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ABSTRACT

In this paper, the generalized Hamilton variational principles for non-linear analyses of Timoshenko-type and
Euler-type beam-column structures are established in general case, and consequently, the corresponding mathematical
models can be presented correctly, including coupling non-linear partial differential equations of motion with variable
coefficients, the boundary conditions and the initial conditions. In the present work, the geometrical and material
property of structures as well as the loads may be all arbitrary, except assumed that the cross-section is symmetrical
about the inertia axes and the loads acting on the structure are conservation. In addition, the inertia of the neutral
layer and rotation is considered as well. The generalized variational principles and mathematical models presented
in the paper are the foundations for the correct theoretical analyses and numerical calculations of beam-column
structures.

Keywords: beam-column structures, non-linearity and non-uniformity of material, finite deformation, generalized
Hamilton variational principle

1. INTRODUCTION

It is well known that the beam-column structures are widely applied to different fields of science and technology.
Whether in the civil engineering, mechanical engineering, aerospace engineering or in the emerging fields of science
and technology, one can find the application background of the beam-column structures[1~7]. With the development
of science and technology, the length of the beam-column structures has become longer, the thickness has become
thinner, and the weight has become lighter in the practical application. So in order to provide more suitable design
theory, the large deformation of the structures, non-linearity of materials and so on should be considered for the
analysis of the non-linear characteristics of the structures.

Compared with linear systems, non-linear systems may possess the more complex properties, for example,
bifurcation, chaos, saltation, instability, and so on. To explore the non-linear phenomena of structures and to explain
their mechanism, it is essential to establish correct and rational mathematical models. Up to now, there exist many
theories for the non-linear analysis of beam-column structures. Bisshopp, et al.[8], Jenkins, et al. [9], Kerr [10], and
Chen [11] presented theories for the non-linear analysis of beam-column structures by using the arc-coordinate, and
studied the large deformations of beams and frames. Antman [12] set up the large deformation theory of elastic
slender rods, and discussed the non-uniqueness of equilibrium states in tension, shear and necking instability of
elastic rods. The advantages of these theories are very delicacy and concinnity, and they can be applied to explain
the mechanism of the non-linear phenomena of structures from the analytic solutions of simple problems. However,
it is very difficult to apply these theories to more complex problems, such as, complex structures, complex loads,
complex solution domain etc. On the other hand, generally speaking, for non-linear analyses of structures in science
and technology, the axial displacement and deformation of structures are relatively smaller, but the transverse



displacements and the rotations caused by them are relatively larger, and the effect of the rotation on the axial
deformation must be considered. Hence, it is necessary to develop the more relevance non-linear theory of the
beam-column structures mentioned above to analyze more complex problems conveniently.

In the present paper, the Hamilton variational principle is extensively applied to the non-linear, non-uniform
beam-column structures with variable cross-sections, and the corresponding Hamilton variational principles are
established, in which, the non-linearity and non-uniformity of materials, the finite deformation of structures as well
as the inertia of the neutral layer and rotation are all considered, and all the geometrical property of structures and
the loads acting on the structures may be arbitrary, except assumed that the cross-section is symmetrical about the
inertia axes and the loads are conservative. Further, from the different applications of beam-column structures, one
divides them into two kinds, the one is slender, its length is much bigger than the size of the cross-section, called as
Euler-type beam-column structures, another is short and thick, its length is close to the size of the cross-section,
called as Timoshenko-type beam-column structures. According to this classification, the Euler-type and Timoshenko-
type displacement modes are adopted, respectively, and the generalized Hamilton variational principles for non-
linear mechanical analyses of two kinds of structures are presented, hence, the corresponding mathematical models
can be obtained. The variational principles and mathematical models are the foundations for the correct theoretical
analyses and numerical calculations of structures as well.

