IRROTATIONAL τ-CURVATURE TENSOR IN S-MANIFOLDS

K.R. Vidyavathi* and C.S. Bagewadi**

Abstract

In the present paper, we study the irrotational τ-curvature tensor in s-manifolds, where τ-curvature tensor is a generalization of quasiconformal, conformal, conharmonic, concircular, pseudo-projective, projective, M-projective, $W_{0}, W_{0}^{*}, W_{1}, W_{1}^{*}, W_{2}, W_{3}, W_{4}, W_{5}, W_{6}, W_{7}$, W_{8}, W_{9} curvature tensors.

Keywords: S-manifold, η-Einstein manifold, Einstein manifold, Ricci soliton.
2010 Mathematics Subject Classifcation: 53C25, 53A45.

1. INTRODUCTION

The notion of f-structure on a $(2 n+s)$-dimensional manifold M, i.e., a tensor field of type $(1,1)$ on M of rank $2 n$ satisfying $f^{3}+f=0$, was firstly introduced in 1963 by K. Yano [13] as a generalization of both (almost) contact (for $\mathrm{s}=1$) and (almost) complex structures (for $\mathrm{s}=0$). During the subsequent years, this notion has been furtherly developed by several authors [4], [5], [7], [8], [9], [10], [11]. Among them, H. Nakagawa in [10] and [11] introduced the notion of framed f-manifold, later developed and studied by S.I. Goldberg and K. Yano ([7], [8]) and others with the denomination of globally framed f-manifolds.

The authors C.S.Bagewadi and N.B.Gatti [1], [6], C.S.Bagewadi, E.Gireesh Kumar and Venkatesha [2] have studied irrotational projective curvature, quasiconformal curvature tensor and D-conformal curvature tensor in K-Contact, Kenmotsu and Trans-Sasakian manifolds and they have shown that these manifolds are Einstein and also studied some properties like flatness and space of

[^0]constant curvature. Further the authors C.S.Bagewadi, Gurupadavva Ingalahalli and K.T.Pradeepkumar [3] extended the notion to C-Bochner curvature tensor for K-Contact and Kenmotsu manifolds and they have proved that these manifolds are η-Einstein.

Motivated by the above work, we study the irrotational τ-curvature tensor in s-manifolds and we derive the result for the particular cases of τ. Further we discuss about Ricci soliton.

2. PRELIMINARIES

Let M be a $(2 n+s)$-dimensional manifold with an f-structure of rank $2 n$. If there exists global vector fields $\xi_{\alpha}, \alpha=(1,2,3, \ldots . ., s)$ on M such that;

$$
\begin{align*}
f^{2} & =-I+\sum \xi_{\alpha} \otimes \eta_{\alpha}, \eta_{\alpha}\left(\xi_{\beta}\right)=\delta_{\beta}^{\alpha} \tag{2.1}\\
f \xi_{\alpha} & =0, \eta_{\alpha} \circ f=0 \tag{2.2}\\
g\left(X, \xi_{\alpha}\right) & =\eta_{\alpha}(X), \quad g(X, f Y)=-g(f X, Y) \tag{2.3}
\end{align*}
$$

where, η_{α} are the dual 1 -forms of ξ_{α}, we say that the f-structure has complemented frames. For such a manifold there exists a Riemannian metric g such that

$$
\begin{equation*}
g(X, Y)=g(f X, f Y)+\sum \eta_{\alpha}(X) \eta_{\alpha}(Y) \tag{2.4}
\end{equation*}
$$

for any vector fields X and Y on M.
An f-structure f is normal, if it has complemented frames and

$$
[f, f]+2 \sum \xi_{\alpha} \otimes d \eta_{\alpha}=0
$$

where, $[f, f]$ is Nijenhuis torsion of f.
Let F be the fundamental 2-form defined by $F(X, Y)=g(X, f Y)$, $X, Y \in T(M)$. A normal f-structure for which the fundamental form F is closed, $\eta_{1} \wedge, \ldots \ldots, \eta_{s} \wedge\left(d \eta_{\alpha}\right)^{n} \neq 0$ for any α, and $d \eta_{1}=\ldots=d \eta_{s}=F$ is called to be an s-structure. A smooth manifold endowed with an s-stucture will be called an s-manifold. These manifolds introduced by Blair [4].

