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ABSTRACT

Information security is one of the crucial issuesin datatransmission through networks. Networks are extremely
exposed to security attacksand consign agreat challengetoday. Thedevel opment of cryptography and cryptanalysis
are considered as the areas of on-going research. Some researchers use biological techniques to hide secret data.
DNA Cryptography is a new and potentially excellent area that enhances data security. In this paper we host a
twofold encryption method to sharethe private key among the sender and receiver which is exponent values of an
polynomial equation using mathematical concept Galoisfield GF(2"). Thefirst key determinesthelength of block
and the second key is used for encryption purpose. The proposed algorithm provides high level security by using
twofold keys that uses mathematical operations addition and multiplication of polynomial equation based on GF.
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I. INTRODUCTION

DNA cryptography is a novel cryptographic domain transpired with the research of DNA computing. In
this area DNA strands are used as information carrier. Recent biological technologies are used as
implementation tool.DNA cryptography differs from conventional cryptography in which the keys and
cipher text are biological molecules. In our method the cipher text will be aDNA strands that includes four
nucleotides adenine (A), guanine (G), thymine (T) and cytosine (C).

Cryptographic algorithms play a vital roleininformation security, various algorithms have been proposed
till now and each has their own pros and cons. The security intensity of encryption depends on two factors
Key and agorithm. In our previous work [2] we have proposed symmetric cryptographic algorithm using
differential and integral calculus. The agorithm uses DNA code as a private key which is shared by sender
and receiver. We generate a polynomial equation with random exponent values, for instance T-4,G-3,C-
2,A-1 and this exponent values are the private keys used for encryption and decryption algorithm.

In this paper this private key will be considered as a plaintext which is a binary value of the DNA
sequence. Now we propose a novel twofold encryption algorithm that uses polynomial addition and
multiplication based on Galois field GF(p"). The Cipher text generated by previous algorithm[2] is used to
generate two keys that are used in this paper to encrypt the private key which isa DNA strands. Key-1 will
be a eight bit value which is length of cipher text and Key-11 will be the binary value of the cipher text
generated in previous algorithm.

Key-1 is used to determine the length of the bits in a block and Key-11 is used for encryption based on
the equation B=A*X+Y where A is plaintext block, X and Y are encryption keys. The block size can be
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3,4,5 or 6 that areinterpreted based on the value of bitsin Key-I. If two bitsin Key-1 is00 then the block is
3, if Ol thenthe sizeis 4, if 10the sizeis5 and if 11 then the size is 6. The proposed algorithm is designed
with two mgor concernsin mind; firstly, decreasing time required for encryption and decryption and secondly,
level of security is high as the attackers cannot trap the key eadly.

II. FINITE FIELD ARITHMETIC

Arithmetic operations like addition (and subtraction) and multiplication in Galois Field requires additional
steps.

2.1. Addition and Subtraction

An addition in Galois Field is pretty straightforward. Suppose f (p) and g(p) are polynomialsin GF(p"). Let
A=a ,a a,,g, be the coefficients of f(p) , B=b_,,b__,..... b,.b, be the coefficients of g(p) and C=c_,,c_

n1’"n2' "ttt n-1'"n-2

..... c,,C, be the coefficients of h(p) where

2

h(p)=f(p)+a(p)
If a, b_and ¢, are coefficients of p*inf(p), g(p) and h(p) respectively then
¢.=g+b, (mod p)
Similarly for subtraction

h(p)=f(p)-9(p)
If a, b_and ¢, are coefficients of p*inf(p), g(p) and h(p) respectively then
¢=3 - b (mod p)
Since computer works in GF(2°), if a and b, refer to the k™ bit in the bytes we wish to add then ¢, the
k™ bit in the resulting 4 byte, is given by
c.=4+b, (mod 2)
Since0+1=1+0=1(mod2)=1and0+0=0(mod 2) =1+ 1 =2 (mod 2) = 0, we can think of
addition as exclusive-or operation which isalso known as XOR operation. That is, XOR operation returns
0 if both entries are equal and returns 1 otherwise which also means that subtraction and addition is the
same in Galois Field whose characteristic is 2. Due to the nature of Galois Field, addition and subtraction
of two bytes will not go any bigger than 11111111 = 255, the biggest value one byte can store, and is
therefore a safe operation.

