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SHOCK WAVE PHENOMENA IN UNMAGNETIZED
DUSTY PLASMAS

Apul Narayan Dev, G. C. Das & Jnanjyoti Sarma

Abstract: The nonlinear propagation of dust acoustic wave (DAW) and dust acoustic
shock wave (DASW) in unmagnetized warm dusty plasmas system consisting of
Maxwellian electrons and ions with the effect of dust charged fluctuation are studied using
the reductive perturbation technique. The nonlinear waves (solitary and shock waves) has
been observed in case of negative and positive charged dust grains form the stationary
solution of the Korteweg-de Veries (KdV) equation and Burger’s equation, also we observed
the effect of without viscosity and with viscosity term is in the derivation of Burger equation.
The fundamental properties of such nonlinear waves have been theoretically analyzed.
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1. INTRODUCTION

Since the concept on studying the solitary waves (soliton dynamics) by the well known
methods reductive perturbation technique [1], Sagdeev potential [2] developed by many
heuristic observation in various plasma configuration (theoretically as an ideal model) [3]
in Astroplasma [4] and supported by many experiments [5, 6]. All the observation depends
on the plasma modally existing in different region of space plasmas [7, 8] and established
many observations related in the satellite observation [9]. During 1990 another field of
interest called as dusty plasmas has been boosting the studying of the dusty acoustic waves
(DAW), first established probably by Rao at al., [10] and supported by the experimentally
by Barkan et al., [11, 12]. The dusty plasmas condition has found more or less, every
model of plasmas in space of the laboratory. And that is why the field has been growing
first to explain many features in Astrophysics problems and highlights the salient features
of nonlinear plasmas acoustic waves as of soliton dynamics [13], shock wave [14, 15],
double layers [16, 17] Sheath formation in lab as well as in space which could explain a
special features on the formation of nebulous (crystallization of dust clouds over the surface
of moons and asteroids) [18-19] observation the solid body (e.g., moon) in astroplasma. In
this article we consider unmagnetized dusty plasma with Maxwellian electrons and ions. In
section I, the basic set equations of dust acoustic wave motion is stated. In section II, by
using the reductive perturbation method (RPM) the KdV equation has been derived with
soliton solution. In section III, by using the same method, we derived Burger equation
without viscosity and with viscosity term. Figures, discussed and conclusions in section IV.
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2. BASIC EQUATION

To study the non-linear plasma acoustic wave and shock wave, we assumed that the
unmagnetized dust warm plasma, consisting of Maxwellian electrons and ions contaminated
by the influence of dust-charge fluctuation. Following Das et al., [20] the basic equation’s,
governing the dust charge grains are in fluid description, are the equations of continuity
and momentum can be written in the following form
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and supplemented by the Poisson’s equation given by [15]
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where md is the of the dust particle moving with the velocity ud normalized with the
dust-acoustic speed 
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respectively for the ions, electrons and dust particle. The ion and dust charge numbers are
given by zi, d and the sd = ± 1 depending on whether the dust particles are positively or
negatively charged. The fluid pressure pd, electrostatics potential �, spatial variable x and
time t. The electrostatic wave potential � normalized by 
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The physical variable f is now decomposed into its equilibrium part f0 and the
perturbed part (fluctuation part)  f

—
 i.e., f = f0 + f

—
. Thus we write nd = nd

(0) + n—d, where n—d is
the density perturbation of the dust fluid and zd = zd

(0) +  z—d, where z—d  is the fluctuating part
of the dust charged number. nd

(0) and zd
(0) are the mean value of these variables, respectively.

The perturbed dust-charging equation can be written as [21, 22]
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equilibrium and perturbed states. Charged fluctuations on the dust particles are drive by the
difference in the relative density fluctuations of ions n—i and electron n—e and the quantity �
represents the natural decay rate of dust-charge [23]
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where C is the capacity of the dust grain, �0 = kB Ti – e�f 0, Te, i, d are the temperatures of
electrons, ions and dust and �f0 is the equilibrium floating potential. The equilibrium electron
(ion) current is Ie0 (= – Ii0). The charge fluctuations decay because any devotion of gain
potential from equilibrium potential is opposed by electron and ion currents into gain [24, 25]
as described by Eq. (5). Using Eq. (6) in Eq. (5) can be written as
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Assuming electrons and ions to be Maxwellian, the Poisson equation (4) can be written as
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where we have used that �
—

