International Review of Pure and Applied Mathematics Volume 14 • Number 2 • July-December 2018

THE FORCING RESTRAINED EDGE MONOPHONIC NUMBER OF A GRAPH

P. Arul Paul Sudhahar and C.Bency

Abstract: For the connected graph G = (V, E) of order at least two, a chord of a path P is an edge joining two non-adjacent vertices of P is called a monophonic Path if it is a chordless path. Let G be a connected graph and M is a minimum restrained edge monophonic set of G. A subset $T \subseteq M$ is called a forcing subset for *M* if *M* is the unique minimum restrained edge monophonic set containing *T*. A forcing subset for *M* of minimum cardinality is a minimum forcing subset of *M*. The forcing restrained edge monophonic number of M, denoted by $f_{em_r}(M)$, is the cardinality of a minimum forcing subset of M. The forcing restrained edge monophonic number of G, denoted by $f_{em_r}(G)$, is $f_{em_r}(G) = \min \{f_{em_r}(M)\}$, Where the minimum is taken over all minimum restrained edge monophonic sets M in G. We determine bounds for if and find the forcing restrained edge monophonic number of certain classes of graphs. For every pair *a*, *b* of integers with $0 \le a \le b$ and $b \ge 2$, there exists a connected graph G such that $f_{em_r}(G) = f_{em}(G) = 0$, em(G)= a and $em_r(G) = b$. For every integers a, b and c with $0 \le a < b \le c$ and b > a + 1, there exists a connected graph G such that $f_{em_r}(G) = 0, f_{em}(G) = a, em(G) = b$ and em_r (G) = c. For every integers a, b and c with $0 \le a < b < c$ and c > a + b, there exists a connected graph G such that $f_{em_r}(G) = f_{em}(G) = a$, em(G) = b and $em_r(G) = c$.

AMS Subject Classification: 05C12

Key Words and Phrases: Edge monophonic set, edge monophonic number, restrained edge monophonic set, restrained edge monophonic number, forcing restrained edge monophonic set, forcing restrained edge monophonic number

1. INTRODUCTION

By a graph G = (V, E), we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q, respectively. The neighborhood of a vertex v is the set N(v) consisting of all vertices u which are adjacent with v. The closed neighborhood of a vertex v is the set $N[v] = N(v) \cup \{v\}$. A vertex v is an extreme vertex if the subgraph induced by its neighbors is complete. A vertex v is a semi-extreme vertex of G if the subgraph induced by its neighbors has a full degree vertex in N(v). In particular, every extreme vertex is a semiextreme vertex and a semi-extreme vertex need not be an extreme vertex. A chord of a path $u_1, u_2, ..., u_k$ in G is an edge $u_i u_j$ with $j \ge i + 2$. A u - v path P is called a monophonic path if it is a chordless path. A set M of vertices is an edge monophonic set if every vertex of *G* lies on an edge monophonic path joining some pair of vertices in *M*, and the minimum cardinality of an edge monophonic set is the edge monophonic number em(G) of *G*. An edge monophonic set of cardinality em(G) is called an *em*-set of *G*. The monophonic domination number of a graph *G* was studied in [9]. A set *M* of vertices of a connected graph *G* is a restrained edge monophonic set if either V = M or *M* is an edge monophonic set with the subgraph G[V - M] induced by V - M has no isolated vertices. The minimum cardinality of a restrained edge monophonic set of *G* is the restrained edge monophonic number of *G*, and is denoted by $em_r(G)$.

Theorem 1 Each extreme vertex of a connected graph G belongs to every restrained edge monophonic set of G.

2. FORCING RESTRAINED EDGE MONOPHONIC NUMBER OF A GRAPH

Definition 2. Let *G* be a connected graph and *M* is a minimum restrained edge monophonic set of *G*. A subset $T \subseteq M$ is called a forcing subset for *M* if *M* is the unique minimum restrained edge monophonic set containing *T*. A forcing subset for *M* of minimum cardinality is a minimum forcing subset of *M*. The forcing restrained edge monophonic number of *M*, denoted by $f_{em_r}(M)$, is the cardinality of a minimum forcing subset of *M*. The forcing restrained edge monophonic number of *G*, denoted by $f_{em_r}(G)$, is $f_{em_r}(G) = \min \{f_{em_r}(M)\}$, Where the minimum is taken over all minimum restrained edge monophonic sets *M* in *G*.

