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EFFECT OF TEMPERATURE MODULATION ON
THE ONSET OF RAYLEIGH-BÉNARD CONVECTION

IN A COUPLE STRESS FLUID WITH MAXWELL-
CATTANEO LAW

Maria Thomas and Sangeetha George K

Abstract: The linear stability of a horizontal layer of couple stress fluid heated from below
is considered. A time-dependent periodic perturbation is applied to the wall temperatures
in addition to a steady temperature difference between the walls of the fluid layer. The
classical Fourier heat law is replaced by the Maxwell-Cattaneo law. The critical Rayleigh
number, correction Rayleigh number and wave number for small amplitude of the
modulation are calculated using the perturbation method. Only infinitesimal disturbances
are considered. The effect of Cattaneo number, couple stress parameter and the Prandtl
number is discussed.
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INTRODUCTION

The classical Fourier's law governs the process of heat transfer by diffusion. Along with
the First Law of Thermodynamics Fourier's law gives rise to a parabolic temperature field
which implies an infinite speed of heat propagation. However, a disturbance wave in the
temperature will travel at a finite speed since it is transferred by molecular interaction ([1]).
Maxwell-Cattaneo (MC) law characterizes this behaviour. It has a transient term multiplied
by the thermal relaxation time of the medium. This relaxation time is the required time for
the heat flux to reach a steady state following a perturbation to the temperature gradient
and thereby establishing a hyperbolic temperature field ([2]). The propagation of heat as a
wave is not just a low-temperature phenomenon but is observed in ultra-fast heating [3],
heat transfer in biological materials [4], convection in nanodevices and complex fluids [5]
to name a few. Within the context of thermal convection Straughan and Franchi [6] ,
Straughan [7,8], Pranesh and Kiran [9], Papanicolaou et al. [10], Stranges et al. [2], Uribe
et al. [11], Bissell [12], Shivakumara et al. [13] have studied various fluid systems employing
the MC law.

The characteristics of the fluid flow encountered in many practical problems such as
the extrusion of polymer fluids, solidification of liquid crystals, cooling of metallic plates,
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exotic lubricants and colloidal fluids are different from that of a Newtonian fluid. These
practical applications of non-Newtonian fluids in modern technology have motivated the
study of convective instability of such fluids. The modelling of these problems is convoluted
and at the same time mathematically and physically challenging. The constitutive equations
for couple stress fluids were given by Stokes [14]. The theory proposed by Stokes is the
simplest one for micro-fluids which allow polar effects such as the presence of couple
stress, body couple, and non-symmetric tensors. Stokes deduced that couple stresses could
be seen in noticeable magnitudes in liquids with large molecules. The couple stress fluid
according to Eringen [15] is a particular case of micropolar fluid when micro-rotation
balances with the natural vorticity of fluid. Couple stress fluid for Rayleigh-Bénard situation
was studied by Siddheshwar and Pranesh [16] and for a porous medium in the presence of
magnetic field by Sharma and Thakur [17]. Later many authors Pranesh and Sangeetha
[18,19], Malashetty et al. [20], Shivakumara and Naveen [21], Jaimala and Kumar [22] ,
Kumar at al.[23] and Sameena and Pranesh [24] have investigated the Rayleigh-Bénard
situation in couple stress fluid along with various components such as magnetic field, rotation,
non-uniform temperature gradients, modulations, diffusing components, hall currents and
in porous medium.

Externally modulated hydrodynamic systems have been receiving growing interest
because it can alter the behaviour of the system and can induce novel dynamic states,
particularly near a point of instability. Venezian [25] in his work considered the thermal
analogue of Donnelly's experiments [26] by modulating the wall temperature with an
additional perturbation in addition to the fixed temperature difference between the walls.
A review of the relevant results of this system was given by Davis [27]. Gershuni and
Zhukhovitskii [28], Rosenblat and Herbert [29], Rosenblat and Tanaka [30] have studied
temperature modulation on various systems. Pranesh and Sangeetha [18,19] analyzed
the effect of temperature modulation on the onset of magneto-convection in electrically
conducting Boussinesq-Stokes suspensions and electroconvection under AC
electric field in dielectric couple stress liquids. Bhadauria and Kiran [31] and
Vasudha et al. [32] studied the combined effect of internal heating and temperature
modulation in a Newtonian fluid and micropolar fluid respectively. Suthar et al. [33] and
Umavathi at al. [34] have studied Rayleigh-Bénard convection in a densely packed porous
layer and Maxwell fluid-nanofluid subjected to time-periodic temperature modulations
respectively.

