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THE PRODUCT OF DISTRIBUTIONS AND WHITE
NOISE DISTRIBUTION-VALUED STOCHASTIC
DIFFERENTIAL EQUATIONS
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Abstract

In this paper we introduce a new locally convex space of distributions, as a
generalization of the space from [12], in which we have the product of any dis-
tributions as a series expansion. Then we discuss higher powers of the complex
white noise on the space consisting of distributions without any renormalization.
We also extend the Lévy and Voltera Laplacians to operators on a locally convex
space taking the completion of the set of all distribution-coefficient polynomials
on distributions with respect to some topology, and give an infinite dimensional
Brownian motion generated by the Lévy Laplacian with a divergent part as a
distribution. Based on those results, we obtain white noise distribution-valued
stochastic differential equations, for the delta distribution centered at the infinite
dimensional Brownian motion and also a sum of delta distributions centered at
one dimensional Brownian motions.

1. INTRODUCTION

Let S’ (R) be the Schwartz space of tempered distributions. The Gross Laplacian
generates an infinite dimensional Brownian motion

B(t) = i Bk(t)ek,

as an S’'(R)-valued stochastic process with a sequence {Bj(t)}52, of indepen-
dent one dimensional Brownian motions and an orthonormal basis {ex}7>, of
the real Hilbert space L?(R), which is contained in S(R). Obviously, we can not
consider any power of B(t) in S'(R). However, in the paper [12] we introduced
some closed subspace H of a complex Hilbert space L?([0,1]) based on functions
en(u) := 2™ n =0,1,2,3,..., and constructed a Gel'fand triple E C H C E*
with a nuclear space F and its dual space E*, of which we can compute the usual
product of any elements as series expansions. We introduced an E*-valued Brown-
ian motion {B(t); ¢t > 0} and discussed the It6 formula for powers of the Brownian
motion in the paper [12].
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In this paper we introduce a new locally convex space EZ of distributions,
based on all of functions consisting of a basis for L2([0, 1]):

en(u) = e*™" n e 7,

in which we have the product of any distributions naturally defined as a series
expansion. This is a generalization of the construction of E* from [12]. Based
on this space, we can construct a space of white noise distributions in which we
have powers of white noise without any renormalization. We also discuss the
complex version of the Gross, Lévy and Volterra Laplacians, and an important
formula among those Laplacians, with the divergent part §(0) being realized as a
distribution in EJ_. Moreover, we define an infinite dimensional Brownian motion
{Bn.(t) =Y o0, Br(t)er; t > 0} on EX for each m € N and obtain stochastic
differential equations induced from a delta distribution dg(+) of B(t) and a series
Yo 0B, (1) of delta distributions dp, (+), k¥ = 1,2,3,..., on some spaces of white
noise distributions.

The paper is organized as follows.

In section 2 we introduce some spaces E’ of distributions, of which any product
of elements is included in itself.

In Section 3 we discuss powers of the delta distribution in E* and give a rep-
resentation of higher powers of the delta distribution by derivatives of the delta
distribution.

In Section 4 we construct a space of white noise distributions in which the power
of white noise can be defined without any renormalization connecting to the space
Ex.

In Section 5 we generalize the definition of LV functionals as a domain of
the Lévy and Volterra Laplacians from [8] and define those Laplacians on the
generalized domain with realizing §(0) = Y72 eay, as a distribution. Moreover,
we introduce a set Poly(EZ%) of all polynomials on E with EX -coefficients and
taking the completion of Poly(EZ% ) with respect to some topology, we define a
locally convex space Do, —o on which the Lévy Laplacian is extended to operators
as the generator of an infinite dimensional stochastic process consisting of an
infinite dimensional Brownian motion and the inverse of the distribution 4,,(0) =
> e €2k for every m € Ny :={0,1,2,...}.

In Section 6 we introduce some class A, of entire functions on I as an analytic
version of the space of the test white noise functionals, and define an A% _-valued
stochastic process X = {X(¢); 0 <t < 0} as the delta distribution centered at the
infinite dimensional Brownian motion. Then we obtain a stochastic differential
equation of which X is a solution.

In Section 7 we introduce another class A% of entire functions on E_ smaller
than A, in order to define a sum of delta distributions centered at one dimen-
sional Brownian motions as an (A% )*-valued stochastic process. We also obtain a
stochastic differential equation from the stochastic process as a solution. This is
a different approach to get the infinite dimensional stochastic equation from the
sum of delta distributions in [5].