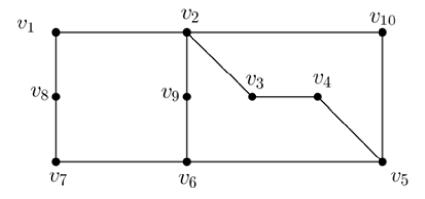


Figure 1: The graph G is Forcing Restrained Edge Monophonic Number of a Graph

Example 3. For the graph G given in Figure 1, $M_1 = \{v_1, v_7, v_8\}, M_2 = \{v_1, v_2, v_8\}, M_3 = \{v_2, v_6, v_9\}, M_4 = \{v_2, v_5, v_{10}\}, M_5 = \{v_3, v_4, v_5\}, \text{ and } M_6 = \{v_6, v_7, v_8\}, \text{ are the only six minimum restrained edge monophonic sets of G. It is clear that <math>f_{em_r}(M_1) = 1, f_{em_r}(M_2) = 1, f_{em_r}(M_3) = f_{em_r}(M_4) = f_{em_r}(M_5) = f_{em_r}(M_6) = 2$ so that $f_{em_r}(G) = 1$.

Theorem 4. For any connected graph G, $0 \le f_{em_r}(G) \le em_r(G) \le p$

Theorem 5. Let G be a connected graph. Then

- (a) $f_{em_r}(G) = 0$ if and only if G has a unique minimum restrained edge monophonic set.
- (b) $f_{em_r}(G) = 1$ if and only if G has atleast two minimum restrained edge monophonic sets, one of which is a unique minimum restrained edge monophonic set containing one of its elements,
- (c) $f_{em_r}(G) = f_{em_r}(G)$ if and only if no minimum restrained edge monophonic set of G is the unique minimum restrained edge monophonic set of containing any of its proper subsets.

Proof. (a) Let $f_{em_r}(G) = 0$. Then, by definition, $f_{em_r}(M) = 0$ for some minimum restrained edge monophonic set M of G so that the empty set φ is the minimum forcing subset for M. Since the empty set φ is a subset of every set, it follows that M is the unique minimum restrained edge monophonic set of G. The converse is clear.

(b) Let $f_{em_r}(G) = 1$. Then by Theorem 5(a), *G* has at least two minimum restrained edge monophonic sets. Also since $f_{em_r}(G) = 1$ there is a singleton subset *T* of a minimum restrained edge monophonic set *M* of *G* such that *T* is not a subset of any other minimum restrained edge monophonic set containing one of its elements. The converse is clear.

(c) $f_{em_r}(G) = em_r(G)$. Then $f_{em_r}(M) = em_r(G)$. for every minimum restrained edge monophonic set M in G. Also, by Theorem 5, $em_r(G) \ge 2$ and hence $f_{em_r}(G) \ge 2$. Then by Theorem 5(a), G has atleast two minimum restrained edge monophonic sets and so the empty set φ is not a forcing for any minimum restrained edge monophonic set of G. Since $f_{em_r}(M) = em_r(G)$ no proper subset of M is a forcing subset of M. Thus, no minimum restrained edge monophonic set of G is the unique minimum restrained edge monophonic set containing any of its proper subsets. Conversly, G contains more than one minimum restrained edge monophonic set and no subset of any minimum restrained edge monophonic set M other than M is a forcing subset for M. Hence it follows that $f_{em_r}(G) = em_r(G)$.

Definition 6. A vertex v of a connected graph G is said to be a restrained edge monophonic vertex of G if v belongs to every minimum restrained edge monophonic set of G.

Example 7. For the graph G given in Figure 2, $M_1 = \{v_1, v_4, v_6\}$ and $M_2 = \{v_1, v_4, v_7\}$ are the only two restrained edge monophonic sets of G. It is clear that v_1 and v_4 are restrained edge monophonic vertices of G.

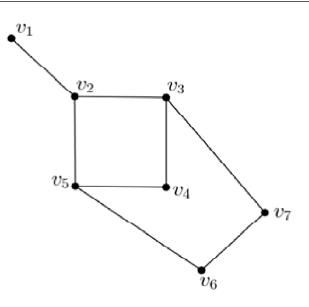


Figure 2: The graph G is Restrained Edge Monophonic Vertices of a Graph

Theorem 8. Let *G* be a connected graph and let \mathfrak{I} be the set of relative complements of the minimum forcing subsets in their respective minimum restrained edge monophonic sets in *G*. Then $\bigcap_{F \in \mathfrak{I}} F$ is the set of restrained edge monophonic vertices of *G*.