2. HAMILTON VARIATIONAL PRINCIPLE (I) FOR NON-LINEAR ANALYSES OF TIMOSHENKO-
TYPE BEAM-COLUMN STRUCTURES

Consider a beam-column structure resting on an elastic foundation and subjected to arbitrarily distributed tangent
and transverse loads (Fig.1). Let ox  be the neutral axis of beam, oy, oz be the inertia axes of cross-section. It is
assumed that the cross-section is symmetrical about the inertia axes, and A is the area of cross-section, l is the
length, � is the mass density (a given constant). It is also assumed that q

u
(x, t), q

v
(x, t), q

w
(x, t) are the components

of load in x-, y- and z-directions, respectively, namely, the tangent and transverse components. In addition, at the
end of beam, for example, at the end x = l, the structure may be subjected to the given axial force and shear forces
as well as moments.

If the length of the structure is not much larger than the size of cross-section, namely, we consider Timoshenko-
type beam-column structures here, the displacements u1, v1, w1 of the neutral layer in x-, y- and z-directions may be
given as [13]
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in which, u, v, w are the displacements of the neutral axis, � and � are the rotational angles of the cross-section
about z- and y- directions, respectively. y and z are the distances to the neutral axis.

Geometry relation: In the case of small deformations, the non-zero strain components can be given as
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Figure 1: Physical Model of Beam-column



Constitutive relation: From the theory of beams, the effect of the stress components �
y
, �

z
 and �

yz
 on the

deformation may be neglected. If the material of beam is a sort of cubic nonlinear elastic materials, when the effect
of transverse shear deformations is considered, we have the constitutive relations as follows:
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in which, E1 is the linear elastic modulus of material, and E2 and E3 are the generalized moduli, which are used to
describe the non-linear effect of material. For a non-uniform material, the moduli are the given functions of x. The
constitutive relation (3) may be used to describe the mechanical characteristic of the concrete to a certain extent
[14-15].

It would be also assumed that the foundation is a sort of cubic nonlinear materials, and a generalized Winkler
model is adopted to simulate the resistance of foundation. Hence, we have

2 3
1 2 3 , , ,s s s sp k s k s k s s u v w� � � � (4)

in which, p
u
, p

v
, p

w
 are the tangent and transverse components of foundation resistances, respectively. k

s1, ks2 and k
s3

are the corresponding linear and non-linear rigidity coefficients.

Generalized Hamilton variational principle (I): In all possible displacements satisfying the geometry relations
and the displacement boundary conditions as well as having the designated motion at the initial and terminate time,
the actual displacements u, v, w, �, � make the functional � in (5) arrive at the stationary value, that is, ���= 0, in
which

� �
0 0

T T

Hdt U W T dt� � � � � �� � (5)

in which, H = –(U – W – T) is the Hamilton function, T is the kinetic energy of structure, U = U1 + U2 is the strain
energy, U1 and U2 are the strain energies caused by the normal and shear strains, respectively. W is the work done by
the given distributed external loads, the end forces and moments, as well as the resistance of foundation. The
representations of T, U and W are given as follows:
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where, the last two terms are the kinetic energies caused by the rotation, 
2 2,y z

A A

I z dA I y dA� ��� ��  are the inertia

moments of cross-section, respectively.

Observing the non-linearity of material, the corresponding strain energy densities caused by the normal and
shear strains are
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in which, �1 and �2 are the shear modified coefficients of the cross-section in y- and z- directions, which denote a
modifiability of “assumption for the shear strain on the cross-section is constant” [13]. Hence,
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in which
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inertia moments of cross-section about the inertia axes, respectively. Substituting it into (6b) yields the expression
of U1 in terms of the generalized displacements u, v, w, �, �. And also, we have the expression of U2 as
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Suppose that q
u
, q

v
, q

w
 are the designated distributed loads in x–, y–, z–directions, respectively, and , , , ,v wN T T M M� �

are the designated axial and tangent forces as well as moments at the end x = l, respectively, and assume that these
loads are all conservative. Then, the work done by these forces is given as
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For a non-uniform material, the moduli in (6) are the given functions of x, so they can not be moved out from the
integral and differential.