We have to remark that if we take $s=1, s$-manifolds are natural generalizations of Sasakian manifolds. In the case $s \geq 2$ some interesting examples are given.

If M is an S-manifold, then the following relations holds true;

$$
\begin{align*}
\nabla_{X} \xi_{\alpha} & =-f X, \quad X \in T(M), \alpha=1,2, \ldots, s \tag{2.5}\\
\left(\nabla_{X} \eta\right)(Y) & =-g(f X, Y) \tag{2.6}\\
\left(\nabla_{X} f\right) Y & =\sum\left\{g(f X, f Y) \xi_{\alpha}+\eta_{\alpha}(Y) f^{2} X\right\}, X, Y \in T(M), \tag{2.7}
\end{align*}
$$

where, ∇ is the Riemannian connection of g. Let Ω be the distribution determined by the projection tensor- f^{2} and let N be the complementry distribution which is determined by $f^{2}+I$ and spanned by $\xi_{1}, \ldots . . \xi_{s}$. It is clear that if $X \in \Omega$ then $\eta_{\alpha}(X)=0$ for any α, and if $X \in N$, then $f X=0$. A plane section π on M is called an invariant f-section if it is determined by a vector $X \in \Omega(x), x \in M$, such that $\{X, f X\}$ is an orthonormal pair spanning the section. The sectional curvature of π is called the f-sectional curvature. If M is an s-manifold of constant f-sectional curvature k, then its curvature tensor has the form

$$
\begin{align*}
R(X, Y, Z, W)= & \sum_{\alpha, \beta}\left\{g(f X, f W) \eta_{\alpha}(Y) \eta_{\beta}(Z)-g(f X, f Z) \eta_{\alpha}(Y) \eta_{\beta}(W)\right. \\
& \left.+g(f Y, f Z) \eta_{\alpha}(X) \eta_{\beta}(W)-g(f Y, f W) \eta_{\alpha}(X) \eta_{\beta}(Z)\right\} \\
& +\frac{1}{4}(k+3 s)\{g(f X, f W) g(f Y, f Z)-g(f X, f Z) g(f Y, f W)\} \\
& +\frac{1}{4}(k-s)\{F(X, W) F(Y, Z)-F(X, Z) F(Y, W) \\
& -2 F(X, Y) F(Z, W)\} \tag{2.8}
\end{align*}
$$

where, $X, Y, Z, W \in T(M)$. Such a manifold $N(K)$ will be called an s-space form. The Euclidean space $E^{2 n+s}$ and the hiperbolic space $H^{2 n+s}$ are examples of s-space forms.

Definition 1: s-manifold $\left(M, f, \eta_{\alpha}, g, \xi_{\alpha}\right)$ is said to be η-Einstein if the Ricci tensor S of M is of the form

$$
S=a g+b \sum_{\alpha=1}^{s} \eta_{\alpha} \otimes \eta_{\alpha}
$$

where, a, b are constants on M .
Now contracting equation (2.8) we get

$$
\begin{align*}
& S(Y, Z)=b_{1} g(Y, Z)+b_{2} \eta_{\alpha}(Y) \eta_{\alpha}(Z), \tag{2.9}\\
& S\left(Y, \xi_{\alpha}\right)=b_{3} \eta_{\alpha}(Y) . \tag{2.10}
\end{align*}
$$

where,

$$
\begin{aligned}
& b_{1}=\left[\frac{4 s+(k+3 s)(2 n-1)+3(k-s)}{4}\right] \\
& b_{2}=\left[\frac{(2 n+s-2)(4-k-3 s)-3(k-s)}{4}\right] \\
& b_{3}=\left[\frac{s^{2}(13-6 n-k-3 s)+2 s(7 n-5)+k(2-s)+2 n k(1-s)}{4}\right]
\end{aligned}
$$

