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Abstract: Data mining techniques are the act of making decisions from databases. Recently, there has been a very high 
focus in designing high utility itemset mining algorithms for large databases and many papers are being published. 
High utility itemsets are set of items with high utility, importance and profit. We propose a new HUI mining algorithm 
which uses utility list to represent transactions and it considerably reduces the running time of finding high utility 
itemsets from large databases. The high utility itemsets mined using this algorithm are Related High Utility Itemsets 
(RHUI’s) which are not exact HUI’s generated from base algorithms but a similar itemsets with little variation with 
that of exact HUI’s. RHUI’s are generated in lesser time by applying utility list approach with transaction merging. 
Related transactions are merged together to reduce the size of database. Merging requires an extra DB scan and this 
is balanced by reducing the necessity of constructing utility lists for all items present in DB. Which guarantees, the 
related high utility items are found in lesser time and they are profitable when compared with existing algorithms.
Keywords: Data mining, utility mining, high utility itemset, utility list, RHUI.

Introduction1.	
Association analysis[1], [2], [7] in data mining handles a collection of original transactions to find association 
between the items present in the database DB using item’s occurrences in transactions. Association between 
the items are expressed in the form of association rules and frequent patterns. These rules are much used in 
making business decisions in the fields like market analysis, healthcare systems, banking, census data and fraud 
detection analysis. But not all rules generated by this method are giving interesting solutions. Also the number 
of candidate itemsets generated during the rule construction is very high.

Frequent pattern growth algorithm [5],[19] also does the same association mining but without candidate 
itemset generation. This algorithm uses a compact and compressed tree structure for memory representation 
of transactions. The number of scans involved in the construction of frequent patterns is less when compared 
with previous approach and divide and conquer partitioning used in this method leads to less usage of 
search space. This algorithm works well even when the database contains combination of long and short 
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transactions . This approach is used in many frequent pattern methods like maximal and closed frequent pattern 
algorithms.

Association rule mining algorithm and FP-Growth algorithm generate many rules and frequent patterns 
but they may not be profitable. Previous two algorithms assume that each item cannot appear more than once 
in each transaction . Importance or usability of item in the transactions are not taken into consideration. They 
use only frequency of items or itemsets as a measure to generate rules or patterns. Profit is an integer value 
given to every item participating in transactional DB based on their importance or chances of making profit in 
the business. Profit of item can also be referred as weight of item. There are numerous algorithms to generate 
weighted frequent itemsets with weight or profit as a factor [19]. In all the above algorithms, an user defined 
threshold value is used to filter rules or patterns or weighted rules. Itemsets or patterns with frequency value 
greater than that threshold will be considered as weighted itemsets or frequent itemsets.

To address the issues related to quantity, high utility itemset (HUIM) mining [3][6][9] has been defined. 
Quantity is units of item purchased, which differs in every transaction depends on customer need. High utility 
itemset mining is to extract the itemsets with utility value higher than the specified minimum utility threshold. 
Threshold is set by considering profitability, weight, season, importance, quantity and cost of item or itemsets. 
High utility itemset mining algorithms proposed in papers [3], [6], [9], [10], [12], [13], [14] resolve all the issues 
present in high utility itemset mining algorithms .The main challenge or limitation of HUI mining algorithm 
is its performance. A large number of non-profitable candidate itemsets generated by HUI mining algorithms 
may degrade the performance of mining process because most of the rules generated by these algorithms are 
not useful to take successful business decisions. To avoid the problem of candidate generation, HUI-Miner 
(High Utility Itemset Miner) algorithm[18], and FHM[20] were proposed to mine HUIs in one phase in a faster 
manner. HUI-Miner algorithm uses a structure called utility list to store the node utility information [18] and it 
generates no candidate itemsets. Though these algorithms do only one or two scans of database to mine HUIs, 
data processing tasks take more execution time. So it is necessary to have a more efficient algorithm to mine 
HUIs. An one-phase algorithm named EFIM (Efficient high-utility Itemset Mining)[16] has a data reduction 
method to reduce the size of database in turn to minimize data processing time. It merges all identical transactions 
in a database. However, the number of identical transactions in a database will not be very high. To overcome 
the challenges in this paper we propose a novel method for reducing the size of the database by merging the 
related transactions based on transaction utility TU, which leads to the reduction in the cost of database scans 
and data processing time .