Operating the variation calculation on the expressions (6a)-(6d), substituting the resultant equations into the
variation equation �� = 0 for (5), and observing that the motion of the beam-column at the initial and terminate time
is given, hence, �u = �v = �w = �� = ���= 0 at t = 0 and t = T. At the same time, observing arbitrariness of the
variables �u, �v, �w, ��, �� on [0, l] and at the end x = l, we can obtain the differential equations of motion, the
boundary conditions at x = l, as well as the initial conditions of Timoshenko-type beam-column structures, which
are composed of a non-linear and non-uniform elastic material. One can see that the differential equations of motion
are a set of coupling non-linear partial differential equations with respect to u, v, w, �, �, and the boundary conditions
are non-linear as well. Generally speaking, it is very difficult to obtain the analytic solutions of problem. We can
only obtain the numerical solutions by numerical methods.

3. HAMILTON VARIATIONAL PRINCIPLE (II) FOR NON-LINEAR ANALYSES OF TIMOSHENKO-
TYPE BEAM-COLUMN STRUCTURES

As also, consider a beam-column structure resting on an elastic foundation shown in Fig. 1, and adopt the
displacement fields in Eq.(1), but here think that the rotation of the cross-section for y–,z–directions is bigger, and
the relation between the displacement and the deformation should be non-linear. Hence, we have the equations as
follows.



The displacement field is
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Geometry relation: In the case of finite deformations, the non-zero strain components may be given as
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Constitutive relation: From the theory of beams, if the material of structure is a sort of linear elastic materials,
when the effect of transverse shear deformations is considered, then the constitutive relations can be expressed as

, ,
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in which, E, � are the linear elastic modulus and Poisson ratio of material, and they may be the given functions of x,
generally.

Generalized Hamilton variational principle (II): In all possible displacements satisfying the geometry relations
and the displacement boundary conditions as well as having the designated motion at the initial and terminate time,
the actual displacements u, v, w, �, � make the functional � in (10) arrive at the stationary value, that is, ���= 0, in
which
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Hdt U W T dt� � � � � �� � (10)

and H = –(U – W – T) is the Hamilton function, T is the kinetic energy of structure, U = U1 + U2 is the strain energy,
U1 and U2 are the strain energies caused by the normal and shear strains, respectively. W is the work done by the
given external loads and the foundation counterforce. The representations of T and U as well as W are given as
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in which, the last two terms are the kinetic energy caused by the rotation.

For a linear elastic material, the corresponding strain energy densities caused by the normal and shear strains
are
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� � . So, the total strain energy is given as

U = U1 + U2 = U11 + U12 + U2 (11b)



in which
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Also assume that the material of foundation is linear elastic, and k
u
, k

v
, k

w
 are the corresponding linear rigidity

moduli in the tangent and transverse direction, respectively. Thus, the work done by the external forces is
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Operating the variation calculation on the expressions (11a)-(11c), and substituting the resultant equations into
���= 0 for (10), we can obtain the differential equations of motion, the boundary conditions of forces, as well as the
initial conditions of Timoshenko-type beam-column structures with finite deformations, which are composed of a
non-uniform linear elastic material.

For a non-uniform linear elastic beam-column structure with variable cross-sections, all the material and
geometrical parameters are the given functions of x, which can not be moved out from the integral and differential
in (11). One can see that the differential equations of motion are a set of coupling non-linear partial differential
equations with variable coefficients with respect to displacements u, v, w, �, �. And also the boundary conditions of
forces are also coupling and non-linear.

4. HAMILTON VARIATIONAL PRINCIPLE (III) FOR NON-LINEAR ANALYSES OF EULER-TYPE
BEAM-COLUMN STRUCTURES

Again consider a beam-column structure resting on an elastic foundation shown in Fig. 1. But here, we will study
the Euler-type beam-column structures, that is, the length of structures is much larger than the size of cross-section,
and the effect of transverse shear deformations may be neglected. Assume that rotation of the cross-section about
y–, z–directions is larger, so we have the following displacement field:
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From the theory of finite deformations, the geometry equations are given as
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Here, for convenience, we have introduced the symbols

� � � �

� �

2 2 2 2

1 2 2 2

2 22 2

2 2

1 1
, , , ,

2 2

, z y

u v w v w
A u v w A v w y z

x x x x x

v w
B v w I I

x x

� � � � � �� � � �� � � � �� � � � �� � � � �� � � ��
�

� � � �� �� � �� � � �� � �� � � ��

(14)



in which, , , , ,y z y z xyI I I I I  are the inertia moments and high order moments of the cross-section about y–,z–axes,

respectively.

