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Abstract. We study the joint law of (Xt(x), Lt(x)) where Xt(x) is the so-

lution of a one dimensional stochastic differential equation on (0,+∞) with
reflection at zero, and Lt(x) is its local time. In particular, we give some rep-
resentation formula of the distribution of (Xt(x), Lt(x)), and we investigate

the regularity of the joint density with respect to the local time argument
under ellipticity and mild regularity conditions on coefficients of Xt(x).

1. Introduction

Let T > 0 be fixed. We consider the following stochastic differential equation
(SDE) on D := (0,∞) with reflecting boundary conditions:

Xt(x) = x+

∫ t

0

σ(Xs(x)) dWs +

∫ t

0

b(Xs(x)) ds+ Lt(x), 0 ≤ t ≤ T. (1.1)

Here x ∈ D̄ := [0,∞) and {Wt}0≤t≤T is a one dimensional standard Brown-
ian motion on the canonical filtered probability space (Ω,F , {Ft}0≤t≤T , P ). We
assume that {Ft}0≤t≤T is the natural filtration generated by W . We say that
{(Xt(x), Lt(x))}0≤t≤T is the solution to (1.1) if it satisfies

L1. Both Xt(x) and Lt(x) are non-negative, continuous and Ft-adapted pro-
cesses satisfying (1.1);

L2. L0(x) = 0 and t → Lt(x) is increasing P -a.s.;
L3. The measure dLs(x) is carried by ∂D := {0}:

Lt(x) =

∫ t

0

1∂D
(Xs(x)) dLs(x).

Diffusions with reflecting boundary condition such as (1.1) appear naturally in var-
ious applications. In the 80s, the existence and uniqueness of the solution to SDEs
with reflecting boundary conditions were studied by many authors, see [9], [11]
and references therein. In recent years, several aspects of diffusions with reflecting
boundary condition has been studied. For example Wong–Zakai approximation
for diffusions with reflecting boundary condition, which describes a simple rela-
tion between the solution of SDE and that of ordinary differential equations, are
studied, see [6] and [1]. Deuschel and Zambotti [5] proved the solution to SDE’s
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with reflecting boundary conditions are pathwise differentiable with respect to the
initial value, and they obtained Bismut-Elworthy’s formula for the gradient of the
transition semigroup E[f(Xt(x))], see also [3].

Tsuchiya [12] obtained, by using parametrix methodology, an approximation
for E[f(Xt(x))] and investigated the existence of the density of Xt(x), see also
[2]. The main purpose of the present paper is to generalize the methodology ex-
posed by [12] and to give some approximation formula of the transition semigroup
Ptf(x, ℓ) := E[f(Xt(x), ℓ + Lt(x))] under mild regularity conditions on the coef-
ficients of Xt(x). The main difference between an approximation for E[f(Xt(x))]
and that for Ptf(x, ℓ) arises from the singularity of the distribution of the local
time. Indeed the local time process Lt(x) stays zero until Xt(x) touches zero,
hence the joint law of (Xt(x), ℓ+Lt(x)) is not absolutely continuous with respect
to the Lebesgue measure. For this reason, an approximation has two parts, that
is, approximations which do not touch the boundary, and approximations which
touch the boundary. This combination of effects will happen in any iteration of
the procedure of the approximation and will generate combinations of approxima-
tions with two parts. This creates difficulties in the analysis. We will show in
Thoerem 2.4 that the joint law of (Xt(x), ℓ+ Lt(x)) has the following form:

P (Xt(x) ∈ dx′, ℓ+ Lt(x) ∈ dℓ′) = pt(x;x
′) dx′ δℓ(dℓ

′) + pt(x, ℓ;x
′, ℓ′)1A dx′ dℓ′.