The rest of this paper is organized as follows. Sections 2, 3, 4 and 5 respectively presents the problem 
definition, the related works, the proposed algorithm and the conclusion in order.

BACKGROUND2.	

A. Problem Definition
In this paper, we propose a new method to mine all related high utility itemsets (RHUIs) by database reduction. 
Database reduction is done through related transactions merging which will reduce the processing time. RHUI 
mined from this method may or may not be an HUI but the execution time is reduced once this RHUI is included 
into or excluded from the list of HUIs. This inclusion or exclusion will not affect the efficiency of algorithm 
because the effect of this is negotiable. Here we have listed all required definitions in detail.

Take a set of m available items denoted as I = {I1, I2, …, Im}, a transactional database of size n and n 
denotes number of transactions. DB = {T1, T2, ..., Tn} such that each transaction Tc, Tc Õ I and Tc has a unique 
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identifier called its Transaction identifier Tid. Each item i Œ I is associated with a positive number p(i), which 
represents the profit or weight of item i and is called external utility of i. For every item i in transaction Tc, a 
positive number ut(i, Tc) is given and is called the internal utility of i, which represents the purchase quantity of 
i in transaction Tc. For example, Table 1 shows a transaction database containing fifteen transactions (T1, T2, ..., 
T15), which will be used as running example. In this running example transaction T5 indicates that items A, D, 
H and G appear in this T5 with internal utility of 4, 8, 3, and 7. Table 2 gives the external utilities of the items 
present in database. External utilities of the items present in T5 are 10, 15, 25 and 5 respectively. A positive 
integer used for pruning itemsets is called minimum utility threshold MT and is set according to the user’s 
preference.

Definition 1: Utility of an item util(i, Tc)

The utility of an item i in a transaction Tc is denoted as

util(i, Tc) and defined as p(i) ¥ ut(i, Tc) if i Œ Tc.

Definition 2: Utility of an itemset in a transaction util(X, Tc)

The utility of an itemset X in a transaction Tc is represented as util(X, Tc) and defined as util(X, Tc) = 
∑i Œ X u(i, Tc) if X Õ Tc

Definition 3: Utility of an itemset util(X)

The utility of an itemset is represented as util(X) and defined as util(X) = ∑Tc Œ s(X) u(X, Tc), where s(X) is 
the set of transactions containing X in the database.

For example, the utility of item H in T5 is util(H, T5) = 3 × 25 = 75. The utility of the itemset {D, H} in 
T5 is util({D, H}, T5) = util(D, T5) + util(H, T5) = 8 × 15 + 3 × 25 = 195. The utility of the itemset {C, D} is 
util({C, D}) = util({C, D}, T1) + util({C, D}, T4) + util({C, D}, T9) = ((5 × 2) + (7 × 15)) + ((4 × 2) + (7 × 15)) 
+ ((4 × 2) + (2 × 15)) = 266

Table 1 
A Transaction Database

TID Transaction
T1 (A, 3) (B, 3) (C, 5) (D, 7) (G, 10)
T2 (A, 1) (B, 1) (D, 7) (E, 5)
T3 (B, 4) (D, 3) (E, 7) (F, 12) (H, 1)
T4 (B, 2) (C, 4) (D, 7) (E, 8) (F, 9)
T5 (A, 4) (D, 8) (H, 3) (G, 7)
T6 (A, 2) (B, 9) (E, 2) (G, 9)
T7 (B, 3) (C, 2) (F, 8) (G, 3) (H, 2)
T8 (C, 4) (E, 3) (G, 3) (H, 1)
T9 (A, 4) (B, 2) (C, 4) (D, 2) (E, 1) (F, 9) (G, 7)
T10 (A, 1) (B, 1) (D, 7) (E, 5)
T11 (A, 6) (B, 7) (D, 9) (E, 4)
T12 (A, 4) (B, 3) (C, 2) (G, 5)
T13 (A, 3) (B, 2) (C, 5) (G, 10)
T14 (E, 12) (F, 7) (G, 6)
T15 (C, 4) (F, 3) (G, 9)
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Table 2 
Profit table