If assume that the material of structure is a sort of thrice nonlinear materials, we have the constitutive equation

2 3
1 2 3x x x xE E E� � � � � � � (15)

in which, E1 is the linear elastic modulus of material, E2 and E3 are the generalized moduli describing the non-linear
effect of material. If the material is non-uniform, these moduli are given functions of x.

Generalized Hamilton variational principle (III): In all possible displacements satisfying the geometry
relations and the displacement boundary conditions as well as having the designated motion at the initial and
terminate time, the actual displacements u, v, w make the functional � in (16) arrive at the stationary value, that is,
���= 0, in which
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T T

Hdt U W T dt� � � � � �� � (16)

and H = –(U – W – T) is the Hamilton function, T is the kinetic energy of structure, U = U1 + U2 + U3 is the strain
energy, U1, U2 and U3 are the strain energies caused by the linear, quadric and thrice elasticity, respectively. W is the
work done by the given external forces.

In the present case, the kinetic energy of structure is given as:
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in which, the last two terms are the kinetic energy caused by the rotation.

The strain energy density is given as
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Observing the geometry relation (13), and setting the strain energy U = U1 + U2 + U3, then we have the expressions

as follows:

� �

� �

� � � �

22
1 1 1 10 0

33
2 2 2 1 10 0

4
3 3 31 32 330

4 2

3 1 3 10 0

4 2 22 2 2

3 2 2 2

1 1

2 2

1 1
3

3 3

1

4

1 3

4 2

1
6

4

l l

x

A

l l

x

A

l

x

A

l l

z yz

U E dxdydz E A A B dx

U E dxdydz E A A A B dx

U E dxdydz U U U

E A A dx E A Bdx

v v w
E I I

x x x

� �� � � �� �

� �� � � �� �

� � � � �

� �

� � � � � �� � �
� �� � � � � �� � �� � � � � �

�� � �

�� � �

�� �

� �
42

20

l

y

w
I dx

x

�
�
�
�
�
�
�
��
�
�
�
�
�
� � �� ��� �� �� �� �� �� �� �� � ��

�

(17b)

At the same time, we have the expression of the work as
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here, ,Y YM M  are the moments corresponding to the rotations � � � �,
v w

l l
x x
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 at the end x = l. And the foundation

counterforce is given by (4).

Operating the variation calculation on the expressions (17a)-(17c) and substituting the obtained results into the
variation equation �� = 0 for (16), observing �u = �v = �w = 0 at t = 0 and t = T due to the beam-column has the
given motion at the initial and terminate time, at the same time, observing arbitrariness of the variables �u, �v, �w

on [0, l] and arbitrariness of the variables �u, �v, �w, ,
v w

x x

� �
� �
� �

 at the end x = l, we can obtain the differential

equations of motion, the boundary conditions of forces, as well as the initial conditions of Euler-type beam-column
structures, which are composed of a non-linear and non-uniform elastic material in the case of finite deformations.

For a non-linear and non-uniform elastic beam-column structure with variable cross-sections, all the material
moduli and geometrical parameters are the given functions of x, they can not be moved out from the integral and
differential in (17), hence the differential equations of motion are a set of coupling non-linear partial differential
equations with variable coefficients with respect to the displacements u, v, w.

It can be seen that if let the moduli describing the non-linear effect of material be zeros, that is, E2 = E3 = 0, we
can obtain the Hamilton variational principle of Euler-type beam-column structures, which are composed of a non-
uniform linear elastic material in the case of finite deformations.

Generalized Hamilton variational principle (IV): In all possible displacements satisfying the geometry
relations and the displacement boundary conditions as well as having the designated motion at the initial and
terminate time, the actual displacements u, v, w make the functional � in (18) arrive at the stationary value, that is,
���= 0, in which

� �
0 0

T T

Hdt U W T dt� � � � � �� � (18)

and H = –(U –W –T) is the Hamilton function. T is the kinetic energy of structure given by (17a), U is the strain
energy given by (17b) with E2 = E3 = 0, W is the work done by the given external forces and the foundation
counterforce. For non-linear elastic foundations, W is given by (17c), and for linear elastic foundations, it is given
by (11c).