From (2.8) we have

$$
\begin{align*}
R(X, Y) \xi_{\alpha} & =s \sum_{\alpha}\left\{\eta_{\alpha}(Y) X-\eta_{\alpha}(X) Y\right\} \tag{2.11}\\
R\left(\xi_{\alpha}, Y\right) Z & =s \sum_{\alpha}\left\{g(Y, Z) \xi_{\alpha}-\eta_{\alpha}(Z) Y\right\}, \tag{2.12}\\
\eta_{\alpha}(R(X, Y) Z) & =s \sum_{\alpha}\left\{g(Y, Z) \eta_{\alpha}(X)-g(X, Z) \eta_{\alpha}(Y)\right\} . \tag{2.13}
\end{align*}
$$

In a $(2 n+1)$-dimensional Riemannian manifold M, the τ-curvature tensor [12] is given by

$$
\begin{align*}
\tau(X, Y) Z= & a_{0} R(X, Y) Z+a_{1} S(Y, Z) X+a_{2} S(X, Z) Y+a_{3} S(X, Y) Z \\
& +a_{4} g(Y, Z) Q X+a_{5} g(X, Z) Q Y+a_{6} g(X, Y) Q Z \\
& +a_{7} r[g(Y, Z) X-g(X, Z) Y] \tag{2.14}
\end{align*}
$$

where, R, S, Q and r are the curvature tensor, the Ricci tensor, the Ricci operator and the scalar curvature, respectively.

In particular, the τ-curvature tensor is reduced to be

1. the quasi-conformal curvature tensor C_{*} if

$$
a_{1}=-a_{2}=a_{4}=-a_{5} ; a_{3}=a_{6}=0 ; a 7=-\frac{1}{2 n+1}\left(\frac{a_{0}}{2 n}+2 a_{1}\right)
$$

2. the conformal curvature tensor C if

$$
a_{0}=1 ; a_{1}=-a_{2}=a_{4}=-a_{5}=-\frac{1}{2 n-1} ; a_{3}=a_{6}=0 ; a_{7}=\frac{1}{2 n(2 n-1)}
$$

3. the conharmonic curvature tensor L if

$$
a_{0}=1 ; a_{1}=-a_{2}=a_{4}=-a_{5}=-\frac{1}{2 n-1} ; a_{3}=a_{6}=0 ; a_{7}=0
$$

4. the concircular curvature tensor V if

$$
a_{0}=1 ; a_{1}=a_{2}=a_{3}=a_{4}=a_{5}=a_{6}=0 ; a_{7}=\frac{-1}{2 n(2 n+1)}
$$

5. the pseudo-projective curvature tensor P_{*} if

$$
a_{1}=-a_{2} ; a_{3}=a_{4}=a_{5}=a_{6}=0 ; a_{7}=-\frac{1}{2 n+1}\left(\frac{a_{0}}{2 n}+a_{1}\right)
$$

