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TEST FOR STRUCTURAL CHANGE UNDER
DEPENDENT ERRORS: THE CASE OF

SUCCESSIVE REGRESSIONS

Jagabandhu Saha and Manoranjan Pal

Abstract: The Chow test is not robust under dependency of errors. The presence of dependency
of errors will affect level of significance as well as power of the test, especially when the sizes of
the samples are small. The present paper not only resolves the problem of dependency in the
error terms, but also extends the existing method of comparing two regression equations to
many equations in order to make comparisons of the successive coefficients to be possible, thus
enabling one to detect structural changes, if any. The procedure is then illustrated through
detection of structural change, by comparing the successive decadal growth rates of population,
using State level data of India.
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1. INTRODUCTION

It is a common practice to test the equality between sets of coefficients in two
linear regressions by Chow Test (Chow 1960) [1]. In the Chow Test, if the null
hypothesis of equality between the sets of coefficients is not rejected then there is
no problem (as in the examples in his paper). But if rejected, then, naturally, one is
probed to the questions: a). at which component/s the sets differ, and b). for each
of those components, between the two coefficients of the two regressions concerned,
which one is larger/smaller. Chow test does not provide answer to any of these
questions. This problem can be resolved with some modifications of the model
(Saha and Pal 2014) [2]. Saha and Pal introduced the concept of “component wise
complete comparison” (CCC)1 in order to overcome this problem. The test
procedure for CCC between every two successive regressions out of any number
of given successive regressions was developed. Also, however, Chow assumed
independence of the regression errors. If the regression errors are dependent then
the estimates may not be efficient. The presence of dependent errors will affect
level of significance as well as power of the test of the regression coefficients and
the test may result into wrong conclusion especially when the sizes of the samples
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are small. If errors are dependent then the problem of CCC aggravates and needs
further modifications. The present paper extends the earlier paper by incorporating
dependency of errors in the model and developing test procedure for CCC between
every two successive regressions out of any number of given successive regressions
and thus enabling one to detect structural changes, if any. This is the purpose of
the paper.

Successive regressions arise when the regression equations are ordered. E.g.,
in time series data we may be interested to know whether the regression coefficient
changes over time. In such a case each time point will have a regression equation
and one may test the changes in the coefficients of the regressions between
successive points of time.

Quandt (1972) [3] considered the problem of discontinuous shifts in regression
regimes. But he assumed that nature chooses between regimes with probabilities
p and 1 – p, 0 � p � 1. Thus it is not known apriori whether an observation falls in
regime 1 or regime 2. In other words, it is some sort of a classification problem.
Though he chose only two regimes, it is possible it to extend it to more than two
regimes. Our formulation here is completely different. We assume that the change
is fixed from one regime to the next regime, but it may be different from one
regime to the other and the observations fall in one of the two regimes known
apriori.

Successive regressions arise not only in time series data, but also in spatially
distributed data. Spatially dependent error models are introduced in spatial
regression analysis in which the errors are assumed to be spatially correlated.
Many specification tests for spatially dependent error models are available in
the literature (Cliff and Ord 1981 [4], Burridge 1980 [5], Anselin 1988 [6] and Anselin
et al. 1996 [7]). But in most of the cases the test statistics had degrees of freedom
only 1.

We may now straight go to the problem and discuss how we can arrive at a
solution.

2. The Model: We consider the problem of finding test procedure for CCC
between every two successive regressions out of m given successive regressions:

y (1) = a1
(1) + a2

 (1) x2
 (1) + a3

 (1) x3
 (1) + ….. + ak

 (1) xk
 (1) + u (1),

 y (2) = a1
(2) + a2

 (2) x2
 (2) + a3

 (2) x3
 (2) + ….. + ak

 (2) xk
 (2) + u (2),

……………………

y (m) = a1
(m) + a2

 (m) x2
 (m) + a3

 (m) x3
 (m) + ….. + ak

 (m) xk
 (m) + u (m), 1 (1)

the superscripts denoting the individual regressions and n1, n2, …, nm being the
nos. of observations for these regressions, when the errors are dependent. In order
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to introduce dependency of the errors we consider the Model consisting of the
following assumptions:

i) E(u(i)) = 0 nx1, � i = 1, 2, ………, m,

ii) E((u(i))(u(i))’) = � 2 I nxn, � i = 1, 2, ………, m,

iii) E((u(i))(u(j))’) = � ij I nxn, � i � j = 1, 2, ………, m,

iv) �mxm = (�ij) mxm, say, is a positive definite matrix, (2)

where, �ii = �2, i = 1, ……, m, and, ni = n, �i = 1, 2, ………, m,

(i.e., the sample sizes for the different regressions are the same, say, n).

It is admitted that a particular type of dependency has been considered.
Observe that the model is similar to that adopted in the Zellner’s (1962) [8] SURE
Estimation Procedure (ZSEP), and the solution here is, also, similar to that of
Zellner’s.

In order to utilize the Model on dependency of the error terms just introduced,
i.e., Model (2), we combine the above m regressions into a single regression equation
model as follows:
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(3)

The solution for the single equation model is same as that of finding solution
separately for each equation for the m equations model. The benefit of writing a
single equation model is that we can now utilize the Model on the dependency of
the error terms easily. In addition to introducing dependencies of the error terms
we want to compare aj

(i) with aj
(i+1), for all j = 1, 2, ..., k and i = 1, 2, ..., m-1. That is

also possible if we slightly change the model further.

Notice that the above model does not have an intercept term. We may now
introduce the intercept term in (3) and rewrite (3) as follows:
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(4)

c11 is the intercept term in (4). This is same as a1
(1), the intercept term in the first

regression equation in (1). Similarly, c12, c13, ..., c1k, are also same as a2
(1), a3

(1), ...,
ak

(1). The regression coefficients c21, c22, …, c2k are the changes in the intercept
term and the coefficients of other variables in the second equation from the
corresponding values of the first equation. c31, c32, …, c3k are the changes in the
intercept term and the coefficients of other variables in the third equation from
the corresponding values of the second equation, and so on. We can thus write
c1j = aj

(1), for all j = 1, 2, 3, ….., k and cij = aj
(i) – aj

(i-1), for all j = 1, 2, 3, ….., k and for
all i = 2, 3, ….., m.

Let us, for convenience, rewrite (4) as:

Y = X c + U, (5)

where, YNx1 = the Y-vector in (4), XNxK = the X-matrix in (4), cKx1 = the
coefficient-vector in (4) and UNx1 = the disturbance-vector in (4), N = nm and
K = km.

We can now estimate c as well as perform test for H0: cij = 0 vs. HA: cij � 0 or HA:
cij < 0 or HA: cij > 0, for all j = 1, 2, 3, ….., k and for all i = 2, 3, ….., m, i.e., perform
CCC between every two successive regressions in m-regression equation model,
since cij = aj

(i) – aj
(i-1). In fact, any of the coefficients c21, c22, …, c2k, c31, c32, …, c3k, ….., cmk,

or any combination of these coefficients can be tested. It thus can be seen as a
generalization of Chow test in two directions, because we assumed that the errors
are dependent.

3. The Methodology: For Model (5), the variance covariance matrix of the
regression error is given as:
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or, V = �m×m � In×n,

where, �mxm is:
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So the model (5) is a Generalised Least Squares Model (GLSM) [9] with the
variance covariance matrix of the regression error as given by (6). The GLS estimator
of c based on (5) is given as:

c* = (X� V-1X)-1X� V-1Y, (7)

and its dispersion matrix is:

D(c*) = (X� V-1X) -1. (8)

But due to (6), V is unknown as �mxm is so. So it is not possible to use (7) and (8)
in practice, particularly for the testing purposes we are aimed at. Henceforth let us
proceed following Zellner [8].

