

INTERNATIONAL JOURNAL OF TROPICAL AGRICULTURE

ISSN : 0254-8755

available at http://www.serialsjournal.com

© Serials Publications Pvt. Ltd.

Volume 35 • Number 4 • 2017

Interaction Effect of Soil Fertility, Fertilizer Recommendation Approaches and Varieties on Yield and Quality of Oat (Avena Sativa L.)

Shikha^{*1,2}, S. Singh² and R. G. Upadhayay³

¹ KVK, Ranichauri, VCSG, UUHF, Tehri Garhwal - 249199, Uttarakhand, India ² Department of Soil Science, College of Agriculture, G.B. Pant University of Agriculture and Technology, Pantnagar - 263145, Uttarakhand, India ³ Joint Director Extension, VCSG, UUHF, Tehri Garhwal - 249199, Uttarakhand, India *E-mail: shikha9104@gmail.com

Abstract: A field experiment was conducted to assess the response behavior of Oats (*Avena sativa* L.) under different fertility levels and fertilizer recommendation approaches to workout interaction effects of soil fertility (low, medium and high) and fertilizer recommendation approaches (GRD, STCR and STCR with INM) for oats during Rabi 2014-15. The experiment was carried out with three treatments consisting of three fertility levels (F_1 , F_2 , F_3), three varieties (V_1 , V_2 , V_3) and three fertilizer recommendation approaches (M_1 , M_2 , M_3). The data were statistically analyzed for various parameters *viz*, green forage and dry matter yield, nutrient content, nutrient uptake and nutrient requirement. The experimental results revealed that in interaction of fertility levels, fertilizer recommendation and varieties, UPO 94 produced significantly higher green forage yield in higher fertility levels with STCR than all other varieties. The dry matter yield was maximum in UPO 94 in interaction with higher fertility levels with M_1 (GRD). Among all treatment combinations, the maximum nitrogen uptake was recorded in F_2 fertility levels with M_1 (GRD). The maximum nitrogen requirement was found in interaction of F_2 fertility levels with M_1 (GRD). Both phosphorus and potassium requirement were highest in F_2 fertility level with M_3 (STCR with INM).

Key words: Fertility levels, Oats varieties, Soil test crop response, General recommendation dose and Integrated nutrient management.

INTRODUCTION

India is the second largest consumer of fertilizer in the world next to China. Livestock is the integral component of agriculture since times immemorial and its contribution to national economy through milk, meat, wool as well as farm yard manure is enormous. However, the low productivity of our livestock is mainly due to poor availability of feed resources. Amongst several fodder crops, oat proved to be the most successful and suitable fodder crop (Singh, 1971) with the availability of high yielding early, medium and late maturing varieties.

There is a vast scope for increasing productivity of forage crops by adopting agro-techniques. For achieving the potential crop yield per unit area, high yielding varieties should be coupled with proper agronomic practices. Of the various factors known to augment the crop production, fertilizers added with suitable agronomic practices play a pivotal role to boost up the crop yield. Among the three primary nutrients (N, P and K) necessary for crop production, nitrogen plays a key role. The need for improved crop productivity is more now than ever before because sizeable area of productive land is being diverted to non agricultural uses. Low fertility of Indian soils is the main constraint in achieving high productivity. Maintenance of soil fertility and sustainability of crop production, therefore, is the key factor to ensure food security. In India the contribution of fertilizers to crop yield has been remarkable. Fertilizers constitute major input and increasing their efficiency may reduce cost of cultivation. Therefore, it becomes very necessary to develop a comprehensive approach of fertilizer recommendation incorporating soil test, field experimentation and economic evaluation of results. In increasing agriculture production and improving fertilizer use efficiency, soil testing has been developed into specialized field of great practical application. This helps to economize the cost of fertilizers and improve fertilizer use efficiency.

