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Functional Equations Related To Spatial
Filtering In Image Enhancement

B.V. Senthil Kumar* Ashish Kumar** and G. Suresh***

Abstract : Inthis paper, we discuss the solutions of the functional equations arising from arithmetic mean and
harmonic mean and we illustrate how these functional equations can be used to remove noise in an image by
filtering techniques.

Keywords : Functional equation; additive functional equation; quadratic functional equation; cubic functional
equation; reciprocal functional equation.

1. INTRODUCTIONAND PRELIMINARIES

A Hungarian MathematicianJ. Aczel [1], anexcdllent specialist in functiona equations, definesthe functional
equationasfollows:

“ Functional equations are equationsin which both sides are terms constructed fromthe finite number
of unknown functions and a finite number of independent variables’ .

Nowadays, thefield of functional equationsisan ever-growing branch of mathematicswith far-reaching
applications. Thetheory of functional equationsisrelatively new and it contributesto the development of strong
toolsin contemporary mathematics. Functional equationsaso compriseatraditional branch of Mathematicsoffering
wide scopefor agebraic, andytic, order theoretic and topological considerations. Conversaly many mathemetica
idessin different fields have become essentid to the foundation of functional equations. It isincreasingly used to
investigate problemsin other fields such asMathematica analysis, Combinatorics, Biology, Behaviora and Socia
sciences, and Engineering.

Solving afunctiona equation meansto find all functionsthat satisfy the functional equation. Solutionsto functiona
equations have become important toolsinan increasing number of problemsin socid sciencessuch as Economics
and Psychology. Many new applied problemsand theories have inspired and encouraged speciaistson functional
equationsto develop new approachesand new methods.

Applications of functional equationsto characterizing various probability laws and statistics can befound in
Ramachandranand Lau [14], and Rao and Shanbhag [ 15]. Castillo, Cobo, Gutierrez and Pruneda[5] introduced
the functional networks using functiona eguations. Thesefunctiona networks havefound many applicationslike
the neura networks. | nformation measures play animportant roleininformation theory and also in coding theory.
Various functiona equationsare used for characterizing information measures.
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Applications of functional equationsto characterizing various probability laws and statistics can befound in
Ramachandranand Lau [14], and Rao and Shanbhag [ 15]. Castillo, Cobo, Gutierrez and Pruneda[5] introduced
the functional networks using functiona eguations. Thesefunctiona networks havefound many applicationslike
the neura networks. | nformation measures play animportant roleininformation theory and also in coding theory.
Variousfunctional equationsare used for characterizing information measures.

Functional equationsoccur practicaly everywhere. Their influenceand applicationsarefelt inevery field, and
all fieldsbenefit from their contact, useand technique. The growth and development used to beinfluenced by their
gpectacular gpplicationin severd areas and not only in mathematicsbut also in other disciplines. Applications can
befound inawide variety of fieldssuch as Classical mechanics, Decision theory, Dynamic programming, Fuzzy set
theory, Gametheory, Geometry, Group Theory, Inequalities, Inner product space, MeasureTheory, Mechanics,
Multivalued logic, Polynomials, Cluster analysis, Stochagtic process, Physics, Astronomy, Reproducing scoring
system, taxation, Population ethics, Applied Science, Computer graphics, Artificia intelligence, Neural networks,
Digital image processing and many other fields. Functiona equationsare being used with vigor in ever-increasng
numbersto investigate problemsin the above mentioned areas and other fields.

Let usevoke definition of some basic functional equations, and their solutions and propertieswhich are
required for our main results.

Definition 1.1.

[1] Afunction g: R — R iscalled additiveif g satisfies

g(x+y) = g(x) +9(y) (1.1)
fordl x,y e R.
Theadditive function g(x) = cx isasolution of the equation (1.1), where cisaconstant.

Definition 1.2.

([1], [12]) Afunction g: R — R iscdled quadraticif gsatisfies

gix+y) + (x—y) = 29(x) +29(y) (12
fordl x,y e R.