 = � for simplicity. The values of � and �� are given by,
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3. DERIVATION OF KORTEWEEG-DE VIRES EQUATION

In order to study the properties of soliton dynamics, we, employ the reductive perturbation
technique [1] to the basic equations and the stretched space and time variables, namely

1
2 ( )x t� � � � �  and 

3
2 t� � � , where � is the phase velocity and � is a smallness parameter

measuring strength of the dispersion [26]. The physical variables in Eqs. (1)-(3) and Eqs. (7)
and (9), namely nd, ud, pd, � and zd are expanded in power series written in general form as
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we get S(0) = 0 for � and ud. Using the stretching coordinates and the perturbation scheme,
to the first order in �, we get the following set of relation
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From relations (11), the phase velocity of the wave can be written as
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To the next order of �, we get

(1) (2) (2) (1) (1)
(0) ( )

0d d d d d
d

n n n n u
n

� � � �
� � � � �

�� �� �� ��
(14)

(1) (2) (2) (0) (0) 2
(0) (0)

(0) (0)(1) (1)
(1) (1)

)d d d d d d
d d d

d

d d d d
d d

d d

u u p s en z
n n

m

s ez s en
n z

m m

� � � � ��
� � � � � �

�� �� �� ��

�� ��
� �

�� ��
(15)

(1) (2) (1) (1) (2)
(1) (1) (0)3 3 0d d d d d
d d d

p p p u u
u p p

� � � � �
� � � � � �

�� �� �� �� ��
(16)

2 (1)
(2) (1) 2 (0) (2) (0) (2) (1) (1)

2 ( ) 4 (2 2 )d d d d d d des z n n z z n
� � �� �� � � � � � � �
��

(17)

(2) (2) (1) 21 2 ( )d d

q q
z s

� �
� � � � �� �� �� �

(18)



Shock Wave Phenomena in Unmagnetized Dusty Plasmas 165

Eliminating nd
(2), ud

(2), �(2), pd
(2) form Eq’s (14)-(18) and using Eq’s (12) and (13) to

obtain the standard Korteweg-de Veries (KdV) equation
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The solitary wave solution of equation (15) is
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M��  are the amplitude and width of the solitary
waves, respectively. The soliton profile depends on the nonlinear coefficient A and dispersive
term B, which are function of plasmas parameters. By substituting �, �, �� and
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in Eq. (18), it is possible to express the nonlinear coefficient A in terms of the plasmas
parameter. For the particular values of dust density, A will be zero. That is the critical dust
density ndc. If can be shown that nd < ndc (nd > ndc) one gets A < 0 (A > 0) that signifies the
existence of rarefactive (compressive) solitary waves.
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4. DERIVATION OF THE BURGER EQUATION WITHOUT
VISCOCITY AND WITH VISCOSITY

We study the effect of dissipation on the wave propagation using another pair of stretched
space and time variables, � = � (x – �t), � = �2t applied to the same set of governing equations
as above. By changing growth rate of �, we have reduced the strength of dispersion.
Following similar calculations used to obtain the KdV equation, one arrives at the same set
of equations as Eqs. (12), (13) for the lowest order of �. However, for the higher order of �,
one obtains the Eqs. (14)-(16) are same as before and
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Repeating the same procedure to eliminate nd
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(2) from Eqs. (14)-(16), (23),

(24) and using (12) and (13) we obtain the Burgers’ equation,
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Burger equation is well studied equation presenting a hierarchy of solutions including
rational and trigonometric solution. One of its solutions can be written as

(1) 1 tanhm
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where � = (� – Ut) and , 2U C
m A U� � ��  are the amplitude and width of the shock wave

respectively. The electrostatic shock profile, caused by the balance between nonlinear
coefficient A and dissipation coefficient B. It is clear from Eqs. (25) that shock potential
profile is positive (negative) when A is positive (negative).

Next, we study the effect of dissipation on the wave propagation using the same pair of
stretched space and time variables, applied to the same set of governing equations as above
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with viscosity term in Eq. (2). Following similar calculations used to obtain the KdV equation,
one arrives at the same set of equations as Eqs. (12), (13) for the lowest order of �. However,
for the higher order of �, one obtains
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Repeating the same procedure to eliminate nd
(2), ud

(2), �(2), pd
(2) from Eqs. (28)-(32), and

using (12) and (13), we obtain the Burgers’ equation,
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The shock wave solution of the equation (34) is
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where , 2U C
m A U

�� � � �  are the amplitude and width of the shock wave respectively. It can
be clearly seen from Eq. (26) (without viscous) and Eq. (34) (with viscous) that, the difference
of dissipation coefficient term of above two Burger equation is half.