MATERIALS AND METHODS

A field experiment was conducted to study the 'Interaction effect of soil fertility, fertilizer recommendation approaches and varieties on yield and quality of oat oats (Avena sativa L.) during Rabi 2014-15 at Norman E. Borlogue Crop Research Centre of the G.B. Pant University of Agriculture and Technology, Pantnagar. The experiment was conducted in two phases, i.e. creation of soil fertility levels by applying graded doses of N, P₂O₅ and K₂O and growing exhaust crop in the preceding crop season (Kharif, 2014) with growing of Sorghum So, Before conducting the main experiment preparatory trail was conducted in selected field of area about 0.4 ha. In this plot, soil sample were collected randomly and analyzed for various soil properties. The field was divided into three strips. Strip I containing no fertilizer, strip II (100 kg N,100 kg P₂O₅100 kg K₂O) and strip III (200 kg N,200 kg P,O₅200 kg K,O).In these strips exhaust crop sorghum (Pant chari-5) was grown. The soil was sandy loam with pH 7.3, having 0.67 per cent organic C, 170 kg ha⁻¹ available N, 28 kg ha⁻¹ available P and 184 kg ha⁻¹ available K. In the second phase (Rabi 2014-15), each strip size of $60 \text{ m} \times 22.5 \text{ m}$ size (made in the fertility gradient stabilizing experiment in the previous season) was divided into thirty plots (27 treatments + 3 control) resulting in total ninety (30×3) plots. Among these each plot was in the size of 3×3 m, the total of 9 m² in size. The main experiment was conducted in split-split plot design, taking three fertility levels i.e. $F_1 low (0,0,0)$, $F_2 medium (100,100,100)$ and F_3 high (200,200,200) in main plot, three variety of oats i.e. Kent (V_1) , UPO 94 (V_2) and UPO 212 (V_3) in sub plot and three methods of fertilizer recommendation, i.e. GRD (M₁), STCR (M₂) and STCR with INM (M₂) in sub-sub plot.

Soil samples at 0-15 cm depth were collected from each plot before sowing of test crop. Soil samples were air dried in shade, ground with the help of mortar and pestle, passed through 2 mm sieve

and stored for further chemical analysis for soil texture by Bouyoucos Hydrometer method (Black, 1965), pH by Glass electrode pH meter (Jackson, 1958), EC by 1:2 soil water suspension (Bower and Wilcox, 1965), organic carbon (Walkley and Black method, 1934), available nitrogen by Alkaline KMnO₄ method, (Subbiah and Asija, 1956), phosphorus by Olsen's extraction method, (Olsen et al., 1954) and potassium by 1 N NH₄OAc extraction method, (Hanway and Hiedal, 1952) both in pre and post harvest soil sample as per the standard procedure. At the time of harvesting the plant samples were taken from each plot. The plant samples were first air dried and then oven dry at 60UC to a constant weight. The dried samples were ground in 'Weiley' type mill and stored in moisture proof plastic bags and finely collect in paper bag and numbering was done in each bag and analyzed for total nitrogen, phosphorus and potassium (Jackson, 1973). Other observations were also recorded viz., green forage yield, dry matter yield, nutrient uptake and nutrient requirement.

Dry matter yield (q ha⁻¹)

 $= \left(\frac{100 - \text{moisture percentage}}{100}\right) \times \text{Fresh yield (q ha^{-1})}$

Nutrient uptake by Plant (kg ha⁻¹) = per cent nutrient in Plant × dry plant yield (q ha⁻¹)

Nutrient requirement Nutrient requirement

$$(NR) = \frac{\text{Totalnutrientuptake(kg ha-1)}}{\text{fresh yield of Oats (q ha-1)}}$$

The collected data during the experimentation were analyzed statistically. Test crop data was analyzed by Split-split plot design, in which fertility levels is considered as main plot (F_1, F_2, F_3) , variety as sub plot (V_1, V_2, V_3) and fertilizer recommendations approaches (M_1, M_2, M_3) considered as a sub-sub plot. The interaction results was based on the analysis of variance and conclusion drawn some at 5% to test the difference among the treatment. Standard error of mean (SEm<u>+</u>) was calculated in each case.