4. CONCLUSIONS

In this paper, the Hamilton variational principle is applied to non-linear mechanical analyses of beam-column
structures, and the corresponding Hamilton variational principles are establish in general case. From these variational
principles, the correct mathematical models for non-linear analyses of beam-column structures can be obtained
exactly.

According to different applications to engineering and science, the beam-column structures are divided into
slender and short beams. The former is called as Euler-type beam-column structures, and the latter is called as
Timoshenko-type beam-column structures. Hence, we present the Hamilton variational principles of non-linear
analyses and the corresponding mathematical models for the two kinds of structures by using the Euler-type and
Timoshenko-type displacement mode, respectively.

In the variational principles and mathematical models, the material of structures and foundations is a sort of
non-linear and non-uniform elastic materials or a sort of linear and non-uniform elastic materials: the deformation



of structures is finite or small; the loads subjected to structures are arbitrary but they must be conservative; the
geometric characteristics of structures are also arbitrary except assumed that the cross-section is symmetrical about
the inertia axes; further, the inertia of the neutral layer and rotation is also considered. Consequently, the theories
presented in the present work are very general and complete, and large numbers of problems of beam-column
structures may be described by these theories or their simplified forms, for example, Liyanapathirana, et al. [16],
Mei, et al.[17], Lee, et al.[18].

Some conclusions are listed as follows:

(1) From the generalized Hamilton variational principles (I) and (II), we obtain the differential equations of
motion, the boundary conditions at the given end forces, as well as the initial conditions of Timoshenko-type beam-
column structures, which are composed of a non-linear and non-uniform elastic material in the case of small or
finite deformations, respectively. They are a set of non-linear partial differential equations with variable coefficients
in terms of five unknown displacements u, v, w, �, � generally.

For Euler-type beam-column structures, from the generalized Hamilton variational principles (III) and (IV), we
obtain the corresponding mathematical models, but they are a set of non-linear differential equations with variable
coefficients with respect to three unknown displacements u, v, w. If the inertia forces of structures may be ignored,
the non-linear mathematical models of the corresponding static problems can be yielded.

(2) If let the parameters describing the non-linear effect of materials be zeros, we may obtain the non-linear
theories of Timoshenko- and Euler- type beam-column structures, which are composed of a linear and non-uniform
elastic material in the case of finite deformations, respectively.

(3) As degeneration or simplification of the theories, the mathematical models corresponding to the axial motion,
plane motion of Timoshenko- and Euler-type beam-column structures under small or finite deformations can be
obtained. As expect, the differential equations of motion and the boundary conditions at the given end forces in
these models are non-linear as well.

(4) If all non-linear terms in these theories may be ignored, we will obtain the mathematical theories of linear
elastic Timoshenko- and Euler-type beam-column structures under small deformations. Evidently, all the governing
equations and boundary conditions are uncoupled and linear with respect to unknown displacements, but the
coefficients of governing equations are variable.

(5) For appropriate modification or generalization to the theories above, the non-linear theories of beam-column
structures with another constitutive relation can also be yielded, for example, thermoelastic beam-column structures
with voids, visco-elastic beam-column structures with voids etc.[19]. We can also consider the aerodynamics behavior
of beam-column structures in supersonic airflow, in this case, the structures considered will be subjected to an
aerodynamic pressure, the governing differential equations of motion and the boundary conditions can not be
obtained directly from the Hamilton variational principle.

Hence, the non-linear theories presented by this paper are very general. But it is need to point out that the finite
deformation of structures is limited, because the geometrical non-linearity considered here is the finite rotation
caused by the transverse displacement, and the effect of the rotation on the axial deformation should be considered.
When the axial displacement and rotation are all large, these non-linear theories may be inapplicable, one has to
establish another models to satisfy the demand of engineering and science, for example, Hu, et al. [20-21].
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