6. the projective curvature tensor P if

$$
a_{0}=1 ; a_{1}=-a_{2}=-\frac{1}{2 n} ; a_{3}=a_{4}=a_{5}=a_{6}=0=a_{7}=0
$$

7. the M-projective curvature tensor if

$$
a_{0}=1 ; a_{1}=-a_{2}=a_{4}=-a_{5}=-\frac{1}{4 n} ; a_{3}=a_{6}=a_{7}=0
$$

8. the W_{0}-curvature tensor if

$$
a_{0}=1 ; a_{1}=-a_{5}=-\frac{1}{2 n} ; a_{2}=a_{3}=a_{4}=a_{6}=a_{7}=0
$$

9. the W_{0}^{*}-curvature tensor if

$$
a_{0}=1 ; a_{1}=-a_{5}=\frac{1}{2 n} ; a_{2}=a_{3}=a_{4}=a_{6}=a_{7}=0
$$

10. the W_{1}-curvature tensor if

$$
a_{0}=1 ; a_{1}=-a_{2}=\frac{1}{2 n} ; a_{3}=a_{4}=a_{5}=a_{6}=a_{7}=0
$$

11. the W_{1}^{*}-curvature tensor if

$$
a_{0}=1 ; a_{1}=-a_{2}=-\frac{1}{2 n} ; a_{3}=a_{4}=a_{5}=a_{6}=a_{7}=0
$$

12. the W_{2}-curvature tensor if

$$
a_{0}=1 ; a_{4}=-a_{5}=-\frac{1}{2 n} ; a_{1}=a_{2}=a_{3}=a_{6}=a_{7}=0
$$

13. the W_{3}-curvature tensor if

$$
a_{0}=1 ; a_{2}=-a_{4}=-\frac{1}{2 n} ; a_{1}=a_{3}=a_{5}=a_{6}=a_{7}=0
$$

14. the W_{4}-curvature tensor if

$$
a_{0}=1 ; a_{5}=-a_{6}=\frac{1}{2 n} ; a_{1}=a_{2}=a_{3}=a_{4}=a_{7}=0
$$

15. the W_{5}-curvature tensor if

$$
a_{0}=1 ; a_{2}=-a_{5}=-\frac{1}{2 n} ; a_{1}=a_{3}=a_{4}=a_{6}=a_{7}=0
$$

16. the W_{6}-curvature tensor if

$$
a_{0}=1 ; a_{1}=-a_{6}=-\frac{1}{2 n} ; a_{2}=a_{3}=a_{4}=a_{5}=a_{7}=0
$$

17. the W_{7}-curvature tensor if

$$
a_{0}=1 ; a_{1}=-a_{4}=-\frac{1}{2 n} ; a_{2}=a_{3}=a_{5}=a_{6}=a_{7}=0
$$

18. the W_{8}-curvature tensor if

$$
a_{0}=1 ; a_{1}=-a_{3}=-\frac{1}{2 n} ; a_{2}=a_{4}=a_{5}=a_{6}=a_{7}=0
$$

19. the W_{9}-curvature tensor if

$$
a_{0}=1 ; a_{3}=-a_{4}=\frac{1}{2 n} ; a_{1}=a_{2}=a_{5}=a_{6}=a_{7}=0
$$

Definition 2: The rotation (curl) of τ-curvature tensor on a Riemannian manifold is given by

$$
\begin{align*}
\operatorname{Rot} \tau= & \left(\nabla_{U} \tau\right)(X, Y, Z)+\left(\nabla_{X} \tau\right)(U, Y, Z)+\left(\nabla_{Y} \tau\right)(U, X, Z) \\
& -\left(\nabla_{Z} \tau\right)(X, Y, U) \tag{2.15}
\end{align*}
$$

By virtue of second Bianchi identity

$$
\begin{equation*}
\left(\nabla_{U} \tau\right)(X, Y, Z)+\left(\nabla_{X} \tau\right)(U, Y, Z)+\left(\nabla_{Y} \tau\right)(U, X, Z)=0 \tag{2.16}
\end{equation*}
$$

Equation (2.15) reduces to

$$
\begin{equation*}
\operatorname{curl} \tau=-\left(\nabla_{Z} \tau\right)(X, Y, U) \tag{2.17}
\end{equation*}
$$

If the τ-curvature tensor is irrotational then $\operatorname{curl} \tau=0$ and by (2.17) we have

$$
\begin{equation*}
\left(\nabla_{Z} \tau\right)(X, Y) U=0 \tag{2.18}
\end{equation*}
$$

