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Abstract: Long before technology was developed, folks had to trust patterns, observations and their expertise to

Nowcast snow/no-snow. In this paper, a new algorithm is proposed, based on the concepts of clustering and decision

tree approaches using historical weather datasets. The algorithm does not use the conventional decision tree approach

for identifying the split points; instead it introduces clustering mechanism to select split points. Concepts of clustering

is used to find the split points, concepts of decision tress is used to find the best split point, in which entropy is opted

as attribute selection measure. This offers better opportunity for data mining, and inherently provides an effective

method for nowcasting snow/no-snow.
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1. INTRODUCTION

Nowcasting combines a description of the current state of the atmosphere and a short-term forecast of how the

atmosphere will evolve during the next several hours. A convergence of technical developments has set the stage

for a major jump in nowcasting capabilities and the ability to apply those advances to important societal needs.

Accurate and timely nowcasting of snow/no-snow is a major challenge for the scientific community. Snowfall

nowcasting modeling involves a combination of computer models, observation and knowledge of trends and

patterns. Using these methods, reasonably accurate forecasts can be made up. Several recent research studies

have developed snowfall nowcasting using different weather and climate forecasting methods [8] [17] [24] [26-

35] [48-49]. For detailed literature, refer our previous papers [45-47].

In this paper, we propose Improved Snow Prediction Model using Optimal k-means Clustering (ISPM-

OC), which is based on an un-supervised learning method called clustering mechanism and supervised learning

method called decision tree construction. In the present research, k-means clustering mechanism is integrated

with SLIQ decision tree algorithm to nowcast snow/no-snow effectively. In SLIQ, at every node data is to be

sorted, splits are to be identified whenever there is a change in the class label. This increases the computation of

number of splits, which in-turn increases computational complexity. Hence, the proposed integrated approach

ISPM-OC employs a scheme that does away with the need to sort the data at every node of the decision tree.
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Instead, the training data need to be partitioned using k-means clustering only once for each numeric attribute at

the beginning of the tree growth phase. In addition, the split point value is computed at the cluster boundaries at

both the beginning and end of the cluster segments. Consequently, splits of all the leaves of the current tree are

simultaneously adopted in one pass over the data. The new technique, called ISPM-OC, is quite different from

existing methods, and it has many distinctive advantages.

The main contribution of this paper is that it proposes Improved Snow Prediction Model using optimal k-

means clustering, which is based on k-means clustering mechanism and SLIQ decision tree methods. It is

fundamentally different from existing decision tree techniques. Existing techniques evaluates split points whenever

there is a change in the class label. The proposed technique, however, finds split points based on cluster boundaries.

a. The model is capable to nowcast snow/no-snow based on the weather attributes: humidity, temperature,

pressure, wind speed, dew point and visibility more effectively.

b. The proposed model has the capability to predict weather before 4 hours more effectively.

c. A detailed evaluation against other prediction decision tree and non-decision tree algorithms is

performed, that provide a fair comparison to show the effectiveness of the proposed model.

d. The proposed model is evaluated with various performance measures such as accuracy, specificity,

sensitivity, precision, error rate and also in terms of number of split points.

The rest of the paper develops the idea further. Section 2 provides the description and working of the new

model. Section 3 analyzes and discusses the result and finally section 4 concludes the paper with future directions

and references.

2. ISPM-OC DECISION TREE ALGORITHM

The experimental implementation methodology of ISPM-OC algorithm consists of four stages: 1) a k-means

algorithm to group N data points into “k” disjoint clusters, where “k” is determined by an auto detection cluster

classifier algorithm explained later in this section; 2) identification of the split points; 3) evaluation of the

entropy for all the attributes; and 4) decision tree construction.

Algorithm

1. Read dataset to select the root node of the ISPM-OC decision tree.

2. Generate an attribute list for each attribute of the dataset.

3. Compute the Class Entropy for each class label
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4. Partition the training data along with the class label on each attribute “v
q
” using k-means clustering and

mark the beginning and ending value positions of each cluster segments as “s
p
”.

5. Create two subsets for each “s
p
” such that subset S

1
 has values less than “s

p
” and subset S

2 
has values

greater than or equal to “s
p
”.

6. Compute Attribute Entropy for each and every attribute “v
q
”
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7. Compute Entropy for each and every attribute “v
q
”

  Entropy Class Entropy Attribute Entropy  (3)

8. The maximum Entropy is considered to be the best split point and becomes the root node.

9. Repeat Steps 6 through 8, generating leaf nodes in place of the root node until all leaf nodes contain the

same class labels.