2.2. Multiplication and Multiplicative Inverse

Suppose f (p) and g(p) are polynomials in GF(p"). Let m(p) be irreducible polynomial(i.e polynomial that
cannot be factored) of degree at least n, so that the product of two polynomials f(p) and g(p) does not
exceed 255 (i.e 11111111)

h(p)=(f(p).9(p)) ( mod m(p))
The Multiplicative inverse of f(p) is a(p) then

f(p).a(p) mod m(p) =1

1. MATHEMATICAL BASICSFOR 2,34AND 5BLOCK SIZE

For a given prime p, finite field of order p, GF(p) is defined as set of integers. Any polynomial f(x) in
GF(2") is represented as
f(x)=a x™+a X"+ ... ax+a,
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Can be uniquely represented by itsn binary coefficients(a ,,a ,
can be represented by a binary number. Here we consider GF(2?), GF(23%), GF(2%) and GF(2%).

,....a,). Thusevery polynomial in GF(2").

Tables 1, 2, 3, and 4 represent the addition in GF(2?), GF(23), GF(2*) and GF(2°) respectively. Tables 5,
6, 7, and 8 represent the addition inverse in GF(2%), GF(23), GF(2%) and GF(2°).

Tablel
Addition in GF(2?)
+ 00 01 10 11
0 1 2 3
00 0 0 1 2 3
01 1 1 2 3 0
10 2 2 3 0 1
11 3 3 0 1 2
Table2
Addition in GF(2%)
+ 000 001 010 on 100 101 110 m
0 1 2 3 4 5 6 7
000 0 0 1 2 3 4 5 6 7
001 1 1 0 3 2 5 4 7 6
010 2 2 3 0 1 6 7 4 5
011 3 3 4 1 0 7 6 5 4
100 4 4 5 6 7 0 1 2 3
101 5 5 4 7 6 1 0 3 2
110 6 6 7 4 5 2 3 0 1
m 7 7 6 5 4 3 2 1 0
Table3
Addition in GF(2%
+ 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0000 O 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0001 1 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14
0010 2 2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13
0011 3 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12
0100 4 4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 1
0101 5 5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10
0110 6 6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9
0111 7 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8
1000 8 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7
1001 9 9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6
1010 10 10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5
1011 112 11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4
1100 12 12 13 14 15 8 9 10 1 4 5 6 7 0 1 2 3
1101 13 13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2
mo 14 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1
mi1 15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0




8552 Rama Devi K. and Prabakaran S.

Table4
Addition in GF(25)
+ 00000 00001 00010 00011 OO100 OO101 OO110 — —— —— —— 11010 11011 11100 117101 11110 11111
0 1 2 3 4 5 6 26 27 28 29 30 31
00000 O 0 1 2 3 4 5 6 26 27 28 29 30 31
00001 1 1 0 3 2 5 4 7 27 26 29 28 31 30
00010 2 2 3 0 1 6 7 4 24 25 30 31 28 29
00011 3 3 2 1 0 7 6 5 25 24 31 30 29 28
00100 4 4 5 6 7 0 1 2 30 31 24 25 26 27
00101 5 5 4 7 6 1 0 3 31 30 25 24 27 26
00110 6 6 7 4 5 2 3 0 28 29 26 27 24 25
11010 26 26 27 24 25 30 31 28 0 1 6 7 4 5
noumr 27 27 26 25 24 31 30 29 1 0 7 6 5 4
11100 28 28 29 30 31 24 25 26 6 7 0 1 2 3
11101 29 29 28 31 30 25 24 27 7 6 1 0 3 2
11110 30 30 31 28 29 26 27 24 4 5 2 3 0 1
11111 31 31 30 29 28 27 26 25 5 4 3 2 1 0
Table5
Addition inver se GF(2?)
w -W
00 0 0
01 1 1
10 2 2
11 3 3
Table6
Addition inver se GF(23)
w -W
000 0 0
001 1 1
010 2 2
011 3 3
100 4 4
101 5 5
110 6 6
m 7 7
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Table7
Addition inver se GF(2%)

w -wW
0000 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 10 10
1011 11 11
1100 12 12
1101 13 13
1110 14 14
1111 15 15