Which implies,

$$
\begin{equation*}
\nabla_{Z}\{\tau(X, Y) U\}=\tau\left(\nabla_{Z} X, Y\right) U+\tau\left(X, \nabla_{Z} Y\right) U+\tau(X, Y) \nabla_{Z} U \tag{2.19}
\end{equation*}
$$

Put $U=\xi$ in the above equation, we have

$$
\begin{equation*}
\nabla_{Z}\{\tau(X, Y) \xi\}=\tau\left(\nabla_{Z} X, Y\right) \xi+\tau\left(X, \nabla_{Z} Y\right) \xi+\tau(X, Y) \nabla_{Z} \xi \tag{2.20}
\end{equation*}
$$

3. τ-CURVATURE TENSOR IN \boldsymbol{s}-MANIFOLD

Put $Z=\xi$ in (2.14) and using (2.9), (2.10) and (2.11) we get,

$$
\begin{equation*}
\tau(X, Y) \xi=k_{1} \eta(Y) X+k_{2} \eta(X) Y+k_{3} g(X, Y) \xi+k_{4} \eta(X) \eta(Y) \xi \tag{3.1}
\end{equation*}
$$

where, $k_{1}=a_{0} s+a_{1} b_{3}+a_{4} b_{3}+a_{7} r, k_{2}=-a_{0} s+a_{2} b_{3}+a_{5} b_{3}-a_{7} r$,

$$
k_{3}=a_{3} b_{1}+a_{6} b_{3}, \quad k_{4}=a_{3} b_{2}
$$

Theorem 1: If the τ-curvature tensor in s-manifold is irrotational, then the manifold is η-Einstein.

Proof: Using equation (3.1) in (2.20) we get

$$
\begin{align*}
& -\tau(X, Y) f Z=k_{1}\left(\nabla_{Z} \eta\right)(Y) X+k_{2}\left(\nabla_{Z} \eta\right)(X) Y+k_{3} g(X, Y)(-f X) \\
& \quad+k_{4}\left\{\left(\nabla_{Z} \eta\right)(X) \eta(Y) \xi+\left(\nabla_{Z} \eta\right)(Y) \eta(X) \xi-\eta(X) \eta(Y) \xi\right\} \tag{3.2}
\end{align*}
$$

By virtue of (2.5) in (3.2) we have

$$
\begin{align*}
& -\tau(X, Y) f Z=-k_{1} g(f Z, Y) X-k_{2} g(f Z, X) Y-k_{3} g(X, Y) f Z \\
& \quad+k_{4}\{-g(f Z, X) \eta(Y) \xi-g(f Z, Y) \eta(X) \xi-\eta(X) \eta(Y) f Z\} \tag{3.3}
\end{align*}
$$

Replace Z by $f Z$ in (3.3) and using (2.1) we have

$$
\begin{align*}
\tau(X, Y) Z= & k_{1} g(Y, Z) X+k_{2} g(X, Z) Y+k_{3} g(X, Y) Z \\
& +k_{4}\{g(X, Z) \eta(Y) \xi+g(Y, Z) \eta(X) \xi+\eta(X) \eta(Y) Z\} \tag{3.4}
\end{align*}
$$

Using (2.14) and (3.4) we can write

$$
\begin{align*}
& a_{0} R(X, Y, Z, W)=k_{1} g(Y, Z) g(X, W)+k_{2} g(X, Z) g(Y, W) \\
& +k_{3} g(X, Y) g(Z, W)+k_{4}\{g(X, Z) \eta(Y) \eta(W)+g(Y, Z) \eta(X) \eta(W) \\
& +\eta(X) \eta(Y) g(Z, W)\}-a_{1} S(Y, Z) g(X, W)-a_{2} S(X, Z) g(Y, W) \\
& -a_{3} S(X, Y) g(Z, W)-a_{4} g(Y, Z) g(Q X, W)-a_{5} g(X, Z) g(Q Y, W) \\
& -a_{6} g(X, Y) g(Q Z, W)+a_{7} r[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)] \tag{3.5}
\end{align*}
$$