We study the effect of thermal modulation on the onset of Rayleigh-Bénard convection
employing the non-classical Maxwell-Cattaneo law in this paper. The eigenvalue problem
obtained is solved by perturbation technique with the amplitude of the temperature
modulation as a perturbation parameter.
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MATHEMATICAL FORMULATION

We consider a layer of couple stress fluid confined between two horizontal walls as shown
in Figure 1. A Cartesian coordinate system (x, y, z) is chosen such that the origin is at the
lower wall and z-axis is vertically upward. A vertical gravitational force acts on the fluid.
The lower wall at z = 0 and the upper wall at z = d are subjected to the temperatures
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respectively, where T0 is the reference temperature, �T is the temperature difference between
the walls, � is the amplitude of the modulation, � is the phase angle and � is the frequency
of the modulation.

Figure 1: Physical configuration of the problem

We assume that the amplitude is very small and can be used to control convection. We
use the amplitude as a parameter to find the solution of the basic equation. The following
three types of temperature modulations are considered:

• when oscillating field is symmetric so that wall temperatures are modulated in-
phase with ��= 0,

• when oscillating field is asymmetric so that wall temperatures are modulated out-
of-phase with ��= �,
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• when only the temperature of the bottom wall is modulated, the upper wall being
held at constant temperature with ��= –i�.

Under the Boussinesq approximation, the governing equations are given by [16,35]
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Substituting (8) in (3)-(7), the pressure pb, heat flux 
bQ
�

, temperature Tb, and density �b

satisfy the following equations:
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�b = �0 [1 – �(Tb – T0)] (12)

The solution of (11) that satisfies the boundary conditions (1) and (2) is

Tb = Ts (z) + �T1 (z, t) (13)
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and Re stands for the real part.

Let the basic state be disturbed by an infinitesimal thermal perturbation. We assume a

solution for q
�

, T, p, � and Q
�

 in the form
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where q�
�

, ��, p�, T�, Q�
�

 represents the perturbed quantities which are assumed to be small.

Substituting (14) in (3)-(7) and using the basic state equations we obtain the following
linearized equations for the infinitesimal perturbations:
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We eliminate p� from (16) by operating curl twice and eliminate Q�
���

 between (17) and

(18) by operating divergence on (18). The perturbation equations are then non-
dimensionalized using:
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where f is the modulation temperature gradient given by
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Solution

We seek eigenfunctions W and eigenvalues R of (24) for the basic temperature profile (23)

that departs from the linear profile 1oT
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�  by quantities of order �. Thus the eigenvalues

of the present problem differ from the classical Rayleigh-Bénard problem by quantities of
order �.
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We assume the solution of (24) in the form

(W, R) = (W0, R0) + �(W1, R1) + �2 (W2, R2) + ... (27)

where W0 and R0 are the eigenfunction and eigenvalue respectively for the unmodulated
system and Wi and Ri, for i � 1, are the correction to W0 and R0 in the presence of modulation.

