HYPERGRAPH ON REGULAR SEMIGROUPS

Varghese Abraham^{*} and Jose Elvis Roy^{**}

Abstract: Some basic concepts related to hypergraphs arising from semigroups are introduced here. The relationship between regular semigroups and hypergraphs are studied. Finite regular semigroups and its hypergraph transversals are characterized.

Key words: Hypergraph; Semigroup; Regular semigroup; Hypergraph transversal; Inverse transversal.

1. INTRODUCTION

The notation and terminology of Berge [1] and Howie [2] are followed. Let $X = \{x_1, x_2, ..., x_n\}$ be a finite set. A hypergraph on X is a family $H = (E_1, E_2, ..., E_m)$ of subsets of X such that

- 1. $E_i \neq \emptyset, i = 1, 2, ..., m,$
- 2. $\bigcup_{i=1}^{m} E_i = X.$

The elements $x_1, x_2, ..., x_n$ of X are called vertices and the sets $E_1, E_2, ..., E_m$ are the edges of the hypergraph. A simple hypergraph is a hypergraph $H = (E_1, E_2, \dots, E_m)$ such that $E_j \subset E_j \Rightarrow j$. A simple graph is a simple hypergraph each of whose edges has cardinality 2. A multigraph is a hypergraph in which each edge has cardinality ≤ 2 . A hypergraph H may be drawn as a set of points representing the vertices. The edge E_i is represented by a continuous curve joining the two elements if $|E_i| = 2$, by a loop if $|E_i| = 1$ and by a simple closed curve enclosing the elements if $|\vec{E_i}| \ge 3$. Let $H = (E_1, \vec{E_2}, \dots, \vec{E_m})$ be a hypergraph on a set X. For a set J $\subset \{1, 2, 3, ..., m\}$, we call the family $H = \{E_j : j \in J\}$ the partial hypergraph generated by the set J. The set of vertices of H is a nonempty subset $\bigcup_{i \in J} E_i$ of X. Two vertices u and v are adjacent in H if their exits an edge of H that contains both u and v; nonadjacent if they are not adjacent. Let $H = (E_1, E_2, \dots, E_m)$ be a hypergraph on a set X. A set $T \subset X$ is a transversal of H if it meets all the edges, that is to say: $T \cap E_i \neq \emptyset$ (*i* = 1,2,...,*m*). The family of minimal transversals of *H* constitutes a simple hypergraph on X called the transversal hypergraph of H, and denoted by Tr H. If the hypergraph is a simple graph G, a set S is stable if it contains no edge,

^{*} Department of Science and Humanities, Mar Baselios College of Engineering and Technology, Thiruvananthapuram 695015, E-mail: dr_vargheseabrahammic@yahoo.com

^{**} Research Scholar, Department of Mathematics, Mar Ivanios College, Thiruvananthapuram 695015, E-mail: elvisroy@gmail.com

that is, if its complement X - S meets all the edges of G. Thus, $Tr G = \{X - S:S \text{ is a maximal stable set of } G\}$. By a groupoid (S, μ) we shall mean a non-empty set S on which a binary operation μ is defined. That is to say, we have a mapping $\mu: S \times S \rightarrow S$. We shall say that (S, μ) is a semigroup if μ is associative, i.e. if $(\forall x, y, z \in S) ((x, y)\mu, z) = (x, (y, z)\mu)\mu$. If (S, .) is a semigroup, then a non-empty subset T of S is called a subsemigroup of S if it is closed with respect to multiplication, i.e. if $(\forall x, y \in T) xy \in T$. Let S be a semigroup is called regular if there exists $y \in S$ such that x = xyx. A semigroup is called regular if every element of S is regular. Let $a \in S$. An element $b \in S$ is called an inverse of a if a = aba and b = bab. Denote $V(x) = \{y \in S: y \text{ is an inverse of } x\}$ and $W(x) = \{y \in S: x = xyx\}$. Then it follows that $V(x) \subseteq W(x)$. The following lemma is trivial.

Lemma 1.1 If *S* is a regular semigroup, then $W(x) \neq \emptyset$ for any *x*.

By definition we have $W(x) \subseteq S$ and $V(x) \subseteq S$ and

$$\bigcup_{x \in S} W(x) \subseteq S$$

and

$$\bigcup_{x \in S} V(x) \subseteq S.$$

This leads to the following lemma.

Lemma 1.2 If S is a finite regular semigroup, then

$$\bigcup_{x \in S} W(x) \bigcup_{x \in S} V(x) = S.$$

Proof. If $x \in S$ then there exists at least one $y \in S$ such that x = xyx.

Therefore,

$$(yxy)x(yxy) = yxy$$

and

$$x(yxy)x = xyx = x$$

so that $x \in V(yxy)$.