The quadratic function g(x) = kx? isa solution of the equation (1.2), where k isaconstant. The functional
equation (1.2) isrelated to a symmetric bi-additive function ([1], [11]). A function f: X — Y between vector
gpacesisquadraticif and only if thereexistsa unique symmetric bi-additivefunction B : X x X — Y suchthat f(x)

=B (x X) forall x e X, wherethefunction isgiven by

1
B(x,y) = Z[f(x+ y) - f(x=y)], foral x, yeX.
Definition 1.3.

[9] Afunction g: R — R iscalled cubicif gsatisfies
g(2x+y) +g(2x—y) = 2g(x +y) + 2g9(x—y) + 129(X) (1.3)
for all x,y e R. Thecubic function g(x) = cx®, isasolution of the equation (1.3), where cisaconstant.

Themotivation for studying cubic functional equationscame fromthefact that recently polynomial equations
have found applicationsin gpproximete checking, self-testing and self-correcting of computer programsthat compute
polynomids.

Theorem 1.4.

[9] Afunctionf: X — Y between vector spaces satisfies the functional equation (1.3) if and only if
thereexistsafunction B: X x X x X — Y such that f(x) = B(x, X, X) for all x € X and B is symmetric for
each fixed variable and is additive for fixed two variables.
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K.W. Junand H.M. Kim ([9],[10]) proved that afunction g satisfying (1.3) also satisfies
fix+y+2) +f(x+y—2) +2f(x) + 2f(y) = 2f(x +y) +f(x+ 2 + f(x—2) +f(y + 2) + f(y—2) 1.9
fordl x,y e R.
H. Azadi Kenary [4] showed that thefunctional equation

g(x +2y) + g(x—2y) = 4[g(x+Yy) +g(x—y)—69(X)] (1.5)
isaso acubic functional equation.

K. Ravi and B.V. Senthil Kumar [ 16] investigated the genera solutionof amapping r : R \{0} — R satisfying
thereciproca functiona equation

r(x r(y)

: 1.6
r(x)+r(y) 9

rix+y) =

c
Thereciproca function I (X) = ” isthe solution of the functional equation (1.6), where ¢ isaconstant.

Definition 1.5.

[16] Amapping r : R \{0} — R iscdledreciprocdl if r satisfiesthefunctiona equation (1.6).

Thefunctional equation (1.6) hasan gpplicationin thewell-known*“Reciprocal formuld’ to find the equivalent
resstance of anelectric circuit consisting of two resstors connected in parallel and aso the equation (1.6) holds
goodinageometric congtruction discussedin[17].

Consider afunction f : R xR — R satisfying the squarefunctional equation
1
f(x+y) = Z[f(x+ YV, Y+t + f(x+t,y—t)+ f(x=y,y+t)+ f(x—t,y—t)]

forall X, y,t € N. Theequation (1.7) givesthevaueof f at thecentre of any square, the sdesof whichare
paralld to the coordinate axes, equasthemean valueof f over thefour verticesof thesquare. The general solution
of theequation (1.7) is
fx,y) = Bx,y) +A(x) +Axy) +a,
whereB isan arbitrary bi-additivemap, A, and A, arearbitrary additive maps, and o isan arbitrary constant [2].
The functiond equationsimilar to (1.7) arisesinthe problem of solving 2-dimensional Laplace equation
foutfy = 0. (1.8)
Motivated by equation (1.7), weintroduce thefollowing two variable reciprocal functional equationsof the

form
f(xy) = %[f(xvtt, y)+ f(x=t, )+ f(xy,+t)+ f(x y-t)] (1.9)
f.(X, y,1)
and f(x,y) = W (2.10)

where  f(xy 1) = 4f(x+t,y+1t) f(x+t,y—t) f(x—t,y+t)f(x-t,y—t)
and L6yt = fx+t,y+ ) fx+t,y—t) f(x-t,y+t) +f(x+t,y+t) f(x +t,y—1t) f(x—t, y 1)
+i(x+t, y+t) f(x—t,y+t) f(x—t,y—t) +f(x+t,y—t) f(x—t,y+t) f(x—t,y—1t)=0.
PK. Sahoo and L. Szekelyhidi ([18],[19]) obtained the genera solution of the functional equation

f(x+t,y+t)+f(x—ty) +f(x,y—-t) = f(x-t,y—-t)+ f(x, y+1t)+ f(x+t,y) (1.12)

fordl x,y,t € G whereG denotesa 2-divisble abelian group. Thefunctional equation (1.11) ariseswhile
characterizing quadratic polynomialsin two variablesand also connected to aproblemin spatid filtering of digital
images. Thefunctional equation (1.11) can beused as afilter to retain certain information containedinthe original
image. Other type of functional equationsrelatedto digita filtering areavailablein[12].
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Inthispaper, wefind the solution of thefunctiona equations(1.7) and (1.10). We dsoillustrate the functiona
equations(1.7) and (1.10) canberelated to spatid filtering inimage enhancement.