Finally, in the last section we discuss a stochastic differential equation which
has differential operators with a random direction, as concluding remarks.
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2. BASIC SPACES OF DISTRIBUTIONS
Let e, (u) := €2™" for n € Z. Then the set
{en; n€Z}

is an orthonormal basis for L?([0,1]). For any n € Z let H,, be the closed subspace
of L%(]0,1]) generated by the functions ey, k > —n, k € Z. Then for any n € Z and
sequence {{}7° __ satisfying

L=ty <l <ly<ly<--, Y %<0,
k=0

and
l_y =V, k€N,
and introducing a densely defined selfadjoint operator A, on H, by
(oo} oo
A6 = lrage, §= Y apey € Hy,
k=—n k=—n

we can define norms | - |, p,, p € R and spaces E,, , by

€7, = 1ADLR = D GPIE er)sls

k=—n
E,, = {{€Hy,; [ny < oo} for p>0;
E,p, := completion of H, with respect to |- |, , for p <0,

where | - |o is the norm of L?([0,1]) and (-, ), is the conjugate bilinear form of E¥
and E,. Here E, and E; are the projective limit space of E, ,, p € R and the
inductive limit space of E, ,, p € R, respectively. We note that H,, = E, o for
n € 2.

We also assume the following conditions:

(1) For any a > 0, there exists 8 > 0 such that (k+1)* < Eg, k=1,2,3,....
(2)  p=supgen, lhr1/le < 00.
(3)  For any a > 0, there exists p > 1 such that Y - 6;2’7;)‘” < 00.
For any n € Ny and a > 1, the sequence {(|k| + 1)"al*}%°
satisfying the above three conditions.
Define spaces Ew, Hs and E* by inductive limit spaces of E,,, n € Z, H,, n €

o is an example

Z and E}, n € Z, respectively.
We can get the product of distributions in E as follows:
oo o0 o jtn
woy= Y (we)aejr > (yoeshees = > Y (T ey 5 )ue
j=-n j=-n j=—2nk=—n

ife=37"  (z,ej)«e; € By andy =377 (y,ej)«e; € By, for some n € N.

j=—n
Theorem 2.1. For any x and y in E, the above product x -y is also in EX.

Moreover, the product operator - : EX x EX — EX is a conlinuous bilinear
operator.
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Proof. Let x,y be elements of E%_ . Then there exist n € Z and ¢ > 0 such that x
and y are in F, _,. For some r > 0 and any p > 2q 4+ r + 1 we can estimate the
(—p)-norm | - y|on,—pof x - y as follows:

o k+n

|(E 'ygn,—p = Z E;Qp Z Z <x76j>*<yaek*j>*5y,k

v=-—2n k=—2nj=-—n

2
v+n

0o
= Z K;Qp Z <'r7ej>*<yvev—j>*
v=—2n j=—n
v+n v+n
Z 677 Have) P Dy vyl
v=—2n j=—n j=1
v+n v+n
Z E 2P Z |e]|n q‘x|n —q Z |el’*j|i,q|y|2,fq
v=—2n j=—n j=—-n
v+n v+n
2
Z D DR L DR 7 A 7]
v=—2n j=-n j=-n
v+n v+n
2
Z GG 6l gyl
v=-—2n j=—-n j=-n
v+n v+n

+Z€ S DR W S R A

j=—n j=—-n

IN

IN

IN

IN

IN

Z 0P (v 420+ 120 2l Ll

v=—2n

+Z£ » V+2n+ 1)2£u+n|x‘2,—q|y|i,—q
v=0

Z 0PPE 0 A,

v=—2n

+Z£ 2p£u+2n 1/+2n"r| |y|721,—Q'

IN

Since conditions (1) and (2) on {¢;}, there exists a positive constant M, de-
pending only on n such that

2y 3, _p < My 20 |2 (2.1)

n,— q|y|n —q-

This implies z - y € E3,,. The bilinearity follows from properties of the conjugate
bilinear form between EZ and F

Suppose that ; — xg, y¢ = yo in E% as ¢ — oco. Then there exist n € Z and
g > 0 such that |zy — Zo|n,—q = 0, |ye — Yo|n,—q = 0. For p > 2¢ +r + 1 we can
estimate the (—p)-norm |z - y¢ — o - Yol2n,—p for each £ € N as follows:
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|33e “Ye — Zo 'yO‘Qn,fp

= [(ze — 20) - ye — 20 - (Ye — Yo)l2n,—p

< (e — 20) - Yelan,—p + [To - (ye = Yo)l2n,—p

< MnP4n(r+2q)(|$€ — Zo|n,—q|Yeln,—q + [Toln,—ql¥e — Yoln,—q)-
This implies that z,-ys = 2o - yo in E% as ¢ — oo. Thus we obtain the continuity
of the product operator. (Il

Remark 2.2. We note that the product operator is also a continuous bilinear
operator from E; x E7 into Ej, for each n € Ny by the above proof of Theorem
2.1.