RESULT AND DISCUSSION

1. Green forage yield of oats

Table 1 Interaction effect of fertility and variety on green forage yield of oats

Tr	eatment	Green forage yield (q ha ⁻¹)		
ert	ility V_1	V	2	$V_{_{\mathcal{J}}}$
F_1	339.4	405.	.43	362.24
F_2	428.8	39 495.	.34	415.00
F_3	418.0	9 486.	.02	482.39
1.	For comparing at same or diffe	two fertility level rent Varieties	ls S.Em± 28.03	C.D.at 5% 85.43
2.	For comparing same or differen	two varieties at nt fertility levels	17.68	54.47

1.1. Interaction effect of fertility and variety on green forage yield of oats

The data presented in **table 1** shows that kent variety (V_1) significantly differ with F_1 and F_2 fertility levels. The maximum green forage yield of kent variety was recorded F_2 fertility levels i.e, 428.89 q ha⁻¹. The green forage yield of UPO 94 variety (V_2) significantly better in F_2 . The maximum green forage yield of UPO 94 variety was recorded in F_2 fertility levels i.e. 495.34 q ha⁻¹. The maximum green forage yield of UPO 212 variety was recorded in F_3 fertility levels, i.e. 482.39 q ha⁻¹. Among all the varieties, UPO 94 produced significantly higher green forage yield than all other varieties on F_2 fertility levels. The green forage yield was significantly influenced by the interaction of fertility and varieties.

1.2. Interaction effect of fertility and fertilizer recommendation approaches on green forage yield of oats

The data presented in **table 2** shows that F_3 fertility levels produced significantly maximum green forage yield with M₂ (STCR) i.e, 495.85 q ha⁻¹. The green forage yield in M₁ (GRD) significantly superior with

Table 2
Interaction effect of fertility and fertilizer
recommendation approaches on green
forage yield of oats

Treatment		Green fo	Green forage yield (q ha ⁻¹)		
Fei	rtility M		$M_{_2}$		$M_{\mathfrak{z}}$
F_1	309.	79	439.38		357.92
F_2	413	46	464.37		461.40
F_3	450.	80	495.85		479.85
1.	For comparing levels at same o management	two fertility r different		S.Em± 25.33	C.D.at 5% 75.23
2.	For comparing at same or diffe	two manage rent fertility	ment levels	13.89	39.85

 F_2 and F_3 fertility levels. The green forage yield in M_1 (GRD) was recorded maximum with F_3 fertility levels followed by F_2 and F_1 fertility levels. The green forage yield in M_3 (STCR with INM) significantly higher with F_2 and F_3 fertility levels. The maximum green forage yield in M_3 (STCR with INM) was recorded with F_3 fertility levels followed by F_2 and F_1 fertility levels followed by F_2 and F_1 fertility levels followed by F_2 and F_1 fertility levels for M_3 (STCR with INM) was recorded with F_3 fertility levels followed by F_2 and F_1 fertility levels. In F_1 and F_2 fertility level the green forage yield significantly higher with M_2 (STCR) and M_3 (STCR with INM). In F_3 fertility levels the green forage yield significantly superior in M_2 (STCR) over

Table 3Interaction effect of variety and fertilizerrecommendation approaches on greenforage yield of oats

Treat	tment Gre	Green forage yield (q ha ⁻¹)		
Varie	M_1	M_2		$M_{\mathfrak{z}}$
$\overline{V_1}$	368.72	427.35	5	390.32
V_2	405.75	484.12	2	496.93
V ₃	399.58	488.14	1	411.92
1. F sa	or comparing two vari ame or different mana	ieties at gement	S.Em± 15.26	C.D.at 5% 45.22
2. F at	or comparing two man t same or different var	nagement ieties	13.89	39.85

 M_1 (GRD). Among all treatment combinations, the maximum green forage yield was recorded in interaction of F_3 fertility levels with M_2 (STCR) i.e.495.85 q ha⁻¹, and minimum green forage yield was recorded in F_1 fertility levels with M_1 (GRD) i.e.309.79 q ha⁻¹. Gill and Malik (1983) and Joon *et al.* (1988) have also recorded increase in yield of fodder oat with increasing fertilizer dose. Enhanced growth and forage yield of oats by application of nitrogen has also been reported by Joon and Singh (1989), Patel and Vihol (1990).