Table8
Addition inver se GF(2°)

w -wW
00000 0 0
00001 1 1
00010 2 2
00011 3 3
00100 4 4
00101 5 5
00110 6 6
00111 — —
11010 26 26
11011 27 27
11100 28 28
11101 29 29
11110 30 30

11111 31 31
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Tables 9,10, 11, and 12 represent the multiplication in GF(22), GF(23), GF(2%) and GF(2°) respectively.
Tables 13, 14, 15, and 16 represent the multiplicative inverse in GF(2?), GF(23), GF(2*) and GF(2°) .

Table9
Multiplication in GF(22 )with theirreducible polynomial m(x)=(x? +x+1)
* 00 01 10 u
0 1 2 3
00 0 0 0 0 3
01 1 0 1 2 0
10 2 0 2 1
11 3 0 3 1 2
Table 10
Multiplication in GF(2® )with theirreducible polynomial m(x)=(+x+1)
* 000 001 010 o1 100 101 110 m
0 1 2 3 4 5 6 7
000 0 0 0 0 0 0 0 0 7
001 1 0 1 2 3 4 5 6 7
010 2 0 2 4 6 3 1 7 5
011 3 0 3 6 5 7 4 1 2
100 4 0 4 3 7 6 2 5 1
101 5 0 5 1 4 2 7 3 2
110 6 0 6 7 1 5 3 2 4
m 7 0 7 5 2 1 6 4 3
Table11
Multiplication in GF(2*) with theirreducible polynomial m(x)=(x* + x +1)
* 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0000 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0001 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0010 2 0 2 4 6 8 10 12 14 3 1 7 5 11 9 15 13
0011 3 0 3 6 5 12 15 10 9 11 8 13 14 7 4 1 2
0100 4 0 4 8 12 3 7 11 15 6 2 14 10 5 1 13 9
0101 5 0 5 10 15 7 2 13 8 14 1 4 1 9 12 3 6
0110 6 0 6 12 10 11 13 7 1 5 3 9 15 14 8 2 4
0111 7 0 7 14 9 15 8 1 6 13 10 3 4 2 5 2 1
1000 8 0 8 11 6 14 5 13 12 4 15 7 10 2 9 1
1001 9 0 9 1 8 2 11 3 10 4 13 5 12 6 15 7 14
1010 10 0 10 7 13 14 4 9 3 15 5 8 2 1 11 6 12
1011 11 0 11 5 14 10 1 15 4 7 12 2 9 13 6 8 3
1100 12 0 12 1 7 5 9 14 2 10 6 1 13 15 3 4 8
1101 13 0 13 9 4 1 12 8 5 2 15 1 6 3 14 10 7
1110 14 0 14 15 1 13 3 2 12 9 7 6 8 4 10 1 5
111 15 0 15 13 2 9 6 4 11 1 14 12 3 8 7 5 10
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Multiplication in GF(2%) with theirreducible polynomial m(x)=(x® + x2 +1)

Table 12

00000 00001 00010 00011 00100 OO101 00110 — — —

—— 11010 11011 11100 11101 11110 11111

0 1 2 3 4 5 6 26 27 28 29 30 31
00000 O 0 0 0 0 0 0 0 0 0 0 0 0 0
00001 1 0 1 2 3 4 5 6 26 27 28 29 30 31
00010 2 0 2 4 6 8 10 12 7 19 29 31 25 27
00011 3 0 3 6 5 12 15 10 11 8 1 2 7 4
00100 4 0 4 8 12 16 20 24 7 3 3 27 23 19
00101 5 0 5 10 15 20 17 30 29 24 3 6 9 12
00110 6 0 6 12 10 24 30 20 2 16 2 4 14 8
1o 26 0 26 17 11 7 29 22 3 25 212 15 4 30
nomr 27 0 27 19 8 3 24 16 25 2 9 18 26 1
111700 28 0 28 29 1 31 3 2 21 9 23 11 10 22
11101 29 0 29 31 2 27 6 4 5 18 11 22 20 9
11110 30 0 30 2 7 23 9 14 4 26 10 20 19 13
11111 312 o0 31 27 4 19 12 8 30 1 22 9 13 18
Table 13
Multiplication Inverse in GF(2?) with the Irreducible polynomial m(x)=x2+ x+1

w W1

00 0 0

01 1 1

10 2 2

11 3 3

Table 14
Multiplication Inversein GF(2® )with the Irreducible polynomial m(x) = x3+x +1.