Firstly, we need to estimate V. For that we need to estimate �mxm and that is
done as follows. The steps are:

i) Apply OLS separately to each of the regressions in (1); let the residual
vector for the i-th regression be denoted as ei, for all i = 1, 2, …, m,

ii) Estimate �2 as: s2 = [ (e1�e1) + … + (em�em) ]/(m(n-k)).
iii) Estimate �ij as: sij = (ei�ej)/(n-k), � i � j = 1, 2, ….., m.
Then, estimated �mxm, say, Smxm, is: Smxm = (sij)mxm, where sii = s2, for all i = 1, 2, ...,

m. Then, V is estimated as:
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V̂  = Smxm ��Inxn (9)

Now we replace V in (7) byV̂  as given by (9) and form the estimator:

c** = (X� (V̂ )-1X)-1X� (V̂ )-1Y. (10)

Then it follows that (n1/2) (c** - c) has asymptotic normal distribution and the
dispersion matrix of c** is:

D(c**) = (X� (V̂ )-1X)-1 + 0(n
-1),

where 0(n
-1) denotes terms of high order of smallness than n-1.

So, for large value of n, c** is normally distributed. Also, evidently, for large n,

0(n
-1) is negligible and then,

D(c**) ~ (X� (V̂ )-1X)-1.

So, for large n, we have:

c** NK (c Kx1, (X� (V̂ )-1X)-1 ). (11)

Now, the tests that we require are obvious, provided that n is sufficiently large
which we assume for rest of the paper. Representing,

c** = (c**1 c**2 c**3 …… c**K)‘,

c = (c1 c2 c3 …… cK )’, and

(X� (V̂ )-1X)-1
 = (aij)KxK,

we have: (c**i - ci) / (aii)
1/2 ~ N(0 , 1), for all i = 1, 2, 3, …… , K.

Hence for the null hypothesis: H0 : ci = 0,

the test statistic is: T = c**i / (aii)
1/2 , and (12)

T ~ N(0 , 1), under H0 , for all i = 1, 2, 3, … , K.

Needless to say that each of the tests here is a normal test.

4. Illustration: In the context of rate of growth of population in India, we
consider three regression equations as follows (m=3). With State level population
of India, we first define the following four variables:

X1 = size of the population in a State of India in 1981,
X2 = size of the population in a State of India in 1991,
X3 = size of the population in a State of India in 2001,
X4 = size of the population in a State of India in 2011,
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the sources of the data being Census of India: 1981, 1991, 2001, 2011 [10].

Let us now define variables Y1, Y2, Y3 as follows:

Y1 = X2 - X1 (i.e., growth/increase of population during: 1981 to 1991),

Y2 = X3 - X2 (i.e., growth/increase of population during: 1991 to 2001),

Y3 = X4 - X3 (i.e., growth/increase of population during: 2001 to 2011).

Then, the regressions considered are as follows:

1 1 1 1

2 2 2 2

3 3 3 3

Y X U

Y X U

Y X U
(13)

�1, �2 and �3 are nothing but the rates of growth of population over the decades:
1981 to 1991, 1991 to 2001 and 2001 to 2011 respectively (to be referred afterwards
as, respectively, first decade, second decade and so on). Our task is to perform
CCC between every two successive regressions out these three regressions with a
view to detect structural changes, if any.

Now, following the Methodology described above, we apply OLS separately
to each of the above three regressions in (13). (It may be noted that each of these
regressions is a regression without an intercept term.)

(The no. of observations for each regression is n = 32 (no. of States in India). So,
we have: n = 32, k = 1, m = 3, and hence: N = nm = 96, K = km = 3.)

The Residual vectors of these three regressions are first obtained. It is now a
routine calculation to get the sum of squares and the sum of products of the residual
vectors and hence the estimates of �2 and �ij (s

2 and sij) using the formula as given
already. We then use the following steps to get the estimate c** as given by (10),
the variance covariance matrix of c**, i.e., (X� (V̂ )-1X)-1 ), as given by (11), and thence
value of the test statistic T as given by (12). It should be noted that the first
component of c** gives the estimate of the growth rate in the first decade (�1), and
the second and the third components of c** give respectively the estimates of
changes in the growth rates over first decade to second one (�2 - �1) and over
second decade to third one (�3 - �2).