1.3. Interaction effect of variety and fertilizer recommendation approaches on green forage yield of oats

The data presented in table 3 shows that green forage yield in $M_1(GRD)$, UPO 94 (V₂) recorded the maximum fresh yield i.e.405.75 q ha⁻¹. The green forage yield in M2 (STCR) and M3 (STCR with INM) was maximum of variety UPO 94 (V₂) followed by UPO 212 (V_3) and kent. The green forage yield of kent and UPO 212 variety significantly maximum with M_2 (STCR). Among all treatment combinations, the maximum green forage yield was recorded in UPO 94 in interaction with M₃ (STCR with INM) i.e.496.93 q ha⁻¹, and the minimum green forage yield was recorded in kent in interaction with M_1 (GRD) i.e.368.72q ha⁻¹. In the interaction of variety and management, UPO 94 perform better and gives maximum green forage yield on M₁ (GRD) and M₃ (STCR with INM) management. The green forage yield obtained by this trend was also reported by Sheoran et al.(2005).

2. Dry matter yield of oats

Statistical analysis of the data pertaining to dry matter yield with respect to different fertility levels, varieties and fertilizer recommendation approaches are presented in **table 4** Where variety exhibited significant differences on dry matter production. It indicated that dry matter yield of oats significantly affected in different varieties. The variety UPO 94 gave significantly superior yield over other varieties. The trend of yields of different varieties was UPO 94> UPO 212> Kent. The yield trend in respective of fertility was $F_2 > F_3 > F_1$. And fertilizer recommendation approaches was GRD, STCR, STCR with INM. The trend was $M_2 > M_3 > M_1$. The significant difference among varieties was due to genetic variation. However fertilizer recommendation and fertility creation were applied variation which have not created much difference in dry matter production of oats. such results was also reported by other worker (Singh and Sachan, 1976 and Verma and Dadheech, 2005). The abundant supply of nutrient (nitrogen) may have increased protoplasmic constituents and accelerated the process of cell division and elongation which might have resulted in luxuriant vegetative growth and thereby, higher biomass and dry matter yield Kumari et al. (2014).

Table 4
Interaction effect of varieties and fertilizer
recommendation approaches on dry
matter yield of oats

Treatments	D	ry matter yiel	ter yield (q ha ⁻¹)		
Variety	M_{t}	$M_{_2}$		$M_{\mathfrak{z}}$	
V ₁	119.47	155.94	1	142.89	
V_2	170.29	162.42	2	158.84	
V_3	156.19	151.53	3	149.34	
1. For com same or	paring two vai different mana	rieties at agement	S.Em± 8.82	C.D.at 1% 30.97	
2. For com	paring two ma or different va	nagement rieties	7.43	21.33	

2.1. Interaction effect of varieties and fertilizer recommendation approaches on dry matter yield of oats.

The data presented in **table 4** shows that the dry matter yield in M_1 (GRD), UPO 94 and UPO 212 were significantly superior over kent. The dry matter

yield of kent variety significantly higher in M_2 (STCR) and M_3 (STCR with INM) over M_1 (GRD). Among all treatment combinations, the maximum dry matter yield was recorded UPO 94 in interaction with M_1 (GRD) i.e.170.29 q ha⁻¹ and the minimum dry matter yield was recorded in kent in interaction with M_1 (GRD) i.e. 119.47 q ha⁻¹. In the interaction of variety and management, UPO 94 perform better and gave maximum dry matter yield on M_1 (GRD). Such trend was also reported by **Kumar and Ramawat, (2006).** The dry matter yield of oats was significantly influenced by different varieties and fertilizer recommendation approaches.