(1.2)

Here we denote by δℓ(dℓ
′) the Dirac point mass concentrated at ℓ, and put

A := {(x, ℓ, x′, ℓ′) ∈ R4 : x, x′ ∈ D, ℓ′ > ℓ}. (1.3)

The first term in the right hand side in (1.2) have a point mass at the current
value of local time and corresponds to the case where the reflected process does
not touch the boundary. The second term is absolutely continuous with respect
to the Lebesgue measure and corresponds to the case where the reflected process
touches the boundary. In Theorem 2.4, Gaussian upper estimates for pt(x;x

′) and
pt(x, ℓ;x

′, ℓ′) are also obtained.
As an application of Theorem 2.4 we study the regularity of pt(x, ℓ;x

′, ℓ′) with
respect to ℓ′. The regularity of the transition density of the solution to SDE is
usually related to the regularity of its coefficients. Even in the present case, we
can also show, by following a similar approach as in [4], the differentiability of
pt(x;x

′) and pt(x, ℓ;x
′, ℓ′) with respect to x. This application also enables us to

see the differentiability of x → E[g(Xt(x)) : T0(x) ≥ t] or x → E[f(Xt(x), ℓ +
Lt(x)) : T0 < t], where g and f are bounded measurable functions, and T0(x)
is the first hitting time to zero by Xt(x). On the other hand, it seems that the
regularity of pt(x, ℓ;x

′, ℓ′) with respect to local time argument ℓ′ has not been
studied enough. As Nualart and Vives [10] showed, a Brownian local time belongs
to some fractional order Sobolev space in the sense of Malliavin calculus. Hence one
cannot apply standard techniques fromMalliavin calculus to the study of regularity
of local time. However it is known that the distribution of the Brownian local
time is smooth except for the boundary. In the present paper, as an application
of Theorem 2.4, we will investigate the regularity of pt(x, ℓ;x

′, ℓ′) with respect to
ℓ′ under mild regularity conditions on the coefficients of (1.1). In particular we
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will show that, even though we do not assume any differentiability of coefficients
of (1.1), pt(x, ℓ;x

′, ℓ′) is smooth with respect to ℓ′ except for the boundary ℓ′ = ℓ
(Theorem 2.5).

The organization of the paper is as follows: assumptions and main results are
exhibited in Section 2. We also mention some auxiliary results that we frequently
use in the present paper. We give an approximation for the semigroup Ptf(x, ℓ) in
Section 3. Based on the approximation for Ptf(x, ℓ), we prove the representation
formula (1.2) in Section 4. In Section 5 we investigate the regularity of pt(x, ℓ;x

′, ℓ′)
with respect to ℓ′. In Appendices, we prove auxiliary results and the first step
formula that is a key formula in the theory of parametrix methodology.

Notations: We denote by Cb(D̄ × R) the space of continuous bounded func-
tions on D̄ × R. The sup-norm of the function f will be denoted by ∥f∥∞. We
denote by N0 the set of all non-negative integers. To describe the joint law of the
approximation, we will use the following notation for Hermite type functions

H̃n(x, a) =

(
d

dx

)n [
1√
2πa

exp(−x2

2a
)

]
, n ∈ N0,

as well as Hn(x, a) = H̃n(x, a)H̃0(x, a)
−1. B(s, t) and Γ(z) denote Beta and

Gamma functions respectively. We frequently use the following formula:
∫ t

0

sβ−1 (t− s)γ−1 ds = B(β, γ) tβ+γ−1 =
Γ(β) Γ(γ)

Γ(β + γ)
tβ+γ−1. (1.4)

We also use the Mittag-Leffler function:

Ea,b(z) :=
∞∑

n=0

zn

Γ(an+ b)
, z ∈ R. (1.5)

We remark that the sum converges for any z ∈ R.
As usual constants are denoted by the letters C and M , and it may change value

from one line to the next. These constant may depend on T , and other constants
appearing in the assumptions.

2. Assumptions and Main Results

2.1. Assumptions. Throughout the present paper, we assume that the coeffi-
cients of SDE (1.1) satisfy the following conditions:

Assumption (H)

H1. a := σ2 is uniformly elliptic and bounded measurable:

0 < a := inf
x∈D̄

a(x) ≤ a := sup
x∈D̄

a(x) < ∞.

H2. a is α-Hölder continuous for some α ∈ (1/2, 1):

∥a∥α := sup
x,y∈D̄, x ̸=y

|a(x)− a(y)|
|x− y|α

< ∞.

H3. b : D̄ → R is bounded and measurable.
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Remark 2.1. (1) For standard results on the existence and uniqueness of solu-
tions for reflected SDEs and their properties we refer the reader to e.g. Lions-
Sznitman [9] and Tsuchiya [12].

(2) Note that a is α-Hölder continuous for any α ∈ (1/2, 1), if a is Lipschitz
continuous. Hence our main results (Theorems 2.3–2.5) mentioned below are also
applicable to the case α = 1.