1. Construct the matrix S3x3 and compute (S3x3)
-1,

2. Compute (V̂ ) -196x96 = S3x3
-1 � I32x32,

3. Compute the matrix: (aij)3x3 = (X‘(V̂ ) -1 X) -1,

4. Compute c** as: c**3x1 = (X‘(V̂ )-1 X) -1 X‘(V̂ ) -1Y,
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5. Compute the test statistic T = c**i / (aii)
1/2.

Now, it comes out that: c**3x1 = (0.231 -0.107 0.057)’ , and

T = -3.857 , for H0 : �2 - �1 = 0, and

T = 2.412 , for H0 : �3 - �2 = 0.

Hence, the estimate of the growth rate in the first decade is 0.231 and the
estimates of the changes concerned are respectively -0.107 and 0.057. Now,
comparing the test statistic T-values with table values, we get that �2 < �1 and �2 <
�3

2. These evidently indicate that there are structural changes twice , the first one
being negative and the second one being positive signifying that there is a decline
in growth rate as one moves from the first decade to the second decade while
there is a rise when one moves from the second decade to the third one.

Observe that we treated all the states equally. But we should have given weights
proportional to the population of the states respectively.

5. CONCLUSIONS

Our procedure extends the existing method from comparing two regression
equations to many equations making comparisons of the successive coefficients to
be possible, enabling one to detect structural changes, if any, and from the
assumption of the independency of errors to the dependency of errors. This
obviously can be seen as a generalization of Chow test in two directions.

Firstly, we can compare whether any two coefficients are equal against the
alternative hypotheses of inequality of any direction i.e., ‘<’ or ‘>’, instead of only
‘�’. This can further be extended to vector of regression coefficients with similar
alternative hypotheses for each component of vector.

Secondly, our procedure enables one to perform component wise complete
comparison between the vectors of coefficients of every two successive regressions
out of several given successive regressions. Now, one of the important implications
of this is as follows. Suppose each one of the given regressions pertains to a time
period/point and the regressions are arranged in increasing order of time and the
investigator is in search of a) existence of structural breakthrough and b) detection
of the point/s (here, by a point we mean a time period or a time point) where it
occurs, if there is any such at all. Not only the point/s of structural breakthrough,
if there is any at all, through our procedure we get something more. For every
such point we get component wise complete comparison, or, in other words,
component wise complete picture, so to say, of the vectors of coefficients of the
two regressions associated with that point. Actually, it is not necessary that the
regressions need to be ordered in increasing/decreasing order of time; it is sufficient
for the regressions to be ordered in a well defined sense, e.g., (i) in order of space,
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i.e., regressions pertain to some states of India arranged from North to South, (ii)
in increasing order of income, i.e., regressions pertain to some groups of peoples
arranged in increasing order of income, etc. It seems that the concept of “Structural
Change” can be extended, not pertaining to only “order of time” but pertaining to
any well defined order in which the regressions can be meaningfully arranged.

Thirdly, consider the test provided by Gujarati (Gujarati 1970) [11], called
Generalised Dummy Variable Approach, in order to find out whether a given set
of regressions differ from one another. A moment’s reflection shows that the
purpose of this test is also served by our test simply because if we arrange these
regressions successively (with or without any definite meaning) then we can say
that these regressions do not differ from one another iff the two vectors of
coefficients of every two successive regressions coincide with each other and this
is easily verifiable by our procedure. But, needless to say, the objective of this
paper, i.e., developing test procedure for CCC between every two successive
regressions out of any number of given successive regressions, is not served by
the test due to Gujarati.

Notes
1. By complete comparison between any two parameters a and b we mean to decide whether

a < b or a = b or a > b. By component wise complete comparison (CCC) between two
vectors of parameters of the same size (a1 a2 … am) and (b1 b2 … bm) we mean complete
comparison between (a1 and b1), (a2 and b2), ... and (am and bm). By CCC between/of/for
two regressions with same no. of parameters we mean CCC between the two vectors of
parameters of these regressions. In the paper by Saha and Pal, CCC is done between every
two successive regressions out of any number of given successive regressions with same
no. of parameters.

2. All tests are done at 5% level of significance.
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