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HYPERGRAPH ON REGULAR SEMIGROUPS

Varghese Abraham* and Jose Elvis Roy**

Abstract: Some basic concepts related to hypergraphs arising from semigroups are
introduced here. The relationship between regular semigroups and hypergraphs are
studied. Finite regular semigroups and its hypergraph transversals are characterized.
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1. INTRODUCTION

The notation and terminology of Berge [1] and Howie [2] are followed. Let
X = {x
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, x
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n
} be a finite set. A hypergraph on X is a family H = (E
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m
)

of subsets of X such that
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The elements x
1
, x

2
,…, x

n
 of X are called vertices and the sets E

1
, E
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,…, E

m
 are

the edges of the hypergraph. A simple hypergraph is a  hypergraph
H = (E

1
, E

2
,…, E

m
) such that E

i 
��E

j 
��j. A simple graph is a simple hypergraph

each of whose edges has cardinality 2. A multigraph is a hypergraph in which each
edge has cardinality ��2. A hypergraph H may be drawn as a set of points representing
the vertices. The edge E

j
 is represented by a continuous curve joining the two

elements if | E
j
 | = 2, by a loop if |E

j
 | = 1 and by a simple closed curve enclosing the

elements if | E
j
 | ��3. Let H = (E

1
, E

2
,…, E

m
) be a hypergraph on a set X. For a set J

��{1, 2, 3,…, m}, we call the family H' = {E
j
 : j �� J} the partial hypergraph

generated by the set J. The set of vertices of H' is a nonempty subset �
j�J

 E
j
 of X.

Two vertices u and v are adjacent in H if their exits an edge of H that contains both
u and v; nonadjacent if they are not adjacent. Let H = (E

1
, E

2
,…, E

m
) be a hypergraph

on a set X. A set T � X is a transversal of H if it meets all the edges, that is to say:
T � E

i 
� Ø (i = 1,2,,…,m). The family of minimal transversals of H constitutes a

simple hypergraph on X called the transversal hypergraph of H, and denoted by
Tr H. If the hypergraph is a simple graph G, a set S is stable if it contains no edge,
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that is, if its complement X – S meets all the edges of G. Thus, Tr G = {X – S:S is a
maximal stable set of G}. By a groupoid (S, µ) we shall mean a non-empty set S on
which a binary operation µ is defined. That is to say, we have a mapping µ: S × S �
S.  We shall say that (S,  µ) is a semigroup if µ is associative, i.e. if
(� x, y, z �S) ((x, y)µ, z) = (x,(y, z)µ)µ. If (S, .) is a semigroup, then a non-empty
subset T of S is called a subsemigroup of S if it is closed with respect to
multiplication, i.e. if (� x, y ��T) xy ��T. Let S be a semigroup. An element x�S is
called regular if there exists y�S such that x = xyx. A semigroup is called regular if
every element of S is regular. Let a ��S. An element b ��S is called an inverse of a
if a = aba and b = bab. Denote V(x) = {y �� S:y is an inverse of x} and
W(x) = {y ��S: x = xyx}. Then it follows that V(x) ��W(x). The following lemma is
trivial.

Lemma 1.1 If S is a regular semigroup, then W(x) � Ø for any x.

By definition we have W(x) ��S and V(x) ��S and

�
x�S

 W(x) ��S

and

�
x�S 

V(x) ��S.

This leads to the following lemma.

Lemma 1.2 If S is a finite regular semigroup, then

�
x�S 

W(x) �
x�S 

V(x) = S.

Proof. If x � S then there exists at least one y ��S such that x = xyx.

Therefore,

(yxy)x(yxy) = yxy

and

x(yxy)x = xyx = x

so that x ��V(yxy).

Hence x�W(yxy). Therefore

x ���
x�S

 W(x)

so that

�
x�S 

W(x) = S

So also

x ���
x�S

 V(x)
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and

�
x�S 

V(x) = S.

In view of Lemma 1.1 and Lemma 1.2, we have the following theorem.

Theorem 1.1 If S is a finite regular semigroup then, {W(x): x�S} is a hypergraph
on S.

2. INVERSE TRANSVERSAL

A semigroup S is called an inverse semigroup if every a in S possesses a unique
inverse, i.e. if there exists a unique element a–1 in S such that aa–1 a = a, a–1 aa–1 =
a–1. Such a semigroup is certainly regular, but not every regular semigroup is an
inverse semigroup: a rectangular band, in which every element is an inverse of
every other element, is an obvious example. Let S be a semigroup. A subsemigroup
T of S is called a transversal if it meets W(x) for all x�S. An inverse semigroup T'
of S is called an inverse transversal if it meets V(x) for all x�S.

Theorem 2.1 Every transversal T of a regular semigroup S is a transversal of
the hypergraph on T.

Proof. Since T is a transversal o the semigroup S, it follows that T is a
subsemigroup of S and

T�V(x) � Ø for all x ��S

Let E
x 
= E ��V(x). Then E

x 
� Ø.

Also

�
x�S

 (T ��W(x)) = T ��(�
x�S

 W(x)) = T�S = T

Similarly,

�
x�S

 (T �V(x)) = T ��(�
x�S 

V(x)) = T�S = T.

In either case

�
x�S 

E
x 
= T.

Hence H = {E
x
 : x�S} is a hypergraph on T and T�E

x 
���Ø.

That is, T meets all edges of the hypergraph H. So T is a hypergraph transversal.
This completes the proof.

Theorem 2.2 Every inverse transversal T' of a regular semigroup S is an inverse
transversal of the hypergraph on T'.

We leave the proof since it is similar to theorem 2.1.

We illustrate the above concepts by taking the following example.
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Example 2.1 1 Consider Z
15 

= {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}.
Then Z

15
 is a regular semigroup under multiplication modulo 15 follows from the

multiplication table.

×
15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
2 0 2 4 6 8 10 12 14 1 3 5 7 9 11 13
3 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12
4 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11
5 0 5 10 0 5 10 0 5 10 0 5 10 0 5 10
6 0 6 12 3 9 0 6 12 3 9 0 6 12 3 9
7 0 7 14 6 13 5 12 4 11 3 10 2 9 1 8
8 0 8 1 9 2 10 3 11 4 12 5 13 6 14 7
9 0 9 3 12 6 0 9 3 12 6 0 9 3 12 6
10 0 10 5 0 10 5 0 10 5 0 10 5 0 10 5
11 0 11 7 3 14 10 6 2 13 9 5 1 12 8 4
12 0 12 9 6 3 0 12 9 6 3 0 12 9 6 3
13 0 13 11 9 7 5 3 1 14 12 10 8 6 4 2
14 0 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Here

W(0) = {0}, W(1) = {1}, W(2) = {8}, W(3) = {2,7,12}, W(4) = {4},

W(5) = {2,5,8,11,14}, W(6) = {1,6,11}, W(7) = {13}, W(8) = {2}, W(9) = {4,9,14},

W(10) = {1,4,7,10,13}, W(11) = {11}, W(12) = {3,8,13}, W(13) = {7},

W(14) = {14}.

Then it follows that W(x) � and �{W(x): x ��S} = Z
15

.

Hence H = {W(x): x�S} is a hypergraph on Z
15

. Considering W = ��{W(x):
W(x) = 1} we see that W = {0, 1, 2, 4, 7, 8, 11, 13, 14} is a subsemigroup of Z

15
 and

W intersects all W(x) so that W is a hypergraph transversal of the hypergraph on Z
15

and is a semigroup transversal.
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