2.2. The approximation. Let x, z ∈ D̄ be fixed. In order to construct an
approximation for Ptf(x, ℓ), we consider the following Skorokhod equation:

X̄
(z)
t (x) = x+ σ(z)Wt + L̄

(z)
t (x). (2.1)

We say that (X̄
(z)
t (x), L̄

(z)
t (x)) is the solution to (2.1) if (X̄

(z)
t (x), L̄

(z)
t (x)) satisfies

the following conditions:

L̄1. Both X̄
(z)
t (x) and L̄

(z)
t (x) are non-negative, continuous and Ft-adapted

processes satisfying (2.1);

L̄2. L̄
(z)
0 (x) = 0 and t → L̄

(z)
t (x) is increasing P -a.s.;

L̄3. The measure dL̄
(z)
s (x) is carried by ∂D:

L̄
(z)
t (x) =

∫ t

0

1∂D(X̄(z)
s (x)) dL̄(z)

s (x).

There exists a unique pathwise solution to (2.1), see e.g., Lemma 6.14 in Chap. 3
of [8]. The following proposition can be deduced from Proposition 8.1 in Chap. 2
of [8]. Recall that A is defined by (1.3).

Proposition 2.2. The joint law of (X̄
(z)
t (x), ℓ+ L̄

(z)
t (x)) is given by

P ( (X̄
(z)
t (x), ℓ+ L̄

(z)
t (x)) ∈ dx′ dℓ′) =π̄

(z)
t (x;x′)dx′ δℓ(dℓ

′) + π̄
(z)
t (x, ℓ;x′, ℓ′)dx′ dℓ′,

where we have used the functions

π̄
(z)
t (x;x′) :=

(
H̃0(x− x′, a(z)t)− H̃0(x+ x′, a(z)t)

)
1D̄×D̄(x, x′),

and

π̄
(z)
t (x, ℓ;x′, ℓ′) := −2H̃1(x+ x′ + ℓ′ − ℓ, a(z)t) 1Ā(x, ℓ, x

′, ℓ′).

Here Ā stands for the closure of A.

2.3. Main results. We approximate Ptf(x, ℓ) by using the following operator

Ptf(x, ℓ) =

∫

D

f(x′, ℓ)π̄
(x′)
t (x, x′) dx′ +

∫ ∞

ℓ

∫

D

f(x′, ℓ′)π̄
(x′)
t (x, ℓ;x′, ℓ′) dx′ dℓ′.

This operator may look strange at first sight but one may interpret it as a “re-
versed” transition operator. To evaluate the remainder of the approximation, we

use the infinitesimal generators associated to (Xt(x), Lt(x)) and (X̄
(z)
t (x), L̄

(z)
t (x)):

Lf(x, ℓ) = Lxf(x, ℓ) := b(x)∂xf(x, ℓ) +
1

2
a(x)∂2

xf(x, ℓ),

L̄(z)f(x, ℓ) = L̄(z)
x f(x, ℓ) :=

1

2
a(z)∂2

xf(x, ℓ),
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respectively. Both of the domains of these operators contain the following set

D :=



f ∈ Cb(D̄ × R) ;

(∂xf(x, ℓ), ∂
2
xf(x, ℓ), ∂ℓf(0, ℓ)) exists and

is continuous, bounded and satisfies

∂xf(0, ℓ) + ∂ℓf(0, ℓ) = 0, (ℓ ∈ R)




. (2.2)

Define

Stf(x, ℓ) =

∫

D

f(x′, ℓ)κt(x;x
′) dx′ +

∫ ∞

ℓ

∫

D

f(x′, ℓ′)κt(x, ℓ;x
′, ℓ′) dx′ dℓ′,

where we have used the functions

κt(x;x
′) :=

(
Lx − L̄(x′)

x

)
π̄
(x′)
t (x;x′)1D̄×D̄(x, x′),

κt(x, ℓ;x
′, ℓ′) :=

(
Lx − L̄(x′)

x

)
π̄
(x′)
t (x, ℓ;x′, ℓ′) 1Ā(x, ℓ, x

′, ℓ′).

Theorem 2.3. Suppose that Assumption (H) holds. For f ∈ Cb(D̄×R), we define

I0t (f)(x, ℓ) = Ptf(x, ℓ),

and for n ≥ 1

Int (f)(x, ℓ) =

∫ t

0

du1

∫ u1

0

du2 · · ·
∫ un−1

0

dunPunSun−1−un · · ·Su1−u2St−u1f(x, ℓ).