Let $e_{i}, i=1,2, \ldots \ldots \ldots .(2 n+s)$ be an orthonormal basis of the tangent space. Then summing for $1 \leq i \leq(2 n+s)$ of the relation (3.5) with $X=W=e_{i}$ yields the Ricci tensor S is given by

$$
\begin{equation*}
S(Y, Z)=A g(X, Y)+B \eta_{\alpha}(X) \eta_{\alpha}(Y) \tag{3.6}
\end{equation*}
$$

where, $A=\frac{(2 n+s) k_{1}+k_{2}+k_{3}+k_{4}-(2 n+s-1) r a_{7}-r a_{4}}{a_{0}+(2 n+s) a_{1}+a_{2}+a_{3}+a_{5}+a_{6}}$,

$$
B=\frac{2 k_{4}}{a_{0}+(2 n+s) a_{1}+a_{2}+a_{3}+a_{5}+a_{6}}
$$

The above theorem 3.1 is shown in tabular form for different curvatures which can be obtained independently for s manifold.

Curvature tensor	Manifold	Ricci tensor S
Quasi conformal curvature tensor	Einstein	$S=\left\{\frac{(2 n+s-1)\left(a_{0} s+2 a_{1} b_{3}\right)-a_{1} r}{a_{0}+(2 n+s-1) a_{1}}\right\} g$
Conformal curvature tensor	Einstein	$S=\left(\frac{2 n-1}{1-s}\right)\left\{(2 n+s-1)\left(s-\frac{2 b_{3}}{2 n-1}+\frac{r}{2 n(2 n-1)}\right)\right.$
		$\left.+\frac{r}{2 n(2 n-1)}\right\} g$
Conharmonic curvature tensor	Einstein	$S=\left(\frac{2 n-1}{1-s}\right)\left\{(2 n+s-1)\left(s-\frac{2 b_{3}}{2 n-1}\right)+\frac{r}{2 n-1}\right\} g$
Concircular curvature tensor	Einstein	$S=s(2 n+s-1) g$
Projective curvature tensor	Einstein	$S=\left\{\frac{2 n(2 n+s-1)}{(1-s)}\right\}\left(s-\frac{b_{3}}{2 n}\right) g$
Pseudo projective curvature tensor	Einstein	$S=\left\{\frac{(2 n+s-1)\left(a_{0} s+a_{1} b_{3}\right)}{a_{0}+(2 n+s-1) a_{1}}\right\} g$
M-projective curvature tensor	Einstein	$S=\left(\frac{4 n}{2 n-s+2}\right)\left\{(2 n+s-1)\left(s-\frac{b_{3}}{2 n}\right)+\frac{r}{4 n}\right\} g$
W_{0}-curvature tensor	Einstein	$S=\left(\frac{2 n(2 n+s-1)}{(1-s)}\right)\left(s-\frac{b_{3}}{2 n}\right) g$
W_{0}^{*}-curvature tensor	Einstein	$S=\left(\frac{2 n(2 n+s-1)}{(4 n+s-1)}\right)\left(s+\frac{b_{3}}{2 n}\right) g$
W_{1}-curvature tensor	Einstein	$S=\left(\frac{2 n(2 n+s-1)}{(4 n+s-1)}\right)\left(s+\frac{b_{3}}{2 n}\right) g$
W_{1}^{*}-curvature tensor	Einstein	$S=\left(\frac{2 n(2 n+s-1)}{(1-s)}\right)\left(s-\frac{b_{3}}{2 n}\right) g$
W_{2}-curvature tensor	Einstein	$S=\left(\frac{2 n(2 n+s-1)}{(2 n+1)}\right)\left(s-\frac{b_{3}}{2 n}\right) g$
W_{3}-curvature tensor	Einstein	$S=\left(\frac{2 n}{2 n-1}\right)\left\{(2 n+s-1)\left(s+\frac{b_{3}}{2 n}\right)-\frac{r}{2 n}\right\} g$
W_{4}-curvature tensor	Einstein	$S=s(2 n+s-1) g$