3. NUTRIENT UPTAKE IN OATS

3.1. Nitrogen uptake

Table 5 Interaction effect of fertility and fertilizer recommendation approaches on nitrogen uptake of oats

Tre Fer	eatment tility M ₁	Nitrogen upta M	ke (kg ha¹) 2	$M_{_{\mathcal{J}}}$
$\overline{F_1}$	248.7	7 326.	21	318.08
F_2	456.10	386.	13	409.17
F3	400.6	1 447.	50	397.04
1.	For comparing t at same or differ	wo fertility level ent managemen	s S.Em± t 8.82	C.D.at1% 30.97
2.	For comparing t at same or differ	wo management ent fertility level	t 7.43 Is	21.33

3.1.1. Interaction effect of fertility and fertilizer recommendation approaches on nitrogen uptake of oats

The data presented in **table 5** shows that F_2 and F_3 fertility levels have significantly higher nitrogen uptake over F_1 under M_1 (GRD). The nitrogen uptake in M_2 (STCR) and M_3 (STCR with INM) was significantly superior in F_2 and F_3 fertility levels over F_1 fertility levels. In F_1 fertility level the nitrogen

uptake was also significantly superior in M_2 (STCR) and M_3 (STCR with INM) over M_1 (GRD). In F_2 fertility levels the nitrogen uptake significantly better in M_2 (STCR) and M_3 (STCR with INM) over M_1 (GRD). Among all treatment combinations, the maximum nitrogen uptake was recorded in F_2 fertility levels with M_1 (GRD) i.e.456.16 kg ha⁻¹, and minimum nitrogen uptake was recorded in F_1 fertility levels with M_1 (GRD) i.e. 248.77 kg ha⁻¹.

3.2. Phosphorus uptake

Table 6 Interaction effect of fertility and fertilizer recommendation approaches on Phosphorus uptake of oats

Tr Fei	eatment rtility M ₁	Phosphorus uptak M_2	e (kg ha ⁻¹)	M_{i}
$\overline{F_1}$	19.80) 28.68		24.47
F ₂	33.49	33.89		29.29
F_3	33.98	33.30		32.40
1.	For comparing t at same or differ	wo fertility levels ent management	S.Em± 2.00	C.D.at1% 7.04
2.	For comparing t at same or differ	wo management ent fertility levels	1.64	4.71

3.2.1. Interaction effect of fertility and fertilizer recommendation approaches on Phosphorus uptake of oats

The data presented in **table 6** shows that F_2 and F_3 fertility levels have significantly higher phosphorus uptake over F_1 under $M_1(GRD)$ nutrient management. The phosphorus uptake in $M_1(GRD)$ was recorded maximum in F_3 fertility levels followed by F_2 and F_1 fertility levels. The phosphorus uptake in M_3 (STCR with INM) significantly higher in F_3 fertility levels over F_1 fertility levels. Among all treatment combinations, the maximum phosphorus uptake was recorded in interaction of F_3 fertility levels with $M_1(GRD)$ and minimum phosphorus

uptake was recorded in F_1 fertility levels with M_1 (GRD) i.e. 19.80 kg ha⁻¹.