Proof. Let *W* be the set of all restrained edge monophonic vertices of *G*. We show that $W = \bigcap_{F \in \mathfrak{I}} F$. Let *v* is a restrained edge monophonic vertex of *G* that belongs to every minimum restrained edge monophonic set *M* of *G*. Let $T \subseteq M$ be any minimum forcing subset for any minimum restrained edge monophonic set *M* of *G*. Let $T \subseteq M$ be any claim that $v \notin T$. If $v \in T$, then $T = T - \{v\}$ is a proper subset of *T* such that *M* is the unique minimum restrained edge monophonic set containing *T* so that *T* is a forcing subset for *M* with |T| < |T|, which is a contradiction to *T* is a minimum forcing subset for *M*. Thus $v \notin T$ and so $v \in F$, where *F* in the relative complement of *T* in *M*. Hence $v \in \bigcap_{F \in \mathfrak{I}} F$ so that $W \subseteq \bigcap_{F \in \mathfrak{I}} F$. Conversly, let $v \in \bigcap_{F \in \mathfrak{I}} F$. Then *v* belongs to the relative complement of *T* in *M* for every *M* such that *T* $\subseteq M$, where *T* is a minimum forcing subset for *M*. Since *F* is the relative complement of *T* in *M*, we have $F \subseteq M$ for every *M*, which implies that *v* is a restrained edge monophonic vertex of *G*. Thus $v \notin W$ and so $\bigcap_{F \in \mathfrak{I}} F \subseteq W$. Hence $W = \bigcap_{F \in \mathfrak{I}} F$.

Theorem 9. Let *G* be a connected graph and *W* be the set of all restrained edge monophonic vertices of *G*. Then $f_{em_r}(G) \le em_r(G) - |W|$.

Proof. Let *M* be any minimum restrained edge monophonic set *M* of *G*. Then $em_r(G) = |M|, W \subseteq M$ and *M* is the unique minimum restrained edge monophonic set containing M - W. Thus $f_{em_r}(G) \le |M - W| = |M| - |W| = em_r(G) - |W|$.

Theorem 10. For a cycle $G = C_p$ $(p \ge 6), f_{em_r}(G) = 2$.

Proof. Let $em_r(G) = 2$ and by Theorem 4, $0 \le f_{em_r}(G) \le 2$. Suppose $0 \le f_{em_r}(G) \le 1$. Since $em_r(G) = 2$, the restrained edge monophonic set of *G* is not the unique. Hence by Theorem 5(b), $f_{em_r}(G) = 1$. Let $M = \{u, v\}$, be a restrained edge monophonic set of *G*. Let us assume that $f_{em_r}(M) = 1$. By Theorem 5(b), *M* is the only restrained edge monophonic set containing *u* or *v*. Let us assume that *M* is the only restrained edge monophonic set containing *u*. *u* is adjacent to more than two vertices of *G*, which is a contradiction to *G* is a cycle. $f_{em_r}(G) = 2$.

3. REALIZATION RESULTS

Theorem 11. For every pair *a*, *b* of integers with $0 \le a \le b$ and $b \ge 2$, there exists a connected graph *G* such that $f_{em_r}(G) = f_{em}(G) = 0$, em(G) = a and $em_r(G) = b$.

Proof. Let $P_i: u_i, v_i$, be a copy of order 2, and let $K_{2,b-a}$ be the complete bipartite graph with bipartite sets $X = \{x_1, x_2\}$ and $Y = \{y_1, y_2, ..., y_{b-a}\}$. Let *G* be the graph obtained from adding the new verices $z_1, z_2, ..., z_{a-2}$ and join each z_i $(1 \le i \le a - 1)$ to v_a , and join x_1 and x_2 to u_1 . The graph *G* is given in Figure 3.

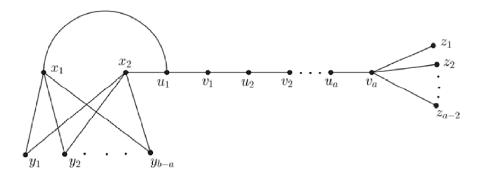


Figure 3: The graph G in Theorem 11

Let $Z = \{z_1, z_2, ..., z_{a-2}\}$ be the set of all end vertices of G. Z is a not an edge monophonic set of G. $Z_1 = Z \cup \{x_1, x_2\}$. Then it is clear that Z is the unique edge monophonic set of G so that em(G) = a and $f_{em}(G) = 0$ by Theorem 5(a). By Theorem 1, Z_1 is a subset of every restrained edge monophonic set of G. We see that Z_1 is not a restrained edge monophonic set of G. Now, it is easily seen that $W = Z_1 \cup \{y_1, y_2, ..., y_{b-a}\}$ is the unique restrained monophonic set of G so that em_r $(G) = band f_{em_r}(G) = 0$ by Theorem 5(a).