3. POWERS OF THE DELTA DISTRIBUTION IN E*

For t € [0,1] and n € Ny, we define d; ,, by

oo oo

Ot 1= Z (Ot,nser)wer = Z ex(t)ex. (3.1)

k=—n k=—n

Then §; 5, is in E}; and the equality d; ,(§) = £(t), € € E,, holds. For any n € Ny
the square of the delta distribution é;, € E} is given by

00
Oin = Y e UM,
J,k=—n
o) l+n oo
_ Z Z e—27riltee: Z (€_~_2n_1)6—27ri€tee
{=—2nk=—n {=—2n

o
in E3,. Since

oo
ton = 2mi Z fe=2mitte,
{=—2n
for 6; 2 € E3,,, we have
1
6t2,n = %62,271 - (27’l - 1)(5,5,2”
in F3,. Here we define the derivative Ox = 2’ of the distribution x € E* ,m € Ny,

by
Ox := Z (x,ep)0ep <: 2mi Z €<x,eg>*eg> .

l=—m l=—m

For any n € Ny and m € N, the m-th power of é; ,, € E is given by

Oln = DT T > e
ki,..c.km=—mn k=—mn ki+---+km=k
= k+mn+m—1\——=
S < i > erDex (3.2)
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in E},,,. In general we have the following:

Proposition 3.1. (cf. [12]) For any n € No, m € N and t € [0,1], we have
0t.n € E% and the equality

I (m—j—1)
mo__ s(m—j—1
O = (m—1)! 2 (2m)mﬂ‘flcj6tv<m—i)” (3:3)
§=0
holds in E_, where constants cj, j =0,1,2,...,m are determined by the equality
m—1
(k+mn+1)(k+mn+2)-(k+mn+m—1)=> k™7 (3.4)
j=0

We can define 6; by & = > po_ ex(t)ex as an element of EX . Then we note
that 6, = d;, on E,, for each n € Ny. Therefore, we can write the equation (3.3)
by

m—1

m_ 1 1 (m—j—1)

Remark 3.2. Since the delta distribution d;, has an expansion given by

oo

Oin =Y er(b)e,

k=—n
the formulas

Otndt =e9 € E;, C EX
[0,1]
and

/ 87 ndt = (2n+ 1)eg € E}; C EX,
(0,1]
hold in the distribution sense.

4. POWERS OF WHITE NOISE
Let er,, er 2k, €r2k—1, k=1,2,3,... be functions on [0, 1] given by
ero(u) =1, epor(u) == V2sin(2kmu), eror_1(u) := V2 cos(2kmu),
wel0,1], k=1,2,3,...,

which form an orthonormal basis for L2 ([0, 1]). Then we can construct spaces E, g,
E;,  using the sequence {{)} and an operator A, g given by

2n e
Aré = Z@kakemk, &= Z QECR,k € Lﬁ([o, 1])
k=0 k=0

as in Section 2.
By the Bochner-Minlos theorem for any n € Z and o > 0, there exists a
probability measure y, , on the Borel field B(E}; ) of E}; p such that

. o2
/ e gy, (z) = e~ F EE

n,R
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holds for all § € Ey, g, where (-, -),, is the canonical bilinear form on E; p X Ey, g.
For any n € N, we define a projection p, from EZ, p into E} p by

oo

pa(@) = > (2, errnerp, © € El p.

k=—n

Then the canonical bilinear form (:,-) on EY p X Ex g is given by
<CE,§> = nlbrr;o<pn(x)apn(g)>n7 RS E;o,]Rv 5 € EOO,R~

We define a probability measure i o on the Borel field B(EY, ) of EX g by

Hoo,o(B) = Z fn,o(BN(Ey g\ Ef_1 )
n=1
for any B € B(E%, ), where Ej i = ¢. Then

. 0‘2
/ O du, (@) = e~ F 60

oo, R

holds for all £ € E r.
Let p= oot /v/2 X Moo 1 /v Then we have a probability space (EZ%, ) and the
equality

/ EOHEM gy () = el

holds for &£,n € F.
Proposition 4.1. For any n € Ny, the following equalities hold:
Epn=Epr+iE,r+E_(ni1), By =Eqp+iE r + EZ (1)
Consequently we have
Eo = ExwRr +1EuRr, By = B g +iE5 k-

For each n € N, we can construct spaces W,, of white noise test functionals and
W of white noise distributions with

W, C LA(E%, ux, ) C Wi,
where X,, is a continuous operator from FZ  into EZ given by
Xnp(x):=2", ze€ EX
and px, is a probability measure defined by
x, (B) = u(X;\(B)), B € BEL).

Since
o0

xn(t) = Z <xvej1>*"'<xaejn>*ej1+---+jn(t) :x(t)n

JiseensJn="—"m

for z € E, and n € Ny, we can define z(¢)" as an element of W;' with the measure
HX, -
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5. THE LEVY AND VOLTERRA LAPLACIANS, AND ASSOCIATED
STOCHASTIC PROCESSES

Let £(X;Y) denote the set of continuous linear operators from X into ) for
locally convex linear topological spaces X and ). We denote L(X;X) by L(X)
simply. For p > 0 let CP(X;)) be the set of Y-valued CP-functions on X and
C®°(X;Y) the set of Y-valued C*°-functions on X'. We also denote C°(X;)) and
CP(X;C) simply by C(X;)) and CP(X), respectively.