Item A B C D E F G H
Profit 10 6 2 15 1 1 5 25

Definition 4 : Transaction utility TU

The transaction utility of a transaction Tc is represented as TU(Tc), and defined as the sum of utilities of 
items present in the transaction Tc. For example, transaction utility of some transactions in Table 1 are TU(T1) 
= 30 + 12 + 10 + 105 + 50 = 207, TU(T4) = 242, TU(T9) = 135, TU(T12) = 87 and TU(T15) = 56. TU of all 
transactions in the running examples are listed in Table 3.

Table 3 
List of TUs

TID TU
T1 207
T2 126
T3 103
T4 242
T5 270
T6 121
T7 95
T8 51
T9 135
T10 126
T11 141
T12 87
T13 102
T14 49
T15 56

Definition 5: Total Utility ToU

The total utility of a database DB is represented as ToU, and defined as the sum of utilities of all 
transactions.

In our running example ToU = 207 + 126 + 103 + 242 + 270 + 121 + 95 + 51 + 135 + 126 + 241 + 87 + 
102 + 49 + 56 = 2011

Definition 6: Minimum Utility Threshold MT

Minimum utility threshold is a positive integer set by the user. Only if the itemset utility satisfies minimum 
utility threshold MT, itemset is considered as a high utility itemset and selected for further calculation else will 
be discarded . In this running example user defined MT is 40%.

Definition 7: Transaction weighted Utility twu

Transaction weighted Utility of an item/itemset in a database DB is the sum of transaction utilities of all 
transactions containing that item/itemset. For example in Figure 1, twu (D) = TU(T1) + TU(T2) + TU(T3) + 
TU(T4) + TU(T5 ) + TU(T9 ) + TU(T10 ) + TU(T11 ) = 1450.The TWU’s of all 1-itemsets are listed below.
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Table 4 
Transaction weighted utility

Item A B C D E F G H
TWU 1415 1585 975 1450 1194 680 1173 519

Related works3.	
Property 1: If twu(X) is less than given “MT”, all supersets of X are not high utility itemsets.In our example 
MT is 40%. That is, the itemsets having more utility than 40% of total utility, ToU are high utility itemsets and 
others are of low utility.

40% of ToU = 2011 * 0.4 = 804. twu(E) = 1194 which is greater than 804.Then E is an high utility itemset 
. twu(H) = 519 which is lesser than 804. Then H is not considered for further calculations and it is discarded 
after first scan. Based on Property 1, any super set of a non high utility itemset can not be an high utility itemset 
(ie) super sets of item H can not be an HUI as item H is not an HUI.

A. Utility – list Structure
Definition 8: Given an itemset X and a transaction Ti where X Õ Ti, all the items after X in Ti is denoted as 
Ti/X.

Consider the view in Figure 5, T9/{G, A} = {D, B} and T12/{C, G} = {A, B}.

Definition 9: In the transaction remaining utility of itemset X is represented as Rutil(X, Ti), is the sum of the 
utilities of all the items in Ti/X in Ti, where Rutil(X, Ti) = ∑i Œ(Ti/X) util(i, Ti).

In our example, Rutil((G, A), T9) = (2 ¥ 15 ) + (2 ¥ 6) = 42.

Every element in utility list of itemset X has three fields: Tid, Iutil, and Rutil.

∑	 Tid - Identifier of transactions which contains X.

∑	 Iutil - Utility of X in Transaction, i.e., u(X, Ti).

∑	 Rutil - Remaining utility of X in Transaction,

i.e., Rutil (X, Ti).

To mine high utility itemsets, most of the algorithms directly perform methods on the entire database. 
Though we use utility-list structure to maintain the utility information of item/itemset, the process of mining 
HUI may be tedious, and time consuming one .Because we need to build utility list for each item/itemset by 
two database scans. In the first scan TU, twu are calculated and if the transaction weighted utility of an item is 
lesser than a user specified threshold MT, the item is not considered for further actions according to Property 1 
in the following mining process. The items whose transaction weighted utility exceed the MT will remain in the 
transaction/database. Items in the transactions are sorted based on twu from lowest to highest. For the database 
in Figure 1 with MT - 40%, the algorithm discards items F and H. The remaining items are reordered: C < G < 
E < A < D < B.