Theorem 12. For every integers *a*, *b* and *c* with $0 \le a < b \le c$ and b > a + 1, there exists a connected graph *G* such that $f_{em_r}(G) = 0$, $f_{em}(G) = a$, em(G) = b and $em_r(G) = c$.

Proof. let $C_i : u_i, v_i, w_i, y_i$ be a cycle of order 4, and let $K_{1,b-a}$ be a star with the cut vertex x and $K_{1,b-a} = \{x, z_1, z_2, ..., z_{b-a}\}$. Let G be the graph obtained from adding the new vertices $l_1, l_2, ..., l_{c-b}$ and join each l_i $(1 \le i \le c - b)$ to each y_i $(1 \le i \le a)$ and join each u_i $(1 \le i \le a)$ to x. The graph G is shown in Figure 4.

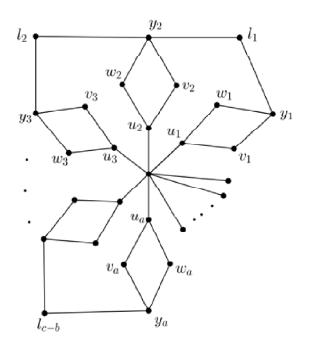


Figure 4: The graph G in Theorem 12

Let $Z = \{z_1, z_2, ..., z_{b-a}\}$ be the set of all end vertices of G. It is clear that Z is not an edge monophonic set of G. For $1 \le i \le a$, let $N_i = \{v_i \mid u_i, w_i\}$. We observe that every edge monophonic set of G must contain at least one vertex from each N_i so that $em(G) \ge b - a + a = b$. Now, $W = Z \cup \{y_1, y_2, \dots, y_a\}$ is an edge monophonic set of G so that em(G) = b. Next, we show that $f_{em}(G) = a$. Since every restrained monophonic set contains Z, it follows from Theorem 9 that $f_{em}(G) \leq em(G) - (b - b)$ a) = a. Now, since em(G) = b and every edge monophonic set contains Z, it is easily seen that every edge monophonic set M of the $Z \cup \{d_1, d_2, ..., d_n\}$, Where $d_i \in N_i$ $(1 \le i \le a)$. Let T be any proper subset of M with |T| < a. Then there exists d_i $(1 \le j \le a)$ such that $d_i \in T$. Let e_j be the vertex of N_i distinct from d_j . Then $W = (M - \{d_i\}) \cup \{e_i\}$ is an edge monophonic set properly containing T. Thus M is not the unique edge monophonic set containing T so that T is not a forcing subset of *M*. This is true for all edge monophonic sets of *G* so that $f_{em}(G) = a$. Next, we show that $em_r(G) = c$. Now, $W = Z \cup \{l_1, l_2, ..., l_{c,b}\} \cup \{y_1, y_2, ..., y_a\}$ is the unique restrained edge monophonic set of G so that $em_r(G) = c$ and $f_{em_r}(G) = 0$, by Theorem 5(a).

Theorem 13. For every integers *a*, *b* and *c* with $0 \le a < b < c$ and c > a + b, there exists a connected graph *G* such that $f_{em_r}(G) = f_{em}(G) = a$, em(G) = b and $em_r(G) = c$.

Proof. let $C_i : u_i, v_i, w_i$, be a cycle of order 3. and let $K_{2,c-b-a}$ be the complete bipartite graph with bipartite sets $X = \{x_1, x_2\}$ and $Y = \{y_1, y_2, ..., y_{c-b-a}\}$. Let *G* be the graph obtained from adding the new verices $z_1, z_2, ..., z_{b-a-2}, t_1, t_2, ..., t_a$, and join each y_i $(1 \le i \le a)$ to each v_i $(1 \le i \le a)$ and join each z_i $(1 \le i \le b - a - 2)$ to v_a and join x_1 and x_2 with u_1 . The graph *G* is given in Figure 5.