3.3. Potassium uptake

Table 7
Interaction effect of fertility and fertilizer
recommendation approaches on
Potassium uptake on oats

Treatment	Pot	Potassium uptake (kg ha ⁻¹)		
Fertility	$M_{_{I}}$	M_2		M_{j}
F ₁	237.59	335.73	3	294.95
F ₂	337.48	311.00	ó	330.93
F ₃	344.00	340.85	5	319.73
1. For con at same	nparing two fer or different ma	tility levels anagement	S.Em± 20.83	C.D.at 5% 72.89
2. For con at same	nparing two ma or different fer	nagement tility levels	17.91	51.39

3.3.1. Interaction effect of fertility and fertilizer recommendation approaches on potassium uptake of oats

The data presented in **table 7** shows that F_2 and F_3 fertility levels have significantly higher potassium uptake over F_1 at M_1 (GRD). In F_1 fertility level the potassium uptake differ significantly with M_2 (STCR) and M_3 (STCR with INM) over M_1 (GRD). Among all treatment combinations, the maximum potassium uptake was recorded in interaction of F_3 fertility levels with M_1 (GRD) and minimum potassium uptake was recorded in F_1 fertility levels with M_1 (GRD) i.e. 237.59 kg ha⁻¹. The interaction of fertility and management significantly influenced the potassium uptake of oats. Decrease in uptake of potassium by application of FYM might be decreased due to less decomposition of applied FYM.

4. NUTRIENT REQUIREMENT OF OATS

4.1. Nitrogen requirement

Table 8Interaction effect of fertility and fertilizerrecommendation approaches on nitrogenrequirement of oats

Treatment	Nitr	rogen requirem	rement (kg q ⁻¹)		
Fertility	$M_{_{I}}$	M_2		$M_{\mathfrak{z}}$	
F ₁	0.73	0.81		0.88	
F ₂	1.10	0.83		0.88	
F ₃	0.89	0.92		0.82	
1. For con at same	mparing two fer e or different ma	tility levels anagement	S.Em± 0.27	C.D.at 5% 0.91	
2. For con at same	mparing two ma	nagement rtility levels	0.054	0.15	

4.1.1 Interaction effect of fertility and fertilizer recommendation approaches on nitrogen requirement of oats

The data presented in **table 8** shows that F_2 and F_3 fertility levels have significantly higher nitrogen requirement at M_1 (GRD). In F_2 fertility levels the nitrogen requirement significantly higher at M_1 (GRD) over other management practices. Among all treatment combinations, the maximum nitrogen requirement was found in interaction of F_2 fertility levels with M_1 (GRD) i.e. 1.10 kg q⁻¹, and minimum nitrogen requirement was recorded in F_1 fertility levels with M_1 (GRD) i.e. 0.73 kg q⁻¹. The interaction of fertility and management significantly influenced the nitrogen requirement of oats.

4.2. Phosphorus requirement

4.2.1 Interaction effect of fertility and fertilizer recommendation approaches on nitrogen requirement of oats

The data presented in **table 9** shows that in F_1 and F_2 fertility levels the phosphorus requirement

Table 9
Interaction effect of fertility and fertilizer
recommendation approaches on phosphorus
requirement of oats

		Treatment potassium requirement (kg q ⁻¹)					
Fertility		$M_{_{I}}$	1 M ₂	1	M ₃		
$\overline{\mathbf{F}_{1}}$		0.80	0.81		0.71		
\mathbf{F}_{2}		0.70	0.88		0.77		
F ₃		0.73	0.87		0.91		
1.	For com	paring two fer or different m	rtility levels anagement	S.Em± 0.27	C.D.at 1% 0.98		
2.	For com	paring two ma or different fe	anagement rtility levels	0.031	0.091		

significantly higher in M_2 (STCR). In F_3 fertility levels the potassium requirement significantly higher at M_3 (STCR with INM). Among all the treatment combinations, the maximum potassium requirement was found in F_3 fertility levels with M_3 (STCR with INM) and minimum potassium requirement was recorded in F_1 fertility levels with M_3 (STCR with INM).