Curvature tensor	Manifold	Ricci tensor S
W_{5}-curvature tensor	Einstein	$S=s(2 n+s-1) g$
W_{6}-curvature tensor	Einstein	$S=\left\{\frac{2 n(2 n+s-1)}{1-s}\right\}\left(s-\frac{b_{3}}{2 n}\right) g$
W_{7}-curvature tensor	Einstein	$S=-\left(\frac{2 n}{s}\right)\left\{(2 n+s)\left(s-\frac{b_{3}}{2 n}\right)-s-\frac{r}{2 n}\right\} g$
W_{8}-curvature tensor	η-Einstein	$S=\left(\frac{2 n}{1-s}\right)\left\{(2 n+s)\left(s-\frac{b_{3}}{2 n}\right)-s+\frac{b_{1}}{2 n}-\frac{b_{2}}{2 n}\right\} g$
		$+\sum_{\alpha}\left(\frac{2 b_{2}}{1-s}\right) \eta_{\alpha} \otimes \eta_{\alpha}$
W_{9}-curvature tensor	η-Einstein	$S=\left(\frac{2 n}{2 n+1}\right)\left\{(2 n+s)\left(s-\frac{b_{3}}{2 n}\right)-s+\frac{b_{1}}{2 n}+\frac{b_{2}}{2 n}+\frac{r}{2 n}\right\} g$
		$+\sum_{\alpha}\left(\frac{2 b_{2}}{2 n+1}\right) \eta_{\alpha} \otimes \eta_{\alpha}$

4. RICCI SOLITON IN IRROTATIONAL τ-CURVATURE TENSOR IN \boldsymbol{s}-MANIFOLDS

Definition 3: A Ricci soliton is a natural generalization of an Einstein metric and is defined on a Riemannian manifold (M, g). A Ricci soliton is a triple (g, V, λ) with g is a Riemannian metric, V is a vector field and λ is a real scalar such that

$$
\begin{equation*}
\left(L_{V} g\right)(X, Y)+2 S(X, Y)+2 \lambda g(X, Y)=0 \tag{4.1}
\end{equation*}
$$

where, S is a Ricci tensor of M and L_{V} denotes the Lie derivative operator along the vector field V. The Ricci soliton is said to be shrinking, steady and expanding according as λ is negative, zero and positive respectively.

If V is co-linear with ξ, then Ricci soliton along ξ is given by

$$
\left(L_{\xi} g\right)(X, Y)+2 S(X, Y)+2 \lambda g(X, Y)=0
$$

Definition 4: Let $\left(f, \xi_{1}, \xi_{2}, \ldots \ldots ., \xi_{s}, \eta_{1}, \eta_{2}, \ldots \ldots, \eta_{s}, g\right)$ is the contact s-frame manifold, if V is in the linear span (combination) of $\xi_{1}, \xi_{2}, \ldots . \xi_{s}$ then $V=c_{1} \xi_{1}+c_{2} \xi_{2}+\ldots \ldots \ldots .+c_{s} \xi_{s}$ and the Ricci soliton is a triple $\left(g, \xi_{\alpha}, \lambda\right)$ with
g is a Riemannian metric, $\xi_{\alpha},(\alpha=1,2, \ldots s)$ is a vector field and λ is a real scalar such that

$$
\begin{equation*}
\left(\sum_{i=1}^{s} c_{i} L_{\xi_{i}} g\right)(X, Y)+2 S(X, Y)+2 \lambda g(X, Y)=0 \ldots \tag{4.2}
\end{equation*}
$$