A fundamental problem in k-means clustering is to determine the number of clusters, which is usually

taken as prior or fixed. The selection of a good value for “k” can affect the overall accuracy of the algorithm, and

clustering solutions may vary as different numbers of clusters are specified. A clustering technique would most

possibly recover the underlying cluster structure, given a good estimate of the true number of clusters. To

overcome the scenario, in this paper, an Optimal Decision Cluster Classifier is proposed. Choosing a value for

“k” by visual inspection can be automated by using the percentage of variance  of clusters that determines the

optimum number of clusters. This method finds the optimal number of clusters automatically, based on the

relationship between consecutive differences among the data points.

Optimal Clustering

1. Read all the records of an attribute.

2. Compute consecutive differences for all the records.

3. Repeat Step 2, till it ends with a single record value for a particular attribute.

4. Traverse from bottom to top to identify the maximum single digit value i.e., 1–9.

5. The iteration that has the maximum single digit value is taken to be the optimal cluster size.

3. RESULTS AND DISCUSSION

The performance of the ISPM-OC algorithm was compared with the other decision tree algorithms: Decision

Stump, J48, LMT, Random Forest, REP Tree, SLIQ, SPM, SLGAS, ISLIQ, ISPM, ISLGAS and ISLIQ-OC and

non-decision tree algorithms: Bayes Net, Naïve Bayes, Multilayer Perceptron, SMO and Simple Logistic using

20 international locations snow/no-snow datasets taken from the www.wunderground.com. All results that we

subsequently report are based on tenfold cross validation. Table 1 provides a detailed illustration on the dataset.

The comparison of split points is discussed in Table 2, number of split points are significantly better

(shown in boldface font) for most of the datasets. The comparison of classification accuracy with our previous

developed decision tree algorithms is discussed in Table 3. The classification accuracy is significantly better for

most of the datasets, except for the few datasets where the accuracy is marginally less. However, on an average

the proposed method yields an average accuracy of 89.64%. The comparison of classification accuracy with

non-decision tree algorithms is discussed in Table 4. The classification accuracy is significantly better for most

of the datasets, except for the few datasets where the accuracy is marginally less. However, on an average the

proposed method yields an average accuracy of 89.64%. The comparison of classification accuracy with existing

decision tree algorithms is discussed in Table 5. The classification accuracy is significantly better for most of the

datasets, except for the few datasets where the accuracy is marginally less. However, on an average the proposed

method yields an average accuracy of 89.64%.

The comparison of classification error-rate with other decision tree algorithms is discussed in Table 6. The

classification error-rate is significantly better for most of the datasets, except for the few datasets where the

error-rate is marginally more. However, on an average the proposed method yields an average error-rate of

10.35%.
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Further, the size of the decision tree constructed, time taken and number of rules computed using the

proposed algorithm is significantly less compared with that of other decision tree algorithms.

Table 2

Comparison of Split Points

City Name SPM ISPM ISPM-OC

Aberden 740 210 65

Bangkok 112 50 75

Barcelona 174 41 67

Benton 449 208 81

Botswana 195 88 67

Brazil 460 299 79

Cairo 165 162 67

Chennai 130 64 69

Delhi 281 162 66

Eglinton 360 43 69

Humberside 171 34 58

Hyderabad 116 72 68

Iceland 385 207 74

Lahore 190 51 69

Manchester 499 211 227

Norway 765 560 67

Perth 246 136 67

Sellaness 391 154 65

Tirupathi 154 108 71

Valley 706 200 854

Average 334.5 153 116.25

Table 1

Data set Description

City Name Instances Training Testing Attributes Classes

Aberdeen 6333 4750 1583 5 2

Bangkok 5740 4305 1435 5 2

Barcelona 6013 4510 1504 5 2

Benton 23042 17281 5761 5 2

Botswana 6047 4535 1512 5 2

Brazil 6367 4775 1592 5 2

Cairo 6143 4607 1536 5 2

Chennai 6033 4525 1508 5 2

Delhi 6015 4511 1504 5 2

Eglinton 6318 4738 1580 5 2

Humberside 1036 777 259 5 2

Hyderabad 5849 4387 1462 5 2

Iceland 3512 2634 878 5 2

Lahore 4887 3665 1222 5 2

Manchester 6338 4753 1585 5 2

Norway 6105 4579 1526 5 2

Perth 6182 4636 1546 5 2

Sellaness 5412 4059 1353 5 2

Tiruptahi 6039 4529 1510 5 2

Valley 6082 4561 1521 5 2
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Table 3