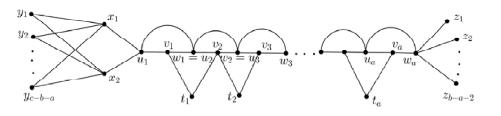


Figure 5: The graph G in Theorem 13

Let $Z = \{z_1, z_2, ..., z_{b-a-2}\}$ be the extreme vertices of G. Then $Z_1 = Z \cup \{x_1, x_2\}$, it is clear that Z_1 is not an edge monophonic set of G. For $1 \le i \le a$, let $N_i = \{v_i\}$. We observe that every edge monophonic set of G must contain a vertex from N_i so that $em(G) \ge b - a + a = b$. Now, $W = Z_1 \cup \{v_1, v_2, ..., v_a\}$ is an edge monophonic set of G so that em(G) = b. Next, we show that $f_{em}(G) = a$. Since every edge monophonic set containing $Z \cup \{v_1, v_2, ..., v_a\}$, it follows from Theorem 1, that $f_{em}(G) \le em(G) -$ (b - a) = a. Now, since em(G) = b and every edge monophonic set contains Z, it is easily seen that every edge monophonic set M of the $Z \cup \{d_1, d_2, ..., d_a\}$, Where $d_i \in N_i$ $(1 \le i \le a)$. Let T be any proper subset of M with |T| < a. Then there exists d_j $(1 \le j \le a)$ such that $d_j \in T$. Let ej be the vertex of N_j distinct from d_j . Then $W = (M - \{d_j\}) \cup \{e_j\}$ is an edge monophonic set properly containing T. Thus M is not the unique edge monophonic set containing T so that T is not a forcing subset of M. This is true for all edge monophonic sets of G so that $f_{em}(G) = a$.

Next, we show that $em_r(G) = c$. Z_1 is a subset of every restrained monophonic set of G. It is clear that Z_1 is not a restrained edge monophonic set of G. We observe that every edge monophonic set of G so that $em_r(G) \ge b - a + c - b - a = c$. Now, $W_1 = W \cup \{y_1, y_2, ..., y_{c-b-a}\} \cup \{v_1, v_2, ..., v_a\}$ is a restrained edge monophonic set of G so that $em_r(G) \ge c$. Next, we show that $f_{em_r}(G) = a$. Since every restrained monophonic set containing $W \cup \{y_1, y_2, ..., y_{c-b-a}\}$, it follows from Theorem 1, that $f_{em_r}(G) \le f_{em_r}(G) - (b - a + c - b) = c - b + a - c + b = a$. Now since $em_r(G) = c$ and every restrained edge monophonic set M is of the form $W \cup \{y_1, y_2, ..., y_{c-b-a}\} \cup \{p_1, p_2, ..., p_a\}$, where $p_i \in M_i$ $(1 \le i \le a)$. Let T be any proper subset of M with |T| < a. Then

there exists p_j such that $p_j \in T$. Let e_j be the vertex of M_j distinct from p_j . Then $W = (M - \{p_j\}) \cup \{e_j\}$ is a restrained edge monophonic set properly containing T. Thus M is not the unique restrained edge monophonic set containing T so that T is not a forcing subset of M. This is true for all restrained edge monophonic sets containing G so that $f_{em_r}(G) = a$.

REFERENCES

- [1] P. Arul Paul Sudhahar, C. Bency, A. Vijayan The Restrained Monophonic DominationNumber of Graph. *Applied Mathematics* (2017) : 7(1) : 14-17.
- [2] F. Buckley and F. Harary, Distance in Graphs, Addition- Wesley, Redwood City, CA, (1990).
- [3] G. Chartrand, P. Zhang, The forcing geodetic Number of a Graph, Discuss. Math. Comput.Modeling. 17(11)(1993) pp 45 - 58.
- [4] Esamel M. paluga, Sergio R. Canoy, Jr., Monophonic Numbers of the join and Compositionof Connected Graphs, *Discrete Mathematics* 307(2007), 1146-1154.
- [5] Gary Chartrand and P. Zhan G, Introduction to Graph Theory. Mac Graw Hill (2005).
- [6] F. Harary, Graph Theory, Narosa Publishing House (1997).
- [7] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in graphs.Vol. 208, Marcel Dekker Inc, New York, 1998.
- [8] J. John and P. Arul Paul Sudhahar, The Forcing Edge Monophonic Number of a Graph.Series A: Mathematical Sciences, Vol. 23 (2012), 8798.
- [9] J. John and P. Arul Paul Sudhahar, The Monophonic Domination Number of a Graph.Proceedings of the International Conference on Mathematics and BusinessManagement. (2012) pp 142-145.

P. Arul Paul Sudhahar

Assistant Professor of Mathematics, Rani Anna Government College for Women, Thirunelveli 627 008, India, E-mail: arulpaulsudhar@gmail.com

C. Bency

Research Scholar (Reg. No:12421),

Department of Mathematics, Rani Anna Government College for Women, Thirunelveli 627 008, India, Manonmaniam Sundaranar University Tirunelveli - 627 012, E-mail: benlynneve@gmail.com