Then, we have

Ptf(x, ℓ) =
∞∑

n=0

Int (f)(x, ℓ),

where the sum in the right hand side converges uniformly in (x, ℓ) ∈ D̄ × R.

By using Theorem 2.3 one can show representation formula (1.2). In order to
construct approximations for p(x;x′) and pt(x, ℓ;x

′, ℓ′), define recursively




p0t (x;x
′) = π̄

(x′)
t (x;x′)1D̄×D̄(x, x′),

pnt (x;x
′) =

(∫ t

0

∫

D

pn−1
s (x; ξ)κt−s(ξ;x

′) dξ ds

)
1D̄×D̄(x, x′), for n ≥ 1.

For n ∈ N, put

qnt (x, ℓ;x
′, ℓ′) =

(∫ t

0

∫

D

pn−1
s (x; ξ)κt−s(ξ, ℓ;x

′, ℓ′) dξ ds

)
1Ā(x, ℓ, x

′, ℓ′).

Then we define recursively




p0t (x, ℓ;x
′, ℓ′) = π̄

(x′)
t (x, ℓ;x′, ℓ′),

pnt (x, ℓ;x
′, ℓ′) = qnt (x, ℓ;x

′, ℓ′) +

∫ t

0

S∗
t−sp

n−1
s (x, ℓ; ·, ·)(x′, ℓ′) ds, for n ≥ 1,
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with reflecting boundary conditions are pathwise differentiable with respect to the
initial value, and they obtained Bismut-Elworthy’s formula for the gradient of the
transition semigroup E[f(Xt(x))], see also [3].

Tsuchiya [12] obtained, by using parametrix methodology, an approximation
for E[f(Xt(x))] and investigated the existence of the density of Xt(x), see also
[2]. The main purpose of the present paper is to generalize the methodology ex-
posed by [12] and to give some approximation formula of the transition semigroup
Ptf(x, ℓ) := E[f(Xt(x), ℓ + Lt(x))] under mild regularity conditions on the coef-
ficients of Xt(x). The main difference between an approximation for E[f(Xt(x))]
and that for Ptf(x, ℓ) arises from the singularity of the distribution of the local
time. Indeed the local time process Lt(x) stays zero until Xt(x) touches zero,
hence the joint law of (Xt(x), ℓ+Lt(x)) is not absolutely continuous with respect
to the Lebesgue measure. For this reason, an approximation has two parts, that
is, approximations which do not touch the boundary, and approximations which
touch the boundary. This combination of effects will happen in any iteration of
the procedure of the approximation and will generate combinations of approxima-
tions with two parts. This creates difficulties in the analysis. We will show in
Thoerem 2.4 that the joint law of (Xt(x), ℓ+ Lt(x)) has the following form:

P (Xt(x) ∈ dx′, ℓ+ Lt(x) ∈ dℓ′) = pt(x;x
′) dx′ δℓ(dℓ

′) + pt(x, ℓ;x
′, ℓ′)1A dx′ dℓ′.

(1.2)

Here we denote by δℓ(dℓ
′) the Dirac point mass concentrated at ℓ, and put

A := {(x, ℓ, x′, ℓ′) ∈ R4 : x, x′ ∈ D, ℓ′ > ℓ}. (1.3)

The first term in the right hand side in (1.2) have a point mass at the current
value of local time and corresponds to the case where the reflected process does
not touch the boundary. The second term is absolutely continuous with respect
to the Lebesgue measure and corresponds to the case where the reflected process
touches the boundary. In Theorem 2.4, Gaussian upper estimates for pt(x;x

′) and
pt(x, ℓ;x

′, ℓ′) are also obtained.
As an application of Theorem 2.4 we study the regularity of pt(x, ℓ;x

′, ℓ′) with
respect to ℓ′. The regularity of the transition density of the solution to SDE is
usually related to the regularity of its coefficients. Even in the present case, we
can also show, by following a similar approach as in [4], the differentiability of
pt(x;x

′) and pt(x, ℓ;x
′, ℓ′) with respect to x. This application also enables us to

see the differentiability of x → E[g(Xt(x)) : T0(x) ≥ t] or x → E[f(Xt(x), ℓ +
Lt(x)) : T0 < t], where g and f are bounded measurable functions, and T0(x)
is the first hitting time to zero by Xt(x). On the other hand, it seems that the
regularity of pt(x, ℓ;x