The Lévy Laplacian and Volterra Laplacian are introduced in [9] and [14], re-
spectively. By Theorem 2.1 we can define an LV functional ¢ as a functional in
C>*(E%), such that for any x € E%_, its second derivative ¢"(x)(y, 2),y,z € EX,
is given by the form

" (@)(y, 2) = PL(x)(y2) + ¥ (2)(y, 2), .2 € EL,
where ¢/ () € L(EL) and ¢}, (x) € L(EZ x E%) that is a trace class operator of
H...
For any n € Ny, we define the operators A and A,, on C*°(E%,) by

Ap(x) = Y ¢"(x)(er er), ¢ € C®(EL),
k=—oc0
and
Anp(x) = > " (@) (ex, ex)
k=—n

for ¢ € C®(E%X). Since Y po_ er Qe € EX @ EX, for any p € C®(EL), Anp
exists and can be written by

Anp(x) = > " (@)(ex @ ex) = ¢ () ( Y aw® ek> , T € By

k=—n k=—n

for each n € Ny.
We also define the Lévy Laplacian App of ¢ € C®(E%) by

N
o 1 " *
Appla) = Jim oo 3" (@) (en)sen), @ € EX,

n=-—

if the limit exists, where J is the conjugate operator. Then for an LV functional
@ we have

App(z) = ¢ (x)(eo)-
Any function ¢ € C*°(E7, ) can be regarded as ¢ € C*°(EY,) given by
¢(x) = p(Re(x)), = € EL.
Therefore, the Lévy Laplacian Ay of ¢ is defined by
Arp(w,) == Arg(w, +1i0), 2, € B .

This means the Laplacian Ay, acting on C*°(E%)) is an extension of its action on
C*(EL r)-
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Since Y- ear € EX we denote this distribution by §(0). This is the diver-
gent part in the usual infinite dimensional analysis. However, we can get the part
by a distribution in E7,. Therefore, we can introduce an operator 75 defined on
the range of the Lévy Laplacian by

s Arp(x) = o7 (2)(6(0)eo).

The Volterra Laplacian Ay for an LV functional is defined as a trace of ¢f, (x) for
x € B

Ay p(z) := trace ¢y, ()

o0

= Z oV (@) (ens ex)-

k=—o0

The Volterra Laplacian Ay acting on C*°(E%,) is also an extension of its action
on C*(E%, ). Then we have an interesting formula:

Ap = 150)ALp + Avep
for any LV functional ¢. Since the operator .4 means the complex version of
the Gross Laplacian and 75(o) is implied from the divergent part i, this formula
is important with the setup of 750)Ary as an element of L(E}) instead of the
formal expression

1
Ag=—Ap +Ay.
dx

Lemma 5.1. For any xz € £, let

Then e® € B,.

Proof. We may prove that for any x € E7_, there exist m € Ny and ¢ > 0 such
that * € E,, _,. We can estimate the norm |e”|, _, for any n € Ny and some
p > 1 as follows:

o0
e = 20 67
n,—p

k=—n

=1
2t

= Z £;2p 1 ek Z Z <xvei1>*"'<xaeiu>*
k=—n v=1 Wt +i, =k
—-m < i1,...,0, < 00



172 HUI-HSIUNG KUO, KIMIAKI SAITO, AND YUSUKE SHIBATA

oo oo 1
—2p
S D150 S D SIS
k=—n v=1 Zl++ll,:k
—m < dy, ..., by < 00
> (@, ei)ol® - (2, €, )
h+--+i,=k
—-m < i1,...,0, <00
oo o0 1
-2 2v
< 1+eZ£k1’ZE|xm,,q > 1-
h=—n v=1 i1+ ti, =k
—m <yt < 00
S et
W+-+i, =k
—m < iy, by < OO
> > 1 k| + (m+1r—1)\>
2p 2q|k 2v Amqu
< 1+ekZ I ppq||2_:lﬁ|x|m,_qp q( ] .
2
Let a, ::(|k|+<?j11)y_1> . Then since
ayi1 (|k+(m+1)y+m)~~-(|k|+(m+1)y)>2
ay v(lk| +mv+m) - (|k| + mv+1)

<|k|+ +1)2(1+ v >2 <1+ Y >2
v k| + (m+ 1)v |k| +mv +1

k 2
2m(l +m+1> 7

14

IN

we obtain

a1 <27 (m+2)° ay.
Since similarly the inequality

a1 < (m+2)2220m gy,
holds, we have

ap < ((m + 2)222(m+1)lkI-1

Hence, there exists a constant r > 0 such that aj < p"¥l holds. Then we have
an estimation of the norm |e®|, _, by

o0 o)
1
2 —2p 2(q+r)|k 2 4 2 2(v+1
el <1+e Z ¢, 2P p2latrl |Z ;|x|m”,_qp mavo2my (; 4 2)2+D),
k=—n v=1""
Thus we obtain
2
"2, < CeRlehhns,

for some constants C' > 0 and K > 0. O
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Remark 5.2. By the inequality (2.1) we see that for any m € Ny and ¢ > 0, there
exist a constant M > 0 and p > 2¢g + 1, such that

Yz |5m, —p < Myl2, _ lzl2

Therefore, by the proof of Theorem 5.1 there exist positive constants C, K, n € Ny
and r > 1, such that

< QoK < CeRMbE ylofh
< <

We give two examples to show the calculation of operators A,,, the Lévy and
Volterra Laplacians acting on certain functions.