Definition 10: A transaction is reordered after deleting the items whose twu-s are lesser than a user given MT 
from the transaction. The reordered transactions are listed in Table 5.

During the second database scan, the algorithm scans each reordered transaction again for constructing 
initial utility-lists. Some of them are shown in Figure 1.
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Table 1 
A Transaction Database

TID Transaction
T1 (C, 5) (G, 10) (A, 3) (D, 7) (B, 2)
T2 (E, 5) (A, 1) (D, 7) (E, 1)
T3 (E, 7) (D, 3) (B, 4)
T4 (C, 4) (E, 8) (D, 7) (B, 2)
T5 (G, 7) (A, 4) (D, 8)
T6 (G, 9) (E, 2) (A, 2) (B, 9)
T7 (C, 2) (G, 3) (B, 3)
T8 (C, 4) (G, 3) (E, 3)
T9 (C, 4) (G, 7) (E, 1) (A, 4) (D, 2) (B, 2)
T10 (E, 5) (A, 1) (D, 7) (B, 1)
T11 (E, 4) (A, 6) (D, 9) (B, 7)
T12 (C, 2) (G, 5) (A, 4) (B, 3)
T13 (C, 5) (G, 19) (A, 3) (B, 2)
T14 (G, 6) (E, 12)
T15 (C, 4) (G, 9)

Figure 1: 1-Itemsets-Utility-List

Consider the Utility list of {C}:

	 In T1, Iutil(C, T1) =	10, Rutil(C, T1) = util(G, T1) + util(A, T1) + util(D, T1) + util(B, T1)

	 =	50 + 30 + 105 + 12 = 197.

	 In T7, Iutil(C, T7) =	4, Rutil(C, T7) = util(G, T7) + util(B, T7) = 15 + 18 = 33.

For the rest of 1-itemsets, utility lists can be done in the same manner. To find utility list of k-itemsets, it 
is not necessary to scan the database again. By finding the intersection of the utility list of {x} and {y}, we can 
find the utility list of {x, y}. We use transaction identifiers Tids as key to find the transactions which are in both 
the sets. Number of comparisons for finding common Tids is less, because all Tids in utility lists are ordered.

For each common transaction t, the algorithm will generate a new entry E in the utility list of {x, y} with same 
Tid . The Tid of new entry E is same as the Tid of t. The Iutil of E is the sum of the Iutils associated with transaction 
t in the utility lists of {x} and {y}. Suppose y is after x, and then Rutil associated with t in the utility list of {y} 
is assigned as the Rutil of entry E . Utility lists of 2-itemsets with itemset {G} as prefix are shown in Figure 2.
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For example, to construct the Utility list of itemset {G, A}, this method finds the intersection of utility 
lists of {G} {T1, T5, T6, T7, T8, T9, T12, T13, T14, T15} and of {A} {T1, T2, T5, T6, T9, T10, T11, T12, T13} and it 
results in {T1, T5, T6, T9, T12, T13}. That is {G, A} is found in transactions T1, T5, T6, T9, T12 and T13. In T1, 
Iutil({G, A}, T1) = Iutil(G, T1) + Iutil(A, T1) = 50 + 30 = 80, and Rutil({G, A}, T1) = Rutil(A, T1) = 117. Similarly, 
for other transactions in the resultant set should be calculated.

Figure 2: 2-Itemsets-Utility-List

B. Search Space
The search space of this HUI mining problem is given in the form of set-enumeration tree [16]. For the set of 
items I = {I1, I2, …, In} and total order of all items (I1 < I2 < ... < In), a set-enumeration tree is constructed . The 
set of items {I} in our running example is given. I = {A, B, C, D, E, G} and total order is C < G < E < A < D < B, 
a rough set-enumeration tree of all items I is given in Figure 3.