From (4.2) we have

$$
\begin{equation*}
c_{i} g\left(\nabla_{X} \xi_{\alpha}, Y\right)+c_{i} g\left(\nabla_{Y} \xi_{\alpha}, X\right)+2 S(X, Y)+2 \lambda g(X, Y)=0 \tag{4.3}
\end{equation*}
$$

Using (2.5) in (4.3) we get

$$
\begin{equation*}
c_{i} g(-f X, Y)+c_{i} g(-f Y, X)+2 S(X, Y)+2 \lambda g(X, Y)=0 \tag{4.4}
\end{equation*}
$$

From (3.6) and (4.4) we have

$$
\begin{equation*}
(A+\lambda) g(X, Y)+B \eta_{\alpha}(X) \eta_{\alpha}(Y)=0 \tag{4.5}
\end{equation*}
$$

Taking $X=Y=e_{i}$ in (4.5) and summing over $i=1,2, \ldots \ldots .2 n+s$, we get the value of λ

$$
\begin{equation*}
\lambda=-\left(A+\frac{B}{2 n+s}\right) \tag{4.6}
\end{equation*}
$$

thus we state the following theorem
Theorem 2: The Ricci soliton in irrotational τ-curvature tensor in s manifolds is

1. shrinking if $A, B>0$
2. steady if if $A, B=0$
3. expanding if if $A, B<0$.

References

[1] C.S. Bagewadi and N.B. Gatti, On Einstein manifolds-II, Bull. Cal. Math. Soc., 97(3), pp. 245-252, 2005.
[2] C.S. Bagewadi, E. Gireesh Kumar and Venkatesha, On irrotational D-Conformal curvature tensor, Novi Sad J. Math., 35(2), pp. 85-92, 2005.
[3] C.S. Bagewadi, Gurupadavva Ingalahalli and K.T. Pradeep Kumar, On irrotatinal CBochner curvature tensor in K-Contact and Kenmotsu manifolds, Acta Universitatis Apulensis, v01. 32, pp. 221-232, 2012.
[4] D.E. Blair, Geometry of manifolds with structural group $U(n) \times O(s)$, J. Differential Geom. 4 (1970), 155-167
[5] D.E. Blair, G. Ludden and K. Yano, Differential geometric structures on principal toroidal bundles, Trans. Amer. Math. Soc. 181 (1973), 175-184.
[6] N.B. Gatti and C.S. Bagewadi, On irrotational Quasi-conformal curvature tensor, Tensor N.S., 64(3), pp. 248-258, 2003.
[7] S.I. Goldberg and K. Yano, On normal globally framed f-manifolds, Tohoku Math. J. 22 (1970), 362-370.
[8] S.I. Goldberg and K. Yano, Globally framed f-manifolds, Illinois J. Math. 15 (1971), 456-474.
[9] S. Ishihara, Normal structure f satisfying $f_{3}+f=0$, Kodai Math. Sem. Rep. 18 (1966), 36-47.
[10] H. Nakagawa, f-structures induced on submanifolds in spaces, almost Hermitian or Kaehlerian, Kodai Math. Sem. Rep. 18 (1966), 161-183.
[11] H. Nakagawa, On framed f-manifolds, Kodai Math. Sem. Rep. 18 (1966), 293-306.
[12] M. M. Tripati and P. Gupta, On τ-curvature tensor in K-contact and Sasakian manifolds, International Electronic Journal of Geometry Volume 4 No. 1 pp. 32-47 (2011).
[13] K. Yano, On a structure defined by a tensor field f of type $(1,1)$ satisfying $f_{3}+f=0$, Tensor N.S. 14 (1963), 99-109.

[^0]: * Department of Mathematics, Kuvempu University, Shankaraghatta - 577 451, Shimoga, Karnataka, India. Email: vidyarsajjan@ gmail.com
 ** Department of Mathematics, Kuvempu University, Shankaraghatta - 577 451, Shimoga, Karnataka, India. Email: prof_bagewadi@yahoo.co.in