Substituting (27) in (24) and equating the corresponding terms, we obtain the following
system of equations:

LW0 = 0, (28)

LW1 = (R1 – R0 f) X3 �
2
1 W0, (29)

2 2
2 1 0 3 1 1 2 1 3 1 0( ) ( ) .LW R R f X W R R f X W� � � � � � (30)

where

2
1 2 0 3 1L X X R X� � � (31)

Each of W0, W1, W2 is required to satisfy the boundary conditions in (25). The stability
of the system in the absence of thermal modulation is investigated by introducing vertical
velocity perturbation W0, lowest mode of convection, as

W0 = sin(�z) exp [i(lx + my)] (32)

where l and m are the wave numbers in the x and y directions respectively such that l2 + m2
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The solubility condition requires that the time independent part of the right-hand side
of (34) should be orthogonal to W0. Since f varies sinusoidally with time, the only time

independent term in the right-hand side of (34) is 2 2
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follows that all the odd coefficients R3, R5 and so on in (27) are zero. Expanding the right-
hand side of (29) using Fourier series and by inverting the operator L term by term we
obtain W1 as
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(30) for W2 becomes
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We use (37) to determine R2, the first non-zero correction to R0. The solubility condition
requires that the steady part of the right-hand side of (37) should be orthogonal to W0. This
gives
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Results

The value of Rayleigh number R obtained by this procedure is the eigenvalue corresponding
to the eigenfunction W which although oscillating remains bounded in time. Since R is a
function of the horizontal wave number a and the amplitude of perturbation �, we have

R(a, �) = R0 (a) + �2 R2 (a) + ... (40)

The critical value is computed up to O(�2) by evaluating R0 and R2 at a = a0. It is only
when we need to evaluate R4 that a2 should be taken into account where a = a2 minimizes
R2.

We now evaluate R2c for the three cases:

• In-phase modulation with ��= 0. Then
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From (40) the critical Rayleigh number is in the form

Rc = R0c + �2 R2c (43)

where R0c and R2c can be obtained from (33) and (39) respectively. If R2c is positive,
supercritical instabilities exists and Rc has a minimum at ��= 0. If R2c is negative, subcritical
instabilities are possible. In such a case we have from (43)

2 0

2

c

c

R

R
� � (44)

From (44) the range of the amplitude of modulation � which causes subcritical
instabilities can be examined and can be explained by assigning values to the physical
parameters involved in the problem.

DISCUSSION

This paper presents an analytical study of the effect of time-periodic temperature modulation
on the onset of convection in couple stress fluid using Maxwell-Cattaneo law. An
approximate linear stability analysis proposed by Venezian [25] is used to find the critical
Rayleigh number as a function of frequency of the modulation, Cattaneo number, couple
stress parameter and Prandtl number.

The solution obtained is based on the assumption that the amplitude of the modulation
is small. The validity of the results depends on the value of the modulating frequency �.
When ��<< 1, the period of modulation is large and it affects the entire volume of the fluid.
For large frequencies the effect of modulation disappears because the buoyancy force takes
a mean value leading to the equilibrium state of the unmodulated case. Thus we have chosen
only moderate values of � in our study. A positive R2c means the modulation effect is
stabilizing while a negative R2c means the modulation effect is destabilizing compared to
the unmodulated system.

Figs. 2, 3 and 4 show the variation of R2c with respect to � for various governing
parameters for the case of in-phase modulation. Figures show that the critical Rayleigh
number R2c is negative for small frequencies indicating a destabilized flow. For moderate
frequencies R2c is positive indicating that the effect of in-phase modulation is to stabilize
the system. It can also be seen that as the frequency increases from zero to infinity R2c

decreases to its minimum value producing maximum destabilization and then increases to
its maximum stabilizing value and thereafter decreases to zero. Hence in the presence of
in-phase modulation convection occurs at lower values of the Rayleigh number compared
to the unmodulated system.
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Figure 2 shows the variation of R2c with the modulating frequency � for different
values of Cattaneo number, M. We see that as M increases, R2c is becoming more negative
for small values of � and increasing positively for moderate values of �. Hence the
effect of Cattaneo number is to destabilize the system for small frequencies while it
stabilizes for moderate frequencies. The figure also shows that the influence of Cattaneo
number is dominant for small values of M. This is because the convection cells have
fixed aspect ratio. Increase in Cattaneo number leads to narrowing of the convection
cells and thus advancing the convection. In the absence of the Cattaneo number, the
results obtained agree with the one by Pranesh and Sangeetha [19] and Malashetty and
Basavaraja [20].

