1+a)f (t=s) ds St )f (£ =) s™ ds]
_ eto |5\c“ (Com L) T(+a)tUtDe |5 T(a)U+Dea-1
_F(1+a) I'(a) +ZJ 1 r(ja) e )[F(1+a) r((+Da+1) F(a) r((+1)a)
P P
__«t” 18l ? 2’ U+Da w _G7 £U+Da-1
T r+a) | Ta) )y F((j+1)a+1)€t +2j 1"((}+1)a) 5]t
£ I + 18]t 1y '
=€ 1 =0 F((]+1)a+1) j=0 I‘((]+1)a)
=et Eaa+1( ta) + |5|t“ 1Eaa(_ta)
(4.13)

This completes the proof of Theorem 4.6.

Remark 4.7 The result given in Theorem 4.6 relates the solutions of the initial
value problem (1.1)-(1.2) and (3.42)-(3.43) in the sense that if fis close to F, x,, is
close to x,+ d(i.e. depends upon Sand as dis smaller and smaller), then not only
the solutions of initial value problem (1.1)-(1.2) and (3.42)-(3.43) are close to
each other, but also depends continuously on the functions involved the right hand
side of (1.1). Further we have seen that the estimates on solutions in case of
successive approximations approach and integral inequality are coincides.

The next corollary deals with the convergence of solutions of initial value
problem (1.1)-(1.2) and initial value problem (3.56)-(3.57).

As an immediate consequence of Theorem 4.6, we have the following
corollary.



Basic REsuLTs oN NONLINEAR IMPLICIT FRACTIONAL DIFFERENTIAL EQUATION... 145

Corollary 4.8 Suppose all assumptions of Corollary 3.7 hold and if x(t) and
Y, () (k=1,2,...) are respectively the solutions of initial value problem (1.1)-(1.2)
and (3.56)-(3.57) on J, then as k — o, y, (t) = x(t) on 0 < t<b.

Proof. By following a similar arguments as in the proof of Theorem 4.6 and
from the hypotheses, it follows that

g t? |8t !

() = V(O] < ks 4 PO 4 Py [ (6= )7 (S) = )l
(4.14)
Hence by a suitable application of Lemma 2.5 (with g(t) = — (—) and

l“(a)
e t® |6k | te1
a(t) = l"(1+a) ()

to (4.14) and then integrate term by term, we have

< a (1PL)jtja +16 a—-1 )jtm
[X(8) = Yk ()] < &t X2 om |8 |t X2 om “.15)

- gkt Eaa+1( ta) + |5k|ta lEaa( ta)

As k — oo, the required result follows from (4.15).

Remark 4.9 The result obtained in Corollary provide sufficient conditions
that ensures solutions of initial value problem (3.56)-(3.57) will converge to the
solutions of initial value problem (1.1)-(1.2). Moreover, under the approach of
successive and approximations and integral inequality, we get same results as
proved in Corollary 3.7 and Corollary 4.8.

4.4. Dependence on Parameters

In this section, we study the continuous dependence of solutions on certain
parameters.

The following theorem states the continuous dependency of solutions to (3.61)-
(1.2) and (3.62)-(1.2) on parameters.

Theorem 4.10 Suppose all assumptions of Theorem 3.9 hold and if x(t) and
V(1) are respectively solutions of (3.61) and (3.62), then

Q
() = YO < Nty — pt%E g1 1. (4.16)

Proof. Suppose x(t) and y(t) are respectively solutions of the problems (3.61)-
(1.2) and (3.62)-(1.2). Let u(t)=|x(t)-y(t)|. Then by hypotheses and following a
similar arguments as in the proof of Theorem 4.6, we have
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u(t) < i fy (6= )65, x(5), Dx(5),1y) = G5, ¥(5), DUy (s), a)lds
< o (€= 96 (5, %(5), DUx(5), 1) = G(5,¥(5), DUy (s), )l dls

g €= 9TNG(sY(5), DUY(), 11) = G(5,¥(5), D*Y(), pz) | ds
< Mol ) (8 (- )% () x(s) — y(5)lds

Mi=lt® | @ 1t ey
< Mol (s (£ = )% () — Y ()lds.

(4.17)
1

Q
(@) (E) and

Hence by a suitable application of Lemma 2.5 (with g(t) =

_ a
a(t) — N“‘LI Au'zlt

r(ita) to (4.17) and then integrate term by term, which implies

(%)J'tj“
_ ayo - a-L7 00
u(t) S Nlul let Jj=0 F(1+(j+1)a)

a Q .q (4.18)
= Ny — pz|t Ea,a+1(ﬁt )

From (4.18), it follows that the solutions (3.61) and (3.62) with (1.2)
depend continuously on the parameters ., w,. This completes the proof of Theorem
4.10.

Remark 4.11 The result dealing with the property of a solution called
"dependence of solutions on parameters". Here the parameters are scalars. Notice
that the initial conditions do not involve parameters. The dependence on parameters
are an important aspect in various physical problems. Moreover, under the approach
of successive and approximations and integral inequality, we get same results as
proved in Theorem 3.9 and Theorem 4.10.

5.RESULT VIA FIXED POINT THEOREM
Let us recall some definitions and notation related to our result.

Let C([0, b], R) denotes the Banach space of all continuous real valued functions
defined on [0, ] with norm

I || = sup (@) - £ € [0, b]}.

For ¢ € [0, b], we define x = ¢ x(¢), r = 0. Let C_([0, b], R) be the space of all
functions such that x_e C([0, b], R) which turn out to be a Banach space when
endowed with the norm

[ || = sup{z | x(@) |: £ € [0, b]}.
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Settingr=1—(x 0 < a <1, and define a set C;= {x € C, ([0, b], R):

lim,_o+t'"%x(t) = ==} Itis clear that C, is a Banach space with the norm |||, _,

1"( )
and CO c Cl_a([o; b]r R)

We prove the existence and uniqueness of solution for the problem (1.1) -
((1.2) by using Banach contraction principle.

Theorem 5.1 Assume f satisfies the hypothesis (H ). Then the initial value
problem (1.1)-(1.2) has a unique solution in C,c C, ([0, b], R) if

r
d = [ GEb < 1.

Proof. Let us define an operator 7: C,— C, by

Tx(0) = pos t7 4 s [y (= 977 (5,x(5), Dx(s))ds. (5.1)

1"(Of)

Observe that the problem (1.1)-(1.2) has solutions if and only if the operator T
has fixed points. We prove that 7'is a contraction map. In view of (H|) and for each
t € [0,b]and x, y € C,, we have

7 Tx(e) = Ty (0] <T)f (t = $)*Hf (s, x(s), D“x(5)) = f (5, y(s), D*y(s)) ds
r(0,)f (t— ) HDx(s) — y(s)lds
=z )F(a)f (t=5)* s s x(s) — y(s)lds
(:)Ta)f (=) I x =y =g ds

= (G fy (= )% ds] = ¥ e

(5.2)
Note that
t dea—1qc — F@? 21
Jy (t=9)*1s" s = raot a1, (5.3)
Hence, using (5.3) in (5.2), we obtain
r
(| Tx(0) — Ty (O] < [(-=) o w L2 x = Y e
r
= s Gt N2 =y =g
r
< 2 Db N x = Y lhmg G4
=dllx—ylli=za

which implies
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17 =T, <dlx=yl_, (5.5)

From the equation (5.5), it follows that by the definition of d that the operator
T is a contraction. Therefore, by the Banach fixed point theorem,we claim that T’
has a unique fixed point which the required solution in C,c C, _ ([0, b], R) of the
problem (1.1)-(1.2). This completes the proof.
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