The paper isorganised asfollows. In Section 2, we present basic concepts of image enhancement. In Section
3, weproveeguation (1.7) isequivalent to (1.9). In Section 4, wefind the solution of thefunctional equation (1.7).
In Section 5, we obtain the general solution of thefunctional equation (1.10) and in Section 6, weillustrate the
gpplication of thefunctional equations(1.7) and (1.10) inimage enhancement. In Section 7, we present the condluson

of this paper.
2.BASIC CONCEPTSOFIMAGE ENHANCEMENT

Inthissection, we present some basic conceptsreated to filtering techniques used in digital image processing.

Many functiona equationsoccur in variousfieldsof Applied Science, such asMathematica Physcs, Statistics,
Economics, Astronomy, Engineering, Technology and Compuiter. Particularly, visualizing using computer isa
comparatively new and rapid growing field which mostly helps computerswith artificial sensory perception. In
other words, the computer vison deaswithimage understanding. Pre-processing isafundamenta task in every
image understanding problem. Among others, pre-processing involvesfiltering. Spatid filtersareused for deblurring,
smoothing, sharpening and enhancing of images. Thusfiltering isatechniquefor transforming or improving the
quality of animage.

The primary objective of theimage enhancement isto adjust the digita image so that theresultant imageis
more suitablethan the origina imagefor aspecific gpplication. There are many image enhancement techniques. We
focuson thetechniques which are based on the position manipulation of image pixels.

Animageisdefined asatwo dimensional functionf(x, y), wherexandy are spatial (plane) coordinatesand
the amplitude of f at any pair of coordinates (X, y) iscaled theintensty or grey level of pixd value of the image
[21]. Datasets collected by image sensor are generally contaminated by noise. An efficient filtering method is
necessary for enhancing the qudity of imagesby removing noise. The noiseremovd intheimageisgtill achdlenging
problem for researcher because noiseremoval introducesartifactsand causes blurring of theimage. A few types of
noise sourceswhich corrupt imagesare Gaussian Noise, Poisson Noise, Salt & Pepper Noise, Speckle Noise,
Erlang (Gamma) Noise, Exponential Noise, Uniform Noise. For moreinformation about different typesof noises,
onecanrefer ([3],[6], [7],[8],[13],[20],[21]). For our experimental purpose, we deal with Gaussian noiseand
Salt & Pepper noise.

2.1. Gaussian Noise

Gaussan noiseisgatigtical noisethat hasa probability densty function of thenormd distribution (also known
as Gaussiandigribution). I n other words, thevauesthat thenoise cantakeonare Gaussan distributed. It ismost
commonly used asadditive white noiseto yield additive white Gaussian noise.

2.2. Salt & Pepper Noise

It representsitsalf asrandomly occurring white and black pixels. Thistype of noiseisalso caused by errorsin
datatransmisson andisaspecia caseof datadrop out noisewheninsomesingle pixelsare set dternatively to zero
or to themaximumvalue, giving theimage asalt and pepper like appearance.

3.RELATIONBETWEEN EQUATION (1.7) AND EQUATION (1.9)
Inthissection, we provethat thefunctiond equations(1.7) and (1.9) are equivalent.

Theorem 3.1.