w W1

000 0 —

001 1 1

010 2 5

011 3 6

100 4 7

101 5 2

110 6 3

m 7 4
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Table 15: Multiplication inverse in GF(2*) with theirreducible polynomia m(x) = x*+ x +1

w W1
0000 0 —
0001 1 1
0010 2 9
0011 3 14
0100 4 13
0101 5 11
0110 6 7
0111 7 6
1000 8 15
1001 9 2
1010 10 12
1011 11 5
1100 12 10
1101 13 4
1110 14 3
1111 15 8

Table 16

Multiplication Inverse in GF(2%) with the Irreducible polynomial m(x) = x>+x2+1

w W1
00000 0 —
00001 1 1
00010 2 18
00011 3 28
00100 4 9
00101 5 23
00110 6 14
00111 — —
11010 26 21
11011 27 31
11100 28 3
11101 29 19
11110 30 20

11111 31 27
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V. ENCRYPTIONALGORITHM (METHODOLOGY)

Input: Plaintext, Key-1, Key-I1
Output: Cipher Text, k1, k2
//k1-Number of bits used from Key-1 inround |
Il k2-Number of bits used from Key-I1 inround |
Step 0: —Round =0
While round < 2
Step 1: Read two bits from Key-I
Step 2: Depending on value of Key-1 the block size is selected
(i.e., if the two bits are 00, then the block size is 2, if the bits are 01, then the block sizeis 3, if the
bits are 10, then the block sizeis 4 and if the two bits are 11 then the block size is 5)
Step 3: Read the block from Key-Il as X and Y perform the encryption operation using the formula
B=A* X +Y
Step 4: 1f round=0 then
k1=k1*2
k2=k2+block size *2
endif
Step 5: Repeat steps 1 to 4 until plaintext is finished
Round=Round+1
End of While

V. DECRYPTION ALGORITHM (METHODOLOGY)

Input: Cipher text, Key-I, Key-11,k1,k2
Output: Plain Text
Step O:
Apply circular shift of k1 bits and k2 bits for Key-I and Key-11 respectively.
—Round =0
While round < 2
Step 1: Read two bits from Key-I
Step 2: Depending on two bits of Key-1, select the block size as 2, 3, 4 or 5 bits from cipher text as B.
Step 3: Read the block from Key-11 as X and Y perform the decryption operation using the formula
A=(B + additive inverse(Y)) * Multiplicative inverse(X)
Step 4: Repeat steps 1 to 3 until cipher text is finished.
Round=Round+1
End of While

VI. EXPERIMENTAL RESULTS

The following tables represent the experimental results for the speed of the twofold key algorithm in two
rounds.

Table 17
The encr yption and decryption timesin thefir st round
Plaintext Sze (byte) Encryption time (ms) Decryption time (ms)
19000 69.86 105
20000 71 73
40000 144 178

50000 178 214
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Table 18
The encr yption and decr yption timesin the second round

Plaintext Sze (byte) Encryption time (ms) Decryption time (ms)
19000 157.72 165

20000 158 160

40000 303 372

50000 372 428

V. CONCLUSION AND FUTURE WORK

In this paper, we designed an encryption and decryption algorithm with the use of Galois Field GF(2"). We
come to conclusion that the more the rounds of the proposed algorithm are increased the higher security is
achieved. Twin key encryption and dynamic block size prevent exhaustive key search and differential
attacks. Non fixed (dynamic) size block cipher avoid replaying in authentication and attacks that can happen
on the fixed sized block cipher algorithms, dynamic block length in proposed algorithm lead to maximum
cryptographic confusion and consequently makes it difficult for cryptanalysis. In future the algorithm can
be enhanced by increasing the key size and number of rounds to secure the information that resistsall kinds
of attcks.
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