Figure 3: A set-enumeration tree

HUI-Miner algorithm[18] recursively processes only the promising extensions from the set-enumeration 
tree and leaves up others. This algorithm also clearly explains how to construct the utility list of k-itemsets and 
with whom. The 2-itemset utility lists are constructed when the parent list is empty and the k-itemsets utility 
lists (k ≥ 3) are constructed when the parent list is not empty.

Pruning strategy in HUI-Miner algorithm is more time-consuming process, because the number of items 
are more for large databases and the size of set- enumeration tree will also be very high.Our motto is to reduce 
the size of search space so that HUIs can be found in lesser time. That is, time spent on Utility list construction 
and pruning should be less when compared with existing algorithm.

The proposed method4.	
Our proposed RHUI-Miner algorithm is a single phase HUI generating algorithm, which gives a new approach 
to reduce the time and memory required in the process of finding HUIs from large databases. The following 
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sections present and explain how RHUI–Miner algorithm reduces the time and memory required, how the 
database projection is done and how cost of DB scan is reduced.

A. Database Reduction
Initial steps of this algorithm are same as existing HUI-Miner algorithm. It performs a database scan to calculate 
the transaction utility(TU) of transactions and transaction weighted utility(twu) of 1-itemsets. Only those items 
having twu higher than the user given minimum utility threshold (MT) are selected for further steps and others 
are discarded. Remaining items in every transactions are sorted selected items, find reordered transactions which 
is sorted based on twu.

Algorithm 1: DBReduction Algorithm

Input: TU[ ],Transaction utility of all transactions

|T|, Number of transactions

Output: RDB, Revised Database

1.	 Find minimum MIN and maximum MAX element from TU [ ] ;

2.	 D:= MAX – MIN;

3.	 Range Value R := D/(| T |/2);

4.	 //Split | T | Transactions into |T |/2 groups of range R

5.	 Do insert every transaction Ti into respective group.

6.	 Concatenate transactions in each group into one Reduced Transaction RT

7.	 Form new DB RDB with half the size of old DB.

8.	 Return RDB

Apply RHUI-Miner algorithm on the reordered transactions. All the transactions are to be put in different 
bins of different ranges based on TU. Number of different ranges can be found by minimum and maximum 
transaction utility, minTU, maxTU. D is the difference between maxTU and minTU. If the number of transactions 
in the database is k then k/2 number of bins are used to hold the database .When dividing D by k/2, we get range 
value. With that, we can form k/2 ranges or bins. Scan the TUs alone from memory and find appropriate bin for 
placing the transaction[11]. After placing we may find that some bins are empty, some are heavily loaded and 
some have few number of transactions stored in it. Merge the transactions in a bin into one new transaction. 
That is, every bin makes a new transaction RT except empty bins .Merging transactions is because the list 
of transactions in a bin may be more or less equal to each other, (ie) they may have same set of items. In our 
running example, total number of transactions is 15. This may be reduced to 8. Thus the database is reduced to 
a database having only 8 transactions .

	 minTU = 49 : maxTU = 270 : D = 270 - 49 = 221 : R = (221/8) = 27.

Value of maxTU is divided into 8 ranges and they are 49 to 76,77 to 104, 105 to 132, …, 245 to 270. As per 
our running example, now we have 8 ranges and the bins 1 to 8 have 3, 4, 3, 2, 0, 1, 1, 1 number of transactions 
respectively. In reorganized database we have at most k/2 number of transactions.

Eg. In range 1 we have <T8 T14 T15>
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where, T8<(C,4) (G,3) (E,3)>, T14< (G,6) (E,12)>, T15<(C,4) (G,9)>.From this we can easily spot out only 
three items C,G,E are repeatedly present in all the three transactions which are in a bin 1. New transaction RT1 
=<(C,4 + 4) (G, 3 +6 + 9)(E, 3 +12)> = <(C,8) (G,18) (E,15). List of new transactions RT1 to to RT7 are shown 
in Table 6.