Comparison of accuracy with previous decision tree algorithms

City Name SLIQ SPM SLGAS ISLIQ ISPM ISLGAS ISLIQ-OC ISPM-OC

Aberden 87.3 85.47 85.97 87.61 87.68 88.98 85.84 85.844

Bangkok 96.09 94.49 95.19 98.11 98.32 97.9 98.53 96.3

Barcelona 95.8 95.14 95.67 96.07 96.07 96.07 95 95.27

Benton 70.05 70.14 72.03 70.12 70.24 70.41 69.93 68.14

Botswana 93.78 96.16 93.58 95.43 96.29 96.62 98.21 98.14

Brazil 75.5 73.05 75.75 73.36 75.18 75.6 71.98 75.37

Cairo 88.99 89.7 89.77 89.98 89.32 90.1 91.6 91.53

Chennai 76.65 76.12 77.51 76.35 74.6 72.08 82.82 81.43

Delhi 96.14 94.94 96.8 93.15 96.34 96.8 95.74 92.95

Eglinton 89.24 90.06 90.06 89.56 89.75 89.87 89.24 89.37

Humberside 93.05 94.59 94.98 93.82 94.2 94.82 94.2 93.05

Hyderabad 96.5 97.8 94.79 96.4 97.8 97.67 97.6 98.15

Iceland 89.17 88.49 90.2 88.49 88.95 87.81 87.47 88.61

Lahore 84.82 86.05 85.89 84.65 86.38 85.06 84.65 84.74

Manchester 92.74 92.87 89.58 93.43 91.29 92.36 92.11 92.49

Norway 88.99 90.89 90.62 90.89 90.69 90.3 89.18 90.82

Perth 94.3 94.43 96.31 94.43 94.24 94.37 94.37 95.14

Sellaness 75.9 77.67 79.45 84.4 84.18 84.7 83 83.66

Tirupathi 97.54 97.41 97.41 97.48 97.54 97.35 98.87 99

Valley 90 91.38 90.32 91.3 90.52 91.76 92.36 92.96

Average 88.62 88.84 89.09 89.25 89.47 89.53 89.63  89.64

Table 4

Comparison of accuracy with non-decision tree algorithms

City Name Bayes Net Naïve Bayes Multilayer Perceptron SMO Simple Logistic ISPM-OC

Aberdeen 82.53 80.66 85.86 80.82 81.47 85.844

Bangkok 98.95 97.91 98.95 98.95 98.95 96.3

Barcelona 96.27 96.93 98.6 98.33 98.4 95.27

Benton 65.55 63.83 68.35 65.36 65.41 68.14

Botswana 99.27 99.4 99.4 99.2 99.13 98.14

Brazil 74.41 74.41 76.86 74.03 74.41 75.37

Cairo 95.83 96.67 97.65 97.52 97.65 91.53

Chennai 87.73 82.09 85.95 85.95 85.95 81.43

Delhi 86.16 85.29 90.48 89.28 88.95 92.95

Eglinton 94.49 95.69 95.75 95.18 95.69 89.37

Humberside 84.32 83.14 84.18 85.33 84.71 93.05

Hyderabad 99.31 99.31 99.31 99.31 99.31 98.15

Iceland 85.64 82 86.33 83.48 82.34 88.61

Lahore 83.85 80.09 86.96 87.21 86.97 84.74

Manchester 86.04 87.05 89.14 87.24 87.75 92.49

Norway 86.15 85.14 84.33 86.79 84.31 90.82

Perth 88.18 87.15 88.19 87.44 87.39 95.14

Sellaness 88.76 86.17 86.5 87.58 88.17 83.66

Tiruptahi 88.53 84.36 95.69 95.56 95.56 99

Valley 88.18 87.17 89.53 88.75 89.14 92.96

Average 88 86.72 89.4 88.66 88.58 89.64
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Table 5