5. RESULT AND DISCUSSION

In Fig. 1, the nonlinear coefficient A is plotted against the dust density nd for different
values of plasma parameter. For negative dust particle (sd = – 1), it can be clearly seen form
Fig. 1, A becomes large negatively as � � � i.e., nd

(0) � 0 and � � 0 i.e., nd � �. For
positive dust particle (sd = 1), when � � � i.e., nd

(0) � 0 the nonlinear coefficient A becomes
large negatively and positively large when � � 0 i.e., nd

(0) � �. For warm negative dusty
plasma we observed two critical points from Fig. 1, (i) ndc1 = 2 � 10– 12 (approximately) and
from (ii) ndc2 = 3.25 � 1020. Therefore Eq. (19) has rarefactive solitary waves for nd < ndc1

& ndc2 < nd and compressive solitary waves for ndc1 < nd < ndc2 in negative dust particle
(sd = – 1). From figure 1 (ii), we observed that in case of positive dust particle, A = 0 for
same as ndc2 = 3.25 � 1020. So will get rarefactive solitary waves and compressive solitary
waves for nd < ndc2 and ndc2 < nd respectively. In Fig. 2, (iii) (sd = – 1) and (iv) (sd = 1) we
observed formation of narrow solitons (compressive and rarefactive) of very large amplitude
for dust density nd = 0.1. In Fig. 3(v), we observed that, the shock wave profile are negative
in negative and positive dust for small values of dust density (like nd = 1 � 10– 13). In
Fig. 4(vii), for negative dust particle without viscosity, we observed the narrow shock
wave profile at nd = 0.5 comparer to figurer 4(viii) with viscosity and both shock wave are
compressive shock wave but opposite character.

Figure 1: (i) The Variation of Nonlinear Coefficient A with Small Values of Dust Density nd

for Negative Dust Particle and (ii) The Variation of Nonlinear Coefficient A with
Small Values of Dust Density nd for Negative and Positive Dust Particle

(i) (ii)
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Figure 2: (iii) The Graph (1) vs  Showing the Formation of Compressive Soliton for nd = 0.1
with Different Plasma Parameter in Negative Dust Particle. (iv) The Graph (1) vs

 Showing the Formation of Compressive Soliton for nd = 0.1 with Different Plasma
Parameter in Positive Dust Particle

Figure 3: Variation of DA Shock Wave Potential (1) with Spatial Coordinate  where
nd = 1  10– 13 and with Different Plasma Parameter in Negative and Positive Dust
Particle i.e., (sd = – 1 & sd = 1)

(iii) (iv)

(v) Free of Viscosity (iv) With Viscosity
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Figure 4: Variation of DA Shock Wave Potential (1) with Spatial Coordinate  where nd = 0.5
and with Different Plasma Parameter in Negative Dust Particle (sd = – 1)

(vii) (viii)

6. CONCLUSIONS

We have studied the formation of nonlinear structures (solitons and shock wave) in
unmagnetized dusty plasmas with Maxwellian electrons and ions and entering influence
component of pressure with the help of KdV and Burger equation without viscosity and
with viscosity. It is shown that for negative dusty plasma system, there are two critical dust
densities ndc at which it is not possible to obtain soliton and shock like structure. For negative
dusty plasma we will get rarefactive, compressive, again rarefactive soliton and for positive
dusty plasma, first rarefactive then compressive soliton. By solving Burger equation gives
the shock wave depends on the nonlinear coefficient A and dissipation coefficient C. For
negative (positive) dusty plasma, shock wave are negative (rarefactive) for small values of
dust density which are less then critical dust density ndc1 = 2 � 10– 12 and does not affect by
viscosity term. The dissipation coefficient C of Burger equation will be negative without
viscosity and the dissipation coefficient C� of Burger equation will be positive with viscosity
for dust density ndc1 < nd < ndc2 in negative dust particle. That is why, both the cases we
observed compressive shock wave behavior but narrow and opposite character comparer
to shock wave profile with viscosity in negative dusty plasma where nd lies between ndc1 &
ndc2. For positive dusty plasma we will get compressive shock wave behavior with same
difference with non-viscosity and viscosity term for dust density nd > ndc2.
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