According to Einstein [36] the presence of suspended particles is to increase the viscosity
of the fluid by a factor of 2.5� where � is the volume fraction of the suspended particles.
Therefore we assume that the viscosity of a suspension is higher than that of the carrier
fluid([16]).

Figure 2: Variation of R2c with  for various values of Cattaneo number for in-phase
modulation



Effect of Temperature Modulation on the Onset of Rayleight-Bénard Convection... 157

Figure 3 is the plot of R2c with the modulating frequency � for different values of the
couple stress parameter, C. We see that R2c is negative for small values of �, but is
positive for moderate values of �. This indicates that the couple stress parameter has a
destabilizing effect on the system for small values of � and stabilizing effect for moderate
values of �.

Figure 4 is the plot of R2c with the modulating frequency � for different values of
Prandtl number, Pr. R2c is negative for small values of the frequency but is positive for
moderate and large values of the frequency. Hence Prandtl number has a destabilizing
effect on the system for small values of � and stabilizing effect for moderate values of �. It
is also found that the effect of Prandtl number is insignificant in case of in-phase modulation
of the wall temperature in systems with couple stress fluid.

Figure 3: Variation of R2c with  for various values of couple stress parameter for
in-phase modulation
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Figure 4: Variation of R2c with  for various values of Prandtl number for
in-phase modulation

Figure 5: Variation of R2c with  for various values of Cattaneo number for
out-of-phase modulation
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The results obtained for the case of out-of-phase modulation are presented in Figures
5, 6 and 7. It can be seen from Figure 5 that Cattaneo number has stabilizing effects for
small values of the frequency and has destabilizing effect for moderate values. For the
values of M we have considered in this problem it has a destabilising effect for ��� 18. The
value of � which leads to the destabilising effect is dependent on the values of the other
governing parameters.

Figure 6: Variation of R2c with  for various values of couple stress parameter for
out-of-phase modulation

The effect of couple stress parameter on the onset of convection is shown in Figure 6.
R2c is positive in the case of out-of-phase modulation. It is found that the effect of increasing
the couple stress parameter is to make the system more stable. This is in contrast to its
effect in the case of in-phase modulation. This can be anticipated because Rc increases with
increase in C as C is indicative of the concentration of the suspended particles.

Figure 7 depicts the variation of R2c with � for different values of Prandtl number. We
notice from the figure that the effect of Prandtl number is insignificant. However Prandtl
number tends to stabilize the system for moderate values of �. Variation of all the governing
parameters for the case of only lower wall temperature modulation produce similar effects
as for out-of-phase modulation. The results are illustrated in Figures 8, 9 and 10.
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Figure 7: Variation of R2c with  for various values of Prandtl number for
out-of-phase modulation

Figure 8: Variation of R2c with  for various values of Cattaneo number for only
lower wall modulation
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Figure 9:Variation of R2c with  for various values of couple stress parameter
for only lower wall modulation

Figure 10: Variation of R2c with  for various values of Prandtl number for only
lower wall modulation
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CONCLUSION

The effect of thermal modulation on the onset of convection in a couple stress fluid with
Maxwell-Cattaneo law is studied using a linear stability analysis. It is found that the system
is more stable when boundary temperature is modulated out-of-phase. In-phase temperature
modulation leads to sub-critical motions. Cattaneo number is stabilizing for moderate
frequencies and destabilizing for small frequencies in the case of in-phase modulation. It
has a destabilizing effect for moderate frequencies and stabilizing effect for a range of
small frequencies in the cases of out-of-phase and lower wall modulation. Couple stress
parameter stabilizes the system in the case of out-of-phase and lower wall modulations,
and for moderate frequencies in the case of in-phase modulation. The results show the
effect of temperature modulation on smaller time scales. It is shown that non-Fourier effects
in fluids varies significantly from that of Fourier case. The problem gives insight into
external means of controlling convection. The study is particularly relevant to low-
temperature fluids.
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