Hence $x \in W(yxy)$. Therefore

$$x \in \bigcup_{x \in S} W(x)$$

so that

 $\bigcup_{x \in S} W(x) = S$

So also

 $x \in \bigcup_{x \in S} V(x)$

and

$$\bigcup_{x \in S} V(x) = S$$

In view of Lemma 1.1 and Lemma 1.2, we have the following theorem.

Theorem 1.1 If *S* is a finite regular semigroup then, $\{W(x): x \in S\}$ is a hypergraph on *S*.

2. INVERSE TRANSVERSAL

A semigroup *S* is called an inverse semigroup if every *a* in *S* possesses a unique inverse, i.e. if there exists a unique element a^{-1} in *S* such that $aa^{-1} a = a$, $a^{-1} aa^{-1} = a^{-1}$. Such a semigroup is certainly regular, but not every regular semigroup is an inverse semigroup: a rectangular band, in which every element is an inverse of every other element, is an obvious example. Let *S* be a semigroup. A subsemigroup *T* of *S* is called a transversal if it meets W(x) for all $x \in S$. An inverse semigroup *T* of *S* is called an inverse transversal if it meets V(x) for all $x \in S$.

Theorem 2.1 Every transversal *T* of a regular semigroup *S* is a transversal of the hypergraph on *T*.

Proof. Since T is a transversal o the semigroup S, it follows that T is a subsemigroup of S and

$$T \cap V(x) \neq \emptyset$$
 for all $x \in S$

Let $E_x = E \cap V(x)$. Then $E_x \neq \emptyset$.

Also

$$\bigcup_{x \in S} (T \cap W(x)) = T \cap (\bigcup_{x \in S} W(x)) = T \cap S = T$$

Similarly,

$$\bigcup_{x \in S} (T \cap V(x)) = T \cap (\bigcup_{x \in S} V(x)) = T \cap S = T.$$

In either case

$$\bigcup_{x \in S} E_x = T.$$

Hence $H = \{E_x : x \in S\}$ is a hypergraph on T and $T \cap E_x \neq \emptyset$.

That is, *T* meets all edges of the hypergraph *H*. So *T* is a hypergraph transversal. This completes the proof.

Theorem 2.2 Every inverse transversal T of a regular semigroup S is an inverse transversal of the hypergraph on T.

We leave the proof since it is similar to theorem 2.1.

We illustrate the above concepts by taking the following example.

Example 2.1 1 Consider $Z_{15} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14\}$. Then Z_{15} is a regular semigroup under multiplication modulo 15 follows from the multiplication table.

\times_{15}	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
2	0	2	4	6	8	10	12	14	1	3	5	7	9	11	13
3	0	3	6	9	12	0	3	6	9	12	0	3	6	9	12
4	0	4	8	12	1	5	9	13	2	6	10	14	3	7	11
5	0	5	10	0	5	10	0	5	10	0	5	10	0	5	10
6	0	6	12	3	9	0	6	12	3	9	0	6	12	3	9
7	0	7	14	6	13	5	12	4	11	3	10	2	9	1	8
8	0	8	1	9	2	10	3	11	4	12	5	13	6	14	7
9	0	9	3	12	6	0	9	3	12	6	0	9	3	12	6
10	0	10	5	0	10	5	0	10	5	0	10	5	0	10	5
11	0	11	7	3	14	10	6	2	13	9	5	1	12	8	4
12	0	12	9	6	3	0	12	9	6	3	0	12	9	6	3
13	0	13	11	9	7	5	3	1	14	12	10	8	6	4	2
14	0	14	13	12	11	10	9	8	7	6	5	4	3	2	1

Here

 $W(0) = \{0\}, W(1) = \{1\}, W(2) = \{8\}, W(3) = \{2,7,12\}, W(4) = \{4\}, W(5) = \{2,5,8,11,14\}, W(6) = \{1,6,11\}, W(7) = \{13\}, W(8) = \{2\}, W(9) = \{4,9,14\}, W(10) = \{1,4,7,10,13\}, W(11) = \{11\}, W(12) = \{3,8,13\}, W(13) = \{7\}, W(14) = \{14\}.$

Then it follows that $W(x) \neq$ and $\bigcup \{W(x): x \in S\} = Z_{15}$.

Hence $H = \{W(x): x \in S\}$ is a hypergraph on Z_{15} . Considering $W = \bigcup \{W(x): W(x) = 1\}$ we see that $W = \{0, 1, 2, 4, 7, 8, 11, 13, 14\}$ is a subsemigroup of Z_{15} and W intersects all W(x) so that W is a hypergraph transversal of the hypergraph on Z_{15} and is a semigroup transversal.

References

- [1] C. Berge, Hypergraphs, Elsevier Science Publishers B.V, 1989.
- [2] J. M. Howie, An Introduction to Semigroup Theory, University of St Andrews, Scot lane, 1976, Academic Press.