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ABSTRACT

We introduced a numerical method to incorporate the variation of the dielectric constant of an electrolytic solution.

We measured the transport of the ionic atmosphere of the system to be exists in Nano Channel whose dimensions

are comparable to the Debye length of the ionic atmosphere. Rayleigh Ritz approximation was applied and the

elemental equations were assembled and solved by Finite Element Method (FEM). Interestingly the assumptions

involved were made on the basis of the Nobel Prize winning ion pair formation mechanism.The solutions give an

extremely accurate prediction of the dielectric constant for a variety of salts and a wide range of concentrations.
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1. INTRODUCTION

Since the year 1961, K. S. Pitzer [1] has chosen the best available system proposed by Guggenheim [2],

developed in a series of papers, detailed mathematical equations for activity coefficient, osmotic coefficient

and other thermodynamic parameters of aqueous electrolyte solution .Still the permittivity parameter of the

dielectric continuum, is being left un accounted in all the above attempts by several workers in the field.

This parameter is essential to account for the short range as well as long range interactions, since it governs

the electrostatic interactions. V.Brahmajirao et.al, [3] applied Glueckauff’s model in his studies of acoustic

parameters, thermodynamic characteristics, conductance, compressibility, & activity coefficient of electrolytic

solutions and concluded that a systematic model incorporating lowering of dielectric property of electrolytic

solutions is necessary for proper understanding of their behavior. We developed a mathematical model and

reported series of papers in earlier [4, 5] communications. In this paper, we attempted to report the evaluations

about dielectric decrement of ionic solution which accounts for the potential distribution in rectangular

nanochannel by FEM.

2. MATHEMATICAL MODELING OF POTENTIAL DISTRIBUTION OF IONIC

SOLUTION IN RECTANGULAR NANOCHANNEL

The space-charge model [6, 7] gives complete physical interpretations of ion transport through nanometer-

sized channels. The space-charge model has been simplified by Pennathur and Santiago [8] to describe

electro-kinetic transport in long nanochannels, confirmed by their experimental studies [9]. J.Barthel,

R.Buchner,C. Akilan, C. Hefter, G. Rohman [10] contributed a lot of work to pinpoint that the Dielectric

permittivity variation, consequent of increment in the concentration of an electrolyte leading to a decrement

in the permittivity is essentially responsible for this. As the concentration increases the dielectric constant
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gradually decreases in three steps, and each reduction is reflected in the formation of a different species of

Ion pairs. These reductions in the dielectric constant are depicted by the terms in ,c c  and 
3

2c  of the

polynomial proposed by the author.

3. POTENTIAL DISTRIBUTION BY FINITE ELEMENT METHOD

The charge density 
j
(r) in the volume element dv is given by
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At electro-chemical equilibrium, the density of electrolyte ‘i’ follows a Boltzmann distribution and therefore
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where n
i
, the concentration (density) of ionic species ‘i’ in the volume element dv has been related to its

bulk concentration 
in , the net charge density 

j
(r) at any point ‘r’ becomes
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At this point of theory, Debye –Hückel made a move which was not only mathematically expedient but

also turned out to be wise. They decided to carry out the analysis only for the systems in which the electrostatic

potential 
j
(r) would be small so that
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Based on this assumption, one can expand the exponential of equation (5.3) in a Taylor series,
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and neglect all except first two terms, then
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The first term 
1    i i iZ e n

  gives the charge on the electrolyte solution as a whole. But this is zero

because the solution as a whole must be electrically neutral. Therefore the charge density 
j
(r) after ‘linearized’

Boltzmann distribution becomes
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Where 
1i

 refer to the summation over all species of ions typified by ‘i’.

Therefore, the electrical potential  and net charge density at any point ‘r’ in the aqueous electrolyte

solutionis given by

 
 2

0 r

r
r




 
   (7)

This is known as Poisson equation. Where 2  represents the divergence of the gradient in electrostatic

potential, 
0
 is the permittivity of the vacuum, 

r 
is the dielectric constant which is varying smoothly and

continuously with respect to concentration inside the compact layer of aqueous electrolyte solution [90, 93]

and it is given by

3

2
1 2 3r w c c c        (8)

Here 
r 
is the dielectric constant of the ionic solution and c is the total concentration of the aqueous

electrolyte solution. 
w 

= 80 is the dielectric constant of pure water.