Example 5.3. [1] Let p(z) = 2P(f), f € Ex, p > 2. Then ¢ is in C*(EY)
and

Anp(x) =p(p— 12" > ean(f).

2] Let o(x) = e*V), f € Ey. Then ¢ is in C>®°(E%) and

oo

Aniple) = ( 3 ek<f>> o(a).

k=—n

8] Let p(z) = e (), f & Ey. Then ¢ is in C(E%) and

Anp(x) = (2 Y ean(f) + <2$ > 8k(f)) o(x).

k=—n k=—n

Example 5.4. [1] Let ¢(z) = z%(f), f € Ex, a > 2. Then ¢ is in C™®(E})
and

Arp(r) = afa = 1)a**(f), Ave(z) =0.
2] Let o(x) = e*)| f € Ey. Then ¢ is in C®(E%) and

App(x) =0, Ave(z) = > en(f) ().

k=—o00
B8] Let p(z) =e*(f), f € Ex. Then ¢ is in C*°(E%)) and
Ape(z) = ¢(z), Avep(r) =0.
[4] Let o(x) = e (f), f € Fao, a > 2. Then ¢ is in C®(E%) and
App(r) = (a(a = D2 + a’2* @ D)p(z), Avep(z) =0,
[5] Let p(z) = e%¥*(f), f € Ex, y € E%. Then ¢ is in C*°(EZ,) and
App(a) = —y*pla), Avep(z) = 0.

Remark 5.5. In the white noise analysis a normal monomial ¢ is defined by
o) = [ Fje )y

using the Wick product ¢ as a white noise distribution. This is realized as part [1]
in Example 5.4 without the Wick product.
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For n € Ng and p > 1, let L*(EZ%; E}; ) be the set of E}; -valued functions on
E% with

B2, = /E D). dp(z) < oo.

Let Py(z) := 2%, x € EX_ for k € Ny and denote the set of all elements ® expressed
in the form

n
@:Zcﬂ?k, ck € By, k=0,1,2,...,n, n €Ny
k=0
by Poly(EZ% ; EX) or simply Poly(E%). This is the set of all polynomials on EZ
with EZ -coefficients and is in the space C*(EZ ; E%)) of C*-functions from
E?, into itself. In general let Poly(X;)) be the set of all polynomials on X
with Y-coefficients for locally convex linear topological spaces X and ). Then

L*(E3; E;; ) is the Hilbert space with norm || - |12z ;£; ) and we have
Poly(E%) C C*(Es; Ex) € | | LX(ELE;,).
neNy p>1

Let {Bg(t); t > 0} be a sequence of independent one-dimensional Brownian
motions on a probability space (Q, F, P) and set

B,(t) := i By (t)eg, t >0,

k=—n

for any n € Ng. Then we have the following.
Lemma 5.6. For any n € Ny and t > 0, we have B,,(t) € E} (a.e.).

Proof. For any n € Ny and p > 1, we can check that
2

E[B.(Ol; ] = E| > 47 < > Bk(t)ek7€j>

j=-n k=—o0

— Zz %P B[ By () _tZE ? <0

j=-—n j=—n
which implies the assertion. ([
We can define B(¢) by B(¢) = Y72 Bi(t)ex as an element of EX . Then we
note that B(t) = B,,(t) on E,, for each n € Ny.
From Theorem 2.1 we can define B, (t)™ € EZ for any n € Ny, m € N and
t > 0. The distribution B,,(¢)™ is given by

oo

B.(t)" = > B, (1) By, (t) - - - B, (£)€ky 4kt -
Remark 5.7. We can calculate that

E[B(t)*"] = (2m — 1) ( > €2k> , EBL(t)*" 1] =0

k=—n
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for any m € N. (See [12].)

Let
Doty := LS{P(-)(f)| f € Ex, ® € Poly(E3)},

where LS means the linear span. Then we have the following:

Theorem 5.8. (cf. [12]) For any ¢ € Dpoiy and t > 0, we have

N+

34 5(z) = Elp(z + Ba(t))], € BL.
for some n € Ny.
Let D, be an operator on Poly(E%,) defined by
(D,®)(-) = ®'(-)(y), ® € Poly(E%),
for y € EZ%, . Since for any ® € Poly(EX) there exist n € N and p > 0, such that
> X D IIDgell, <ee
k=1 al,...,akZOjl,...,jszoo
for any n € N and p > 1, we define a norm ||| - |||,,—p on Poly(E%,) by

1/2

o oo o)
@n—p:= (> > Y. Ipgelln | el0.o]

k=1a1,....,ax=0j1,....jp=—00

for @ € Poly(EZ,), where Dg, = Dg! Dk for k€ Nand j = (j1,...,4jk) € N&.
We also define spaces D, _p, Dy, — oo and Do, o by the completion of

{® € Poly(EL); [|®][[n,—p < o0}

with respect to ||| - |||n,—p, the inductive limit space of D, _,, p > 0, and the
inductive limit space of D,,_,,, n € N, p > 0, respectively.