4.3. Potassium requirement

Table 10
Interaction effect of fertility and fertilizer
recommendation approaches on potassium
requirement of oats

	Treatment potassium requirement (kg q^{-1})						
Fertility	$M_{_{I}}$	M_2		$M_{\mathfrak{z}}$			
F ₁	0.80	0.81		0.71			
F_2	0.70	0.88		0.77			
F3	0.73	0.87		0.91			
1. For	For comparing two fertility levels			C.D.at 1%			
2. For at sa	comparing two man ame or different fert	agement ility levels	0.031	0.091			

4.3.1 Interaction effect of fertility and fertilizer recommendation approaches on potassium requirement of oats

The data presented in **table 10** shows that in F_1 fertility level the potassium requirement significantly higher in M_2 (STCR). In F_2 fertility levels the potassium requirement differ significantly with M_2 (STCR). In F_3 fertility levels the potassium requirement significantly higher at M_3 (STCR with INM). Among all the treatment combinations, the maximum potassium requirement was found in F_3 fertility levels with M_3 (STCR with INM).

CONCLUSION

Green forage yield were highest in UPO 94 in medium fertility level with STCR. The dry matter yield were maximum in UPO 94 with GRD. The nitrogen uptake were highest in medium fertility level with GRD. Phosphorus and potassium uptake were highest in higher fertility level with GRD. The nitrogen requirement is highest in medium fertility level with GRD. Both phosphorus and potassium requirement were highest in higher fertility level with STCR (INM). Integrated nutrient management is important for sustainable agricultural production and protecting environment quality and has been widely investigated around the world. Therefore it is necessary to screening of variety for different fertility levels is essential to get maximum production and sustaining crop yield, quality and soil health for the future.

REFERENCES

- Bouyoucos, G.J. (1962), Direction for making mechanical analysis of soil by hydrometer method. *Soil Sci.*, 42: 225-228.
- Gill, P.S. and Malik, B. S. (1983), Response of Oat Varieties to Soil Moisture Regime and Nitrogen levels. *Forage Res.* 9(2): 151-154.

- Hanway, J.J. and Hiedal, H. (1952), Soil analysis method used in Iowa State Soil Testing Laboratory. Iowa Agric. (c.f. methods of soil analysis, part 2 Ed. C.A. Black, Medison Wisconsin. *American Soc. of Agron.* 57: 1025-1027.
- Jackson, M.L. (1973), Soil chemistry analysis Prentice Hall of India Pvt. Ltd., New Delhi, 183.
- Joon, R.K. and Singh, K.P. (1989), Response of of forage oat (*Avena sativa* L.) to irrigation and nitrogen. *Forage Res.* 15(1): 33-42.
- Kumar, N. and Ramawat, Naleeni (2006), Effect of NPK and Sulphur Application on Forage Production of Oat under Rainfed Conditions of North Western Himalaya. *Forage Res.* 32(1): 1-3.
- Kumari A., Kumar P., Ahmad E., Singh M., Kumar R., Yadav R.K., Datt, C. and Chinchmalatpure, A. (2014), Fodder yield and quality of oats fodder (*Avena sativa* L.) as influenced by salinity of irrigation water and applied nitrogen levels *.Indian J. Anim. Nutr.*31 (3) : 266-27.
- Olsen, S. R.; Cate, C.V.; Watnobe, F.S. and Dean, L.A. (1954), Estimation of available phosphorus in soils by extraction with sodium bicarbonate, USDA, Cies 939.
- Patel, R. H. and Vihol, P.P. (1990), Effect of nitrogen, phosphorus and Zinc sulphate on production traits of forage production. *Gujrat Agri. Univ. Res. J.* 16(1): 42-46.
- Sheoran, R.S.; Rana, D.S. and Singh, K.P. (2005), Integrated Nutrient Management for Sustainable Fodder Yield of Oat under Semi-arid Conditions. *Forage Res.* 31(2): 126-129.
- Subbiah, B.V. and Asija, G.L. (1956), A rapid procedure for assessment of available nitrogen in rice plots. *Curr. Sci.* 31: 196-200.
- Verma, A. K. and R. C. Dadheech, (2005), Yield and economics of fodder oat as influenced by balanced fertilization and legume mixture. *Forage Res.* 31: 73-74.