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Approximation by Fejér Operator

S. N. Dubey

Abstract: The present paper embodies the notion of the approximation of a
2rn-periodic continuous function satisfying a Lipschitz condition of order a with
constant M, i.e. Lip,, o for 0 < a < 1 by Fejér operator. As a matter of course, our
result may be deemed to be a quantitative version of Fejér’s Theorem. Constants
of approximation have inter alia been taken into notice quite meticulously.

1. Introduction and Main Result

Let S (f) designate the nth partial sum of the Fourier series of /. The Fejér sums of
fare defined as follows:
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for this concept the reference may be made to DeVore [4].

The well-known theorem of Fejér states that ¢ (f) converges to f at every
point of continuity of f, for more detailed study of these ideas, the reference may be
made to Zygmund {[8], p. 89}.

It is worth-mentioning and contextual also that the vital theme of the theory of
approximation of functions is to connect the smoothness of the function f with the
rate of convergence of o (f) to 0. As a matter of rule, the smoother the function, the
faster the error tends to zero for n — oo, The smoothness properties upon fare quite
often expressed in terms of Lipschitz classes, modulus of continuity, modulus of
smoothness, bounded variation and differentiability; for these notions, the reference
may be made to Butzer and Nessel [2].

So far as the approximation of f by Fejér’s operator (¢ (f)) is concerned, we
have the following result:

lf—oc (HI<A+m)w(f,n'?). (1.1)
For more details in this direction, the reference may be made to DeVore {[4],
p. 35}.

The main object of this paper is to ponder over the approximation of the function
Sby the Fejér operator 6 (f) in terms of Lipschitz condition of order o (O < 1< 1),
i.e. Lip,,a where M is some constant, by taking utmost care of all constants.
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More precisely, we prove the following:

Theorem: Let f be a 2n-periodic continuous function satisfying Lip,,a for
0 < a < 1. Then the approximation of /' by Fejér operator ¢ (f) is given by:

) 1 u
|cn(f)—f|{Mn {(1+a)+2(1—a)}" } (1.2)

2. Proof of the Theorem
It is well known that {Bary [1], p. 140 — (49.4)}
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where
gO=fx+0+fx—0-2f(x),
and

n
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In order to evaluate the above integral we break it up into two intervals as
follows:
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=a + [, say.

By virtue of the facts that g () belongs to Lip,, o, we have | g (1) < Mr*, where
M is some constant and O < o< 1, and | K ()| < 2n (for n 2 1), for this inequality,
the reference may be made to Bary {[1], p. 140 — (49.5)}; we ascertain
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2
Secondly, we estimate . In view of the fact that IK, (f)|<—= > for
2(n+1)t

0 < |t < m, for this fact the references may be made to Bary {[1], p. 134 — (47.6)}
and Powell and Shah {[5], p. 120 — (5.27)}. Then we have the following

T
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Now substituting (m/s) for ¢, we obtain
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On collecting the estimates (2.1) and (2.2), we eventually obtain

e M
(1+a) 2(1-a)

{ a{ 2 1 } a:|
<|Mn + n .
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This completes the proof of the Theorem.

o o
I, (f) — 1< {ZMﬂ: o, Mn a}

Remark: The similar estimates may be ascertained by assuming f to be a
2m-periodic continuous function of bounded variation on [T, w].
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