Amapping f :R xR — R satisfiesthefunctional equation (1.7) if and onlyif f satisfiesthe functional
equation (1.9). Hencethe solution of (1.7) and (1.9) are same.
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Proof. Let satisfy equation (1.7). Replacing (X, y) by (x +t, x+1t) in(1.7), wefind

f(x+t,y+t) = %[f(x+2t, y+2t)+ f(x+2ty)+ f(xy)+2t+ f(x y)] (3.1
foral x, y,t € R. Now, subgtituting (X, y) as(x—t, y—t) in(1.7), weobtan

fix-ty—-1t) = %[f(x, y)+ f(xy-2)+ f(x-2t,y) + f(x-2t, y - 21)] (32
foral x,y,teR. Again,taking (x+t, y—t) instead of (X, y)in(1.7), we have

f(x+t,y—t) = %[f(x+2t,y)+ f(x+2t,y=2t)+ f(x, )+ f(x,y—2t)] (3.3
foral x, y,t € R. Now, replacing (X, y) by (x—t,y +1t) in(1.7), onefinds

f(x—t,y+t) = %[f(x, y+20) 4+ f(xy)+ f(x=2t, y+2t)+ f(x=2t,y)] (3.4)

foral x, y,t € R. Adding equations(3.1), (3.2), (3.3) and (3.4), wearrive
f(x+t,y+t)+ f(x-t,y-t)+ f(x+t,y—-t)+ f(x-t,y+t)

= f(x, y)+%[f(x+2t,y)+ f(x,y+2t)+ f(x,y—-2t) + f(x=-2t,)]

-l-%[f(x-l—Zt, y+2t)+ f(x=2t,y=2t) + f(x+2t, y-2t) + f(x-2t, y + 2t)] (3.5)
forall x, y,t e R. Now, replacing + by 2t in(1.7), weobtain

fxy) = %[f(x+2t,y+ 2) 4+ (X2, y—2t)+ F (X2, y+20) + f(x—2t, y— 20)]

3.6

foral x, y,te R. Using (1.7) and (3.6) in (3.5), wearrive (1.9). 29
Ontheother hand, let f satisfy equation(1.9). Replacing y +tby in(1.9), we have

fx,y+ t) = %[f(xjtt, y+t)+ f(x=t,y+t)+ f(x, y+2t) + f(x y)] (3.7)
foral x, y,t € R. Substituting yasyin(1.9), weobtain

0 y= 1 = ZLHELY =0+ Fx=ty =D+ f(x )+ F(x y-20) (39
foral x, y,t e R. Againtaking x +tingtead of xin(1.9), onefinds

f(x+ty) = %[f(x+2t, y)+ f(xy)+ f(x+t,y+t)+ f(x+t,y—t)] (3.9
foral x, y,t € R. Now, replacing xby x—t in(1.9), oneobtains

—t,y) = FLFOY)+ =2 y)+ FX=ty+0+ F(x=t y =) (3.10)

fordl x, y,t € R. Summing equations(3.7), (3.8), (3.9) and (3.1), wearrive
fox,y +t)+f(x, y—t)+ f(x+t,y)+ f(x-t,y)

= f(x, y)+%[f(x+t, y+t)+ f(x=t,y+t)+ f(x=t,y—t)+ f(x+t,y—1)]

+%[f(x, y+2t)+ f(xy=-2t)+ f(x+2t,y)+ f(x=2t,y)] (3.11)
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foral x, y,t € R. Now, replacingtby 2t in(1.9), wehave

fxy) = glTOCH2,9)+ T2 y)+ F(x Y +0+ (%, y- 2] 312
foral x, y,t € R. Using (1.9) and (3.12) in(3.11), we arrive (1.7), which completesthe proof.
4.SOLUTION OF THE FUNCTIONAL EQUATION (1.7)
Inthissection, we obtain the general solution of thefunctional equation (1.7).

Lemma4.l.

If f:R x R— R isamapping given by

f(x y) = aA(x) + BA(Y)
where A:R — R isan additive mapping satisfying (1.1), and and are constants. Then f satisfies the
equation (1.7).

Proof. f(x+t,y +t)+ f(x—t,y—t)+ f(x+t,y—t)+ f(x—t,y+1)
aA(X+t) + PA(Y +1) + 0A(X—t) + BA(Y —t) + aA(X +t) + BA(y —1)
+oA(X—-t)+BA(Y+ 1)

20A(X+1t) + 20A(X—1) + 2BA(Y +t) + BA(Yy —1t)
daA(X) + 4BA(Y)

af (X, y)

foral x, y,t € R, whichcompletesthe proof of thelemma.