From equations (5.1), (5.6) and (5.7)
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This is the linearized Poisson-Boltzmann equation [92]. To increase accuracy in the numerical calculations

and avoiding truncation errors, the author makes the equation dimensionless and thereby on the order of

unity.

Define the electric potential scale 0
Bk T RT

e F
    and non-dimensionalizing the equation (5.9) with
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‘k’ called the Debye-Hückel parameter which is a function of concentration, ionic charge, temperature

and dielectric constant of the solvent, having reciprocal length.

From ‘k’ we defined Electrical Double Layer (EDL) thickness, or Debye length, ‘’ as
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h


  is the ratio of the relative thickness of EDL to the height of channel. From equation (5.11), we get

1
 

h
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  (12)

Consider the infinite parallel plate nano-channels (L >> h) so that terms with coefficients 1 0
h

L
  

are supposed to be negligible in the governing equations. The equations (5.10) becomes
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subjected to the boundary conditions

00,  ,  1,  Y Z Y Z         (13a)

The electro-chemical properties of parallel surfaces will be the same if the nano-channel is symmetric.

Therefore, for symmetric nano-channels we take the following boundary conditions.

0  1,  0Y Z and Y Z      (13b)

In order to find the electric potential distribution for the system of equations (13), (13a) and (13b) by

Finite Element Method, the variation formation is constructed over a typical element. First, we multiply the

equation (13) with the test function V(Y, Z) and integrate the result over a typical element R
e
 gives
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Z
 directional cosines of a unit vector n

  on the boundary c
e
 and ds is an arc length of infinitesimal

element along the boundary.

The next step in the finite element solution of this problem is to set up a finite element model of the

given equation. To do this, we approximate  by the expression
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Substituting equation (15) in equation (14), and putting V = 
i
, we obtain
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The equation (17) can be written in the form
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Where 
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ijK  is the weighted stiffness matrix given by
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4. RESULTS OF ELECTRICAL POTENTIAL BY FEM

The plots in Figure 1 and 2 represents Electric potential distribution profile of the two dimensional

nanochannel. The software used in drawing the plot recognizes the central region to correspond to a larger

potential. This is displayed by the bluish green color. The edge of the plot colored rose red corresponds to

the lower potential region of the plot.We find that these plots are in the form of a cup (shown in three

dimensions). In the plots, the profile formed the cup with the bottom in the negative segment indicating

that the profile gradually becomes positive as we approach the origin along the X-axis. The profile is not

Figure 1: Potential Distribution of an electrolyte solution in 3D nanochannel with height 1 nm and width 1 nm
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Figure 2: Potential Distribution of an electrolyte solution in 3D nanochannel with height 1 nm and width 10 nm

traced in the positive segment. This is to be attributed to the value of 1 nm for the width and height of

nanochannel assigned in our evaluation in finite element technique. It must be recalled that similar plots for

the profile of potential in the finite difference method were plotted for width of 4 nm and above. Consequently,

in those plots the positive segments were traced. When the width for the nanochannel exceeded 4 nm, we

find that the profiles corresponding to positive potential segment were recorded both in finite difference

method as well as finite element technique. More experimental data is necessary to probe into the reasons

for this.The edge of this cup corresponds to the potential for the lesser value of width and height. The

bottom of the cup corresponds to the higher potential region. We find that for lesser values of width this

profile is almost symmetric about the X-axis. Also we observe the typical elements clearly corresponding

to the lesser number.

5. CONCLUSION

We applied the Finite Element Method to solve one and two dimensional coupled system of Poisson –

Boltzmann equations, and the solutions give an extremely accurate prediction of the dielectric constant for

a variety of salts and a wide range of concentrations. By incorporating the variation of dielectric constant of

aqueous electrolyte solution into basic equations, improvement in the predictable nature of electrical potential

in the electro-osmotic flow of a nano channel could be achieved.
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