Lemma 5.9. Let ® € Poly(EX). Then there exist n € Ng and p > 1 such that for
any m € Ng the inequality

1De,,, @{ln,~p < (1@l
holds.
Proof. Let p > 1. Then for any n € Ny and ® € Poly(E% ) we can check that

D@2, = > > > pgDpell.,

k=1ai,...,0p=0 j1,..., Jr=—00

)SND SENED S DRIl

k=1a1,...,ap=0 j1,..., Jp=—00 V=—00

2
2l[[5,—p-
Thus the assertion holds. O

IN

IN
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Theorem 5.10. Let ® € D, _,, for any n € Ny and p > 1. Then for any m € Ny
the inequality

11De, @[~ < [1@]ln,—p

holds.
Theorem 5.11. Let ® € D, _, for any n € Ny and p > 1. Then the inequality
NALL]||n,—p < [l[®][n,—p

holds. This means that the Lévy Laplacian is a contraction on D, _,.

Let 8,,,(0) :== Y50, eax for m € Ng. We can easily check 4,,(0) € EY,. Since
(€2m - e2(m+1))5m(0) = 5m(0)(€2m - e2(m+1))
= Z €2(k+m) — Z €2(k+m+1) = €0,
k=—m k=—m

we regard €am — €a(m+1) as the inverse element 6,,,(0) ™" of 6,,,(0) in Ej,.
Let ¢() be a function on R given by

() —2 cos(2mu), 1/4 <wu < 3/4,
c(u) ==
2cos(2mu), 0<u<1/4, 3/4<u<l

Then, for m € Ny, we have
5m(0)—1 - e2(2m+1)”(‘)c(-)2
and therefore, we can regard e?m+)7()¢(.) as §,,(0)~1/2.
Lemma 5.12. For any m € Ny we have 6,,(0)~'/? € E},.
Theorem 5.13. Let ® € Doy, _oo. Then the equality
eF2LP(z) = B®(x + 6,,(0) /2B, (1)), z € B3,

holds for any m € Ny.
Theorem 5.14. Let ® € DX . Then the equality

2BV (x) = B[B(x + B (t)], x = (z1,22,...,20) € (B3,,)"",
holds for any m € Ny, where

B, (1) = (6,0(0)"/*BU(1),6,0(0) 7 /*BRN(1), ... 8, (0)/* Bl (1))

belongs to (E3,,)®™ with independent EY,-valued dimensional Brownian motions
B (), B2(®),..., and BI(1).
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6. THE DELTA DISTRIBUTION CENTERED AT AN INFINITE
DIMENSIONAL BROWNIAN MOTION

We endow a base probability space (2, F, P) with a reference family {7, ¢; ¢ >
0} of o-subalgebras of F, and assume that {B,,(¢); t > 0} is adapted to (F, ),
i.e., for each t > 0, B,,(¢) is F,, ;-measurable.

Let {X(t); t > 0} be an L(EZ;C)-valued stochastic process. If a function
[0,00) X Q@ 3 (t,w) — X(t)(w)(f) € Cis an (F,)-adapted process for every
f € Ex, then {X(¢); t > 0} is called an (]—' ¢)-adapted L(E%; C)-valued process.

We deﬁne the stochastic integral fo t)dB,(t) by

/X £)dB, Z/X (ex)dBy (1)

k=—n
under the following conditions:
(1) {X(t); t >0} is an (F,)-adapted L(EZ,; C)-valued process.
(2): SR, o EIX(s)(ex)Plds < oo, ¢ > 0.
For any ¢ € C°(E5) with sup,cp- |¢"(2)|c(B, (8, _,)) < oo for some
p > 1,n € Ny and any ¢ > 0 the stochastic integral fot ¢ (Bp(u))(dBy(u)) is given

by
/ (B w)(d Z / ))(ex)dBi(u)

since

Z/ ek)dBk() Z/ [’ (B (u))(ex)|*)du

k=—oc0 k=—o0
o 2
< constant Z 0, 2p/ E[|B,,(u)|2,]du < constant ( Z £;2p> t2.
k=—o0 k=—oc0
With the first exit time
o) _i=inf{t > 0; x+By(t) ¢ B.(2)}

for « + B,,(t) from the open ball B,(z) :={y € E, _p; |y — &|pn,—p <r}in E, _,
for p > 1 and n € Ny, we have an extension of the It6 formula using the similar
(r)

T,m,—p*

method in [7] with changing the time parameter ¢ by t A o
Theorem 6.1. (cf. [12]) Let ¢ € C*°(E%L) and n € Ng. Then the equality

(B (1)) - - / )(ex)dBy(u / Ap(B

k=—n
holds for t > s > 0, which is written by

o

dp(Ba(1) = 3 ¢/ (Bu(t))(ex)dBult) + L Ap(B, (1)t

k=—n



178 HUI-HSIUNG KUO, KIMIAKI SAITO, AND YUSUKE SHIBATA

For n € Ny and p > 1, we denote by A, , the class of all entire functions ¢
defined on FE,, _, such that