Algorithm 1 explains how the database size reduced to half and now we need to scan the new database which 
has only reorganized transactions RT. But this time the size of DB is reduced to half and time consumption for 
finding new TU and twu is reduced to half. The biggest challenge here we face is minimum utility threshold(MT). 
As the quantity or utility of items in transactions are increased after transaction merging or database projection, 
we may find most of the itemsets are HUIs for the same MT .

Table 1 
Merged Transactions

TID Transaction
RT1 (C, 8) (E, 15) (G, 18)
RT2 (C, 9) (E, 7) (D, 3) (B, 12) (G, 18) (A, 7)
RT3 (E, 12) (A, 4) (D, 14) (B, 11) (G, 9)
RT4 (C, 7) (G, 7) (E, 5) (A, 10) (D, 11) (B, 9)
RT5 (C, 5) (G, 10) (A, 3) (D, 7) (B, 2)
RT6 (B, 2) (C, 4) (D, 7) (E, 8)
RT7 (A, 4) (D, 8) (G, 7)

Most of the itemsets utility will be higher than that of MT. To solve this issue we use level wise minimum 
utility threshold [4] [8] [15] [17]. Few utility lists with new transactions are shown in Figure 4.

At every level of pruning, minimum utility threshold MT will be increased based on user preference. Though 
the time taken for DB scan is increased in RHUI-Miner algorithm, efficiency of the algorithm is improved than the 
existing approach. Because in existing method more time is spent in construction of Utility lists. In the proposed 
method, number of Utility lists constructed are limited as the DB size is reduced to half. Thus proposed method 
is more efficient than existing algorithms.

Figure 4: A set-enumeration tree

B. Pruning Strategy
For every calculated utility list of an itemset, sum of all the Iutils and Rutils in the utility list is calculated .This 
sum is the key information to decide whether the itemset should be pruned or not. Itemsets having lesser utility 
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value than the MT will be pruned away .Only the itemsets with greater utility value than MT will be used for 
finding next level Utility lists. This is given in Algorithm 2.

Algorithm 2: RHUI-Miner Algorithm

Input: R.UL, the utility list of itemset R, and initially

empty

ULs, set of utility list of all R’s 1-itemsets

Min_Util, Initial minimum utility threshold

v, User defined increase in Min_Util at every level

Output: RHUIs, all related high utility itemsets with R as

Prefix

1.	 for each utility list L in ULs do

2.			   Find the sum of iutils and if sum ≥

			   Min_Util then

3.						      List the extensions of L

4.	 end

5.			   if SUM(L.iutils)+SUM(L.rutils)≥Min_Util then

6.						      exULs = NULL;

7.						      for each utility list Y after L in ULs do

8.							       Construct utility list and add with exULs

9.						      end

10.						      RHUI-Miner(L, exULs, Min_Util + v);

11.			   end

12.	 end

Repeat the same procedure as above to mine all Related High Utility Itemsets (RHUIs) . In running example, 
number of HUIs is only Six <E, G, A, D, GA, AD> when we apply existing approach. Where as number of 
RHUIs is sixteen <C, E, B, A, G, D, CE, CB, EB, EA, BA, BG, AG, BD, AD, GD> only in first two levels and 
the count will get increased when we continue further levels. At this point we have an new and important problem 
to get resolved .That is number of HUIs generated by the new algorithm. As the total utility in utility lists are 
getting increased, number of generated HUIs will also get increased. To avoid that, we can increase minimum 
utility threshold MT at every level by users preference[15]. When MT is increased in level 2 by 5% or 10 % or 
15% or 20 %, number of RHUIs will be 10, 8, 6 or 3.

Conclusion5.	
This paper proposes a new technique to mine all Related High Utility Itemsets (RHUIs) from large databases in 
lesser time. This method uses a novel approach of merging transactions in database based on their transaction 
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utility so as to reduce database size. As the number of transactions are very much reduced, the time spent on 
the process of mining RHUIs will also be reduced. Even though the mined RHUIs are not exactly same as 
the list of HUIs, the profitability of RHUIs are more or less equal to HUIs. When we consider the execution 
time of both algorithms, RHUI-Miner effectively works on it. This is explained above with example set of 
transactions .This RHUI-Miner algorithm will outperform existing HUI-Miner algorithm on real and synthetic 
datasets.
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