Comparison of accuracy with existing decision tree algorithms

City Name Decision J48 LMT Random Forest REP Tree ISPM-OC

Aberdeen 78.9 89.19 86.44 99.03 87.98 85.84

Bangkok 98.95 98.95 98.95 98.74 98.95 96.3

Barcelona 98.33 98.33 98.4 98.33 98.33 95.27

Benton 63.29 68.48 68.52 66.18 68.24 68.14

Botswana 99.2 99.27 99.13 99.4 99.2 98.14

Brazil 68.44 65.85 67.24 67.99 65.92 75.37

Cairo 97.52 97.85 97.65 97.39 97.78 91.53

Chennai 85.95 85.95 85.95 85.35 86.02 81.43

Delhi 80.5 89.85 88.95 88.02 89.95 92.95

Eglinton 85.18 86.45 86.26 86.07 86.2 89.37

Humberside 91.35 91.28 91.65 92.32 91.55 93.05

Hyderabad 89.31 89.31 89.31 89.31 89.31 98.15

Iceland 81.77 87.35 87.47 85.53 86.44 88.61

Lahore 84.84 87.05 86.96 86.47 87.05 84.74

Manchester 84.72 88.63 88.06 87.24 88 92.49

Norway 88.41 86.49 86.11 86.31 86.69 90.82

Perth 91.42 93.21 90.73 92.69 91.76 95.14

Sellaness 78.83 80.24 81.27 80.09 79.87 83.66

Tiruptahi 95.56 95.56 95.56 95.42 95.56 99

Valley 88.75 89.14 89.73 89.01 89.07 92.96

Average 85.56 88.42 88.21 88.54 88.19 89.64

Table  6

Comparison of error rate with other decision tree algorithms

City Name SLIQ SPM SLGAS ISLIQ ISPM ISLGAS ISLIQ-OC ISPM-OC

Aberdeen 12.7 14.53 14.03 12.39 12.32 11.02 14.16 14.156

Bangkok 3.91 5.51 4.81 1.89 1.68 2.1 1.47 3.7

Barcelona 4.2 4.86 4.33 3.93 3.93 3.93 5 4.73

Benton 29.95 29.86 27.97 29.88 29.76 29.59 30.07 31.86

Botswana 6.22 3.84 6.42 4.57 3.71 3.38 1.79 1.86

Brazil 24.5 26.95 24.25 26.64 24.82 24.4 28.02 24.63

Cairo 11.01 10.3 10.23 10.02 10.68 9.9 8.4 8.47

Chennai 23.35 23.88 22.49 23.65 25.4 27.92 17.18 18.57

Delhi 3.86 5.06 3.2 6.85 3.66 3.2 4.26 7.05

Eglinton 10.76 9.94 9.94 10.44 10.25 10.13 10.76 10.63

Humberside 6.95 5.41 5.02 6.18 5.8 5.18 5.8 6.95

Hyderabad 3.5 2.2 5.21 3.6 2.2 2.33 2.4 1.85

Iceland 10.83 11.51 9.8 11.51 11.05 12.19 12.53 11.39

Lahore 15.18 13.95 14.11 15.35 13.62 14.94 15.35 15.26

Manchester 7.26 7.13 10.42 6.57 8.71 7.64 7.89 7.51

Norway 11.01 9.11 9.38 9.11 9.31 9.7 10.82 9.18

Perth 5.7 5.57 3.69 5.57 5.76 5.63 5.63 4.86

Sellaness 24.1 22.33 20.55 15.6 15.82 15.3 17 16.34

Tiruptahi 2.46 2.59 2.59 2.52 2.46 2.65 1.13 1

Valley 10 8.62 9.68 8.7 9.48 8.24 7.64 7.04

Average 11.4 11.2 10.9 10.74 10.5 10.46 10.36 10.35
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4. CONCLUSION

The IPSM-OC algorithm has outperformed when compared with the other decision tree algorithms: Decision

Stump, J48, LMT, Random Forest, REP Tree, SLIQ, SPM, SLGAS, ISLIQ, ISPM, ISLGAS and ISLIQ-OC and

non-decision tree algorithms: Bayesian Networks, Naïve Bayes, Multilayer Perceptron, SMO and Simple Logistic

over 20 international locations snow/no-snow datasets taken from the www.wunderground.com. The classification

accuracy, sensitivity, specificity, error rate and number of rules are significantly better in the case of proposed

algorithm compared to that of previous algorithms. Huge reduction in number of split points during the construction

of the decision tree over the majority datasets is, on average, observed for the ISPM-OC algorithm in comparison

to other decision tree algorithms.
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