_1igl2?
lellan,, = Sup {leo(x)le™2*In—r} < 00,
z€E,, _p

Define

Ap oo i= ﬂ Anp
peER

endowed with the projective limit topology of spaces A, ,,p > 1 and also define
Ao = [ Ano
neNy

endowed with the projective limit topology of spaces A, »,n € Ny. The space A
is an analytic version of the space of test white noise functionals. For any n € N
and p > 1 we define an A’ _-valued stochastic process {X (t); 0 <t < 1} by

X(#)(p) = ¢(Bu(t)), ¢ € Acc.
We can denote X (t) by dg,, (+) as an element of A% by the following lemma:

Lemma 6.2. For any t € [0,1), n € No,p > 1 and ¢ € A, _,, there exists a
constant C' > 0 such that

ElleBn®)l] < Cllglla, -,

Proof. For any 0 < t < 1, n € Ng,p > 1 and ¢ € A, _,, we can estimate
E[le(B,(t))]] as follows.

Ellp(Ba(t)] < Elle(By(t)]e 2B etlBaOh ]

E[e%an(t)‘?@,—p] sup {‘w(m”e—%lxli,fp}

xre n,—p

IN N

1 « -
exp | =5 Y log(1 = ;) | liglla, -

j=—n

— log(17t€;2p)

)
D =1 and E;’;fn ¢ P < 00, we have
5

Since lim;_,
- Z log(1 — tﬁ;Qp) < 00.
j=—n

Thus taking C' = exp (f% S22 log(1 — té;zp)) , we obtain the assertion. a

j=-n
For any y € E7, the differential operator D, on A, is defined by

Dyp(z) == ¢'(2)(y), ¢ € Aw.
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For any n € No,p > 1,z € E, _, with zle; for j > —n and § € R, we have an
estimation of |D., o®) (z + ﬁej)|67%|m+ﬁej|iw—z’:
|Dej90(x + Bej)|63_%‘3'C—’_’Bej|iv*?J
1 .
/ o(x + (oz—|—ﬁ)e])da
|a]=r

e*%|m+ﬁ81‘|i,_p

27i a?
S i 50(1' + (a + ﬁ)ej) da67%|$+’8€jli’*P
2T la|=r a2
_ QL oz + (042+ Be;s) oSl (atB)es? _, p3laei2 o
7T la|=r «
<o / 0@ + (a+ Bley)| e HeH Dl gaebrlel -,
r la|=r
< gozet ot [ s (lpla)le
2mr la|=r T€EEL, —p

Taking r = éﬁ’ for 5 > —n, we have the following:

Lemma 6.3. Let n € Ng. Then for any j > —n, De; is a continuous linear
operator from A into itself. More precisely, the inequality

IDe; ellan, < VeliPlela,,
holds for any p > 1 and ¢ € A, .

Lemma 6.4. For anyn € Ng, p> 1,9 € A, , and X € (A, )", we have

> X(Dey@)er € En—p.

k=—n

Proof. For any n € No, p> 1,0 € A, , and X € (A, )", we have the estimation:

2 2

Z €j_2p < Z X(Deknp)ek,ej>

j=—-n k=—n

= 2
Z ¢ 2p |X(De.7‘90)|

j=—n

—2 2
> 57X -

j=-n

oo

Z X(Dek(p)ek

k=—n

n,—p

IN

Dej@&,,y,,'

Since |D;¢la, , < vel;"|¢la,, by Lemma 6.3, we obtain

00 2

Z X(Dekgo)ek

k=—n

oo
—4
< 0 GPIX R, Dl < oo

j=—o00

n,—p
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Lemma 6.5. For anyn € Ng, p > 1 and ¢ € A, ;,, we have
App € Ay .

Proof. Since
_ 2
A= > DI
k=—n
for any n € Ny and Lemma 6.3, we obtain

oo

oo
-2
Matlan, < D ID2¢la,, <e D G7lella,, < oo

k=—n k=—n

for any n € Ny and p > 1. This implies the assertion. ([l

By Lemmas 6.4 and 6.5, for any n € Ny, operators V; and A% on A are
defined by

ViX(p) = > X(De,pler, X € A%,
k=—n
and
AL X(p) == X(Anp), X € AL,

respectively. Then X (¢) satisfies a stochastic differential equation
1
dX(t) = V5 X(t)dB,,(t) + §A;X (t)dt.

Remark 6.6. As in Example 5.3, A, includes functionals of polynomials of
VRSE D

7. A STOCHASTIC DIFFERENTIAL EQUATION INDUCED BY A SUM OF
DELTA DISTRIBUTIONS CENTERED AT BROWNIAN MOTIONS

For N,n € Ny and p > 1, we denote by A,]X’; the class of all entire functions ¢
defined on FE,, _, such that

-N
Iy, = s {le@) 1+ 122 ,) ™} < oo
’ el —p
Then, for N,n € Ny and p > 1, we note that A,IX’p* CAyp.
Define A} =Ny —o Np>1 Afxg endowed with the projective limit topology of
spaces AN* N € Ny, p > 1 and also define A% := ﬂneNO A} - endowed with the

n,p
projective limit topology of spaces A o,n € Npy.