Lemmad4.2.
If f:R x R— R isamapping given by
f(x,y) = Z[QMx+Y) = Q(x=)]

where Q:R — R is a quadratic mapping satisfying (1.2), and y is a constant. Then f satisfies the
equation (1.7).
Proof. f(x+4+t,y +t) f(x—-t,y—t)+ f(x+t,y—t)+ f(x—-t,y+t)

%{Q(H y+ 2t) —Q(x - Y)] +%[Q(X+ y —2t) — Q(x—y)]

+%[Q(X+ y) — Q(x -y —2t)] +%[Q(X+ y) —Q(x—y + 2]

+%[Q(X+ y) —Q(x - )] +%[Q(X+ y+2t) —Q(x+ y—21)]

_%[Q(x —y+2) 4+ Q(x—y—21)]

2f(x, y) +%[2Q(X +y) + 2Q()] —%[ZQ(X —y) +2Q(2)]

af(x, y)
foral x, y,t € R, whichcompletesthe proof of thelemma.
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Lemma4.3.

Let C:R — R be a cubic mapping satisfying (1.4) and (1.5). If f:R x R— R isa mapping
given by
f(x, y) = 8[2C(x) + 2C(y) — C(x +y)]
foral x, y,t € R, whered isacongtant. Then satisfies (1.7).

Proof. f(x+t,y +t) f(x—-t,y—t)+ f(x+t,y—t)+ f(x—t,y+t)
20C(x + 1) + 28C(y +1t) —28C(x +y + 2t ) + 28C(x —t) + 28C(y — 1)
—dC(x+y—2t) + 26C(x —t) + 26C(y —t) —dC(Xx + V)
45C(x +t) + 40C(x +t) —40C(y +t) + 45C(y — t)
—0C(x+y+2t) —oC(x+y—2t) —26C(x + )
45C(x +t) + 40C(x —t) —40C(y +t) + 45C(y — t)
—28C(x+y) —[40C(x +y + 1) + 40C(x + y —1) —66C(X + V)]
45C(x + 1) + 40C(x —t) —45C(y +t) + 40C(y —t) + 40C(x + y)
—[83C(X +Yy) —43C(Xx + 1) + 40C(x —t) + 45C(y + t) + 40C(y —t)] — 83C(x) — 85C(yt)
85C(x) + 83C(y) —46C(x + V)
= 4f(x+y)
foral x, y,t € R, whichcompletesthe proof of thelemma.

Theorem 4.4.

Let A:R — R beanadditivemapping satisfying (1.1), Q: R — R bea quadratic mapping satisfying
(1.2) and C:R — R be a cubic mapping satisfying (1.4) and (1.5). If f:R x R— R isa mapping
given by

wa:cmawﬁMw+%ma+w—qa—whﬂnqm+zqw—cu+w]

foral x, ye R, wherea, B, v, 6 areconstants. Thenf satisfies(1.7).
Proof. Theproof of thistheoremfollowsimmediately from Lemmas4.1, 4.2 and 4.3.

5.GENERAL SOLUTION OF THE FUNCTIONAL EQUATION (1.10)
Inthissection, we achieve the genera solution of the functiona equation (1.10).

Lemmab.1.

Let r:R{0} — R beafunction satisfying the functional equation (1.6). Thenr isan odd function.
Proof. Replacing (x, y) by (x, X) in(1.6), weobtain

@@:§m (5.1)

i : 1 . .
for al xc€ R\{G}. Similarly, we arrive at r(3x)::—3r(x), for al xe R\{0}. Now, replacing by in(1.6) and
using (5.1), we have

__reyr(y)
2 = 2701y (52
for all xe R\{C}. Subgtituting (x,y) = (x, —2y) in(1.6) and using (5.1), we obtain
r(x)r=y)

r(x—2y) = 2r(x) + r(~y) (53
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foral x ¢ R \{0}. Equation (5.2) divided by equation (5.3) yields,
r(x+2y)  r(yl2r(x) +ry)
r(x=2y) = r(=y)2r(x)+r(y)]
forall x e R\{0}. Now, replacing (X, y) by (X, —X) in(5.4) to get
r=x)  r(=x[2r(x) +r(x]
r3x) — re)[2r(x) + r(=x)]

which on further smplificationyieldsr(—x) =—r(x), for all x € R \{0}. Hence isan odd function.

Theorem 5.2.