Lemma 7.1. Let t > 0 and ¢ € A% . Then for any m € Ny and p > 1, the
following estimate holds:

E[YO@ < @+6) > 67lelle - (7.1)

n=—oo
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For any m € N and p > 1, we can consider an (A% )*-valued stochastic process
{Y(t); t =0} by

oo

Y(t)(p):= Y @(Bu(t)en), ¢ € A%

n=—m
in view of Lemma 7.1. We can denote Y (t) by >0, 05, (1)e, as an element of
(%),

For any y € E_, we can consider the differential operator D, restricted on A%
as

Dyp(z) == ¢'(x)(y), ¢ € AL.
For any m € Ng,p > 1,z € Fy, _, with xle; for j > —m and 38 € R, we have an
estimation of |De,p(z + Be;)| (1 + |z + Bej|,2n7_p)7N'
-N
|De; o(x + Bej)| (1+ |z + Bejln, )

1 .

/ oz + (a—|—ﬂ)e])da

|ae|=r

(1+ |z + Be; 2 )"

2mi o?

1 p(z + (a+ Bey) 2 \-N
= o7 la|=r a? da (1 ot ﬂej|m’_p)

1 z+ (a+ B)e; _N
=L [ A OERG) (14t (0t By — oy ,) Y da

™ |a|=r «

-N

|De,p(x + Pej)| (1 + |z + ﬂej|fn7_p)

2N 5 N
<53 lo(z + (o + B)ej)| (1+|$+(a+6)€j|m,71)) dox -

27T7" \a|=7"

2N 9 \-N
< / sup {lp(@)] (1+ |22, _,) " }da.

22 a|l=r EEm,—p
Taking r = %E? , we have the following:

Lemma 7.2. Let m,j € No. Then for any j > —m, D¢, is a continuous linear
operator from A% into itself. More precisely, the inequality

oN—1
1De; el e < =457l

m,p

AN
holds for any N € Ny, p € R and ¢ € A%;.
Similarly, we also have the following facts by Lemma 6.4.

Lemma 7.3. For any Nym € Ny, p>1,0 € AN* and Y € (A%:;)*, we have

m,p

> Y(De,p)er € Em —p.
k=—m

N,*

np» we have
,

Lemma 7.4. For any Nyn € Ng, p>1 and ¢ € A
N,x
Anp € Ay
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Proof. Since A, =Y 72 | DZ for any n € Ny, from Lemma 7.2, we obtain

—n

oo
[Anpllpys < IDZ el
n,p

n,p

k=—n
ogN—-1\2 = L
< ( . ) S 5l < oo
k=—n
for any n, N € Ny and p > 1. This implies the assertion. O

By Lemmas 7.3 and 7.4, for any n € Ny, the operators V} and A} can be
defined on A% by

oo

ViY(p) = Y Y(Deypler Y € (AL,

k=—n

and
ALY (¢) ==Y (Anp), Y € (AL)".

Then Y (t) also satisfies the stochastic differential equation

dY (t) = VIY (£)dB,(t) + %A;Y(t)dt.

8. CONCLUDING REMARKS

Since for any n € Ny, ¢ € A, and m € N, the equalities

Ap(Ba(t)") = /(B ()" (B (™) + 5 (B ()" (A(Br ()™, (B (1))
. (8.1)
AB (™) = mBy (1) B, 1) + "B (12, (1)

= mBn(t)m—ldBn(t)+W3n(t)m—2 i eopdt

k=—n
hold, we have the following:

Theorem 8.1. (cf. [12]) For anyn € Ny, ¢ € A, and m € N, the equality

do(Ba(t)™) = m Y &' Ba(t)™)Bua(t)" 'er)dBy(t)

k=—n
[eS)

Y @ Bat)™)(Ba(t)" Pea)dt

k=—n

m(m — 1)
2

2 o0

£ B Ba)" e, Ba(t)" i)t

k=—n

holds.
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For x € EZ, we introduce operator A,, ; defined on A, by
oo
Ap 2= Z Diekga, Y €A,
k=—n

For =z € EY , we also introduce operators V;, , and A;, , defined on A%, by

V;,IX(@) = Z X(Dlek@)ekv SD E Aoo7

k=—n
and
AZ,wX(@) = X(An,x<p)v v €A,
For any n € Ny, t > 0 and m € Ny, we set

X () (@) = 0(Br(t)™), ¢ € Ax.

If {X,,(t); 0 <t < 1} is an A% -valued stochastic process, then it satisfies the
stochastic differential equation by Theorem 8.1:

dXm(t) = MV} g (gym-1 Xin (1)dBy (1)

m

m(m—1) _, z .
+ <2DB,L(t)m25n(0) + 7 TL,B,L(t)ml) Xm(t)dt (82)

We note that the equation (8.2) includes the random differential operators in
VB, (tym-1 and A, B, (1ym-1, for m > 2.
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