A mapping f:R\{G xR\{0} — R\{0} satisfies (1.10) if and only if there exist two reciprocal

mappings r,r,:R\{0} — R such that
_n(¥)r(y)
D= ()

forall x, ye R\{0}.

Proof. Assumethat f isasolutionof (1.10). Define hy (x) = f (X, 0), h,(y) = f(0, y), foral x, y € R\{C}.
Itiseasy toverify that h,, h, arereciprocd functions. Let h,(x) =r,(x) and h,(x) =r,(x), x€ R\{C}.Hence

fordl x, ye R\{0}.

Conversely, assume that there exist two reciprocal mappings r,r,:R\{0} — R\{0} such that

F(x, y):%, forall x, y € R\{0}. Hence
f.(X,y,1)
f (% y,t) 1 N 1 N 1 N 1
f(x+t,y+t)  F(x+ty—t) f(x=t,y+t) f(x—t, y—t)

4
T (x+)+n(y+t) n(x+t)+ny—t) rx=t)+n(y+t) rx—t)y+r(y—t)
rl(x-l—t) rz(y+ t) rl(x-|— t) rz(y_t) rl(X—t) rz(y+t) rl(X_t) rz(y_t)
4
1 1 1 1 1 1 1 1

r(x+t) * n(y+t) - r(x+t) * n(y-t) " n(x—t) i n(y+t) i n(x—t) i n(y -t

1+1+1+1+1+1+1+1
n(x+t) rnly+t) rnx+t) nly-t) nx-t) rny+t) nx-t) r(y-t)

T 1 1 1

n(x+t)  n(y+t) nx+t) r(y-t)
1

11

R ry)
n(r(y)

=R tny Y

fordl x, ye R\{0}.
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6. APPLICATION OF THE FUNCTIONAL EQUATIONS(1.7)AND (1.10) IN IMAGE EN-
HANCEMENT

Inthissection, weillustrate the gpplication of the functional equations(1.7) and (1.10) inimage enhancement.

I nimageenhancement technique, weintroduce the functiona equations(1.7) and (1.10) tofilter noisy images.
Thefunctional equation (1.7) computesthearithmetic mean of the diagonal pixels of a3 x 3 window and replaces
theresulting valueat the centre pixel. The Figure 6.1 portraysthe performance of the functiona equations(1.7) and
(1.10) toimprovethe quality of animage with Gaussan noise.

Original Image with

Image with Original Image Salt & Pepper noise

Original Image Guassian Noice

R
i

Original Image with

Image with - .
Original Image Guassian Noice Original Image Salt & Pepper noise
Filtereq Image by Filtered Image by
Filtered Image by Filtered Image by equations (1.7) equations (1.10)

equations (1.7) equations (1.10)

Fig. 6.1.

Thefunctional equation (1.10) computesthe harmonic mean of the diagonal pixelsof a window and replaces
theresulting valueat the centre pixd. The Figure 6.2 showsthe performance of thefunctional equations(1.7) and
(1.10) toimprove the quality of animagewith Salt & Pepper noise.

7.CONCLUSON

1. InSectionl, wehaveintroduced two new functiona equations(1.7) and (1.10) and studied their general
solutionsin Sections5 and 5 respectively.

2. In[2], the solution of thefunctional equation (1.7) isobtained as sum of additive function, bi-additive
function and aconstant. But in Section 4, we have improved the solution of equation (1.7) and proved
that itsimproved solution is sumof additive, quadratic and cubic functions.

3. Thesolutionsof thefunctiona equations(1.7) and (1.10) represent the position of the pixelsintheimage.

4. Thefunctiona equation (1.7) workswdll for filtering Salt & Pepper noisefrom corrupted imagewhereas
thefunctiondl equation (1.10) workswdl for Gaussian noiseasshow in Section 6. Moreover, thefunctional
equation (1.10) establishesthe concept that the harmonic meanfilter ismore suitable for salt noise removal
but it failsto remove the pepper noise (Refer Figure 6.2).

5. Theequation(1.11) dedlt in[18] isused asafilter to retain certain basic information of animagewhereas
the proposed functiona equations(1.7) and (1.10) can be used both for retaining basic information of an
image and enhancing the quality of image by filtering process.
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