′, ℓ′) with respect to local time argument ℓ′ has not been
studied enough. As Nualart and Vives [10] showed, a Brownian local time belongs
to some fractional order Sobolev space in the sense of Malliavin calculus. Hence one
cannot apply standard techniques fromMalliavin calculus to the study of regularity
of local time. However it is known that the distribution of the Brownian local
time is smooth except for the boundary. In the present paper, as an application
of Theorem 2.4, we will investigate the regularity of pt(x, ℓ;x

′, ℓ′) with respect to
ℓ′ under mild regularity conditions on the coefficients of (1.1). In particular we
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for (x, ℓ, x′, ℓ′) ∈ Ā, and set pnt (x, ℓ;x
′, ℓ′) = 0 for (x, ℓ, x′, ℓ′) ∈ Āc. Here, S∗

t is the
adjoint operator of St. In particular, for (x, ℓ, x′, ℓ′) ∈ A, we can write
∫ t

0

S∗
t−sp

n−1
s (x, ℓ; ·, ·)(x′, ℓ′) ds =

∫ t

0

∫

D

pn−1
s (x, ℓ; ξ, ℓ′) κt−s(ξ;x

′) dξ ds

+

∫ t

0

∫ ℓ′

ℓ

∫

D

pn−1
s (x, ℓ; ξ, λ)κt−s(ξ, λ;x

′, ℓ′) dξ dλ ds.

To simplify the notation we denote

hµ
t (x, ℓ;x

′, ℓ′) = H̃0(x+ x′ + ℓ′ − ℓ, µāt). (2.3)

Here µ > 1 and ā is the constant introduced in H1 in Assumption (H). Recall
that we denote by Ea,b(z) the Mittag-Leffler function, see (1.5).

Theorem 2.4. Suppose that Assumption (H) holds. For any µ > 1 there exist
positive constants C and M such that the following assertions hold true:

1. For each t ∈ (0, T ], pt(x;x
′) :=

∑∞
n=0 p

n
t (x;x

′) converges uniformly in
(x, x′) ∈ D̄2. Moreover we have that, for any (t, x, x′) ∈ (0, T ]× D̄ × D̄,

pt(x;x
′) ≤ CEα/2,1(Mtα/2)H̃0(x− x′, µāt).

2. For each t ∈ (0, T ], pt(x, ℓ;x
′, ℓ′) :=

∑∞
n=0 p

n
t (x, ℓ;x

′, ℓ′) converges uni-
formly in (x, ℓ, x′, ℓ′) ∈ Ā. Moreover we have that, for any (t, x, ℓ, x′, ℓ′) ∈
(0, T ]× Ā,

pt(x, ℓ;x
′, ℓ′) ≤ CEα/2,1/2(Mtα/2) t−1/2 hµ

t (x, ℓ;x
′, ℓ′).

3. Formula (1.2) holds true.

As an application of Theorem 2.4, we will show the smoothness of pt(x, ℓ;x
′, ℓ′)

with respect to ℓ′. For δ ∈ (0, 1), we put

Aδ = {(x, ℓ, x′, ℓ′) ∈ R4 : x, x′ ∈ D, ℓ′ − ℓ > δ}. (2.4)

Theorem 2.5. Suppose that Assumption (H) holds. Then pt(x, ℓ;x
′, ℓ′) : A → R

is infinitely differentiable with respect to ℓ′, and for any (t, x, ℓ, x′, ℓ′) ∈ (0, T ]× Āδ

��∂m
ℓ′ pt(x, ℓ;x

′, ℓ′)
�� ≤ C Eα/2,1/2(Mtα/2)

δm
t−1/2hµ

t (x, ℓ;x
′, ℓ′),

holds true. Both constants C and M depend on m, µ, α, ā, a, ∥b∥∞, and T , but
are independent of δ.

Remark 2.6. One can see easily see that pnt (x, ℓ;x
′, ℓ′) = pnt (x, 0;x

′, ℓ′ − ℓ) for any
n and also pt(x, ℓ;x

′, ℓ′) = pt(x, 0;x
′, ℓ′ − ℓ). Thus Theorem 2.5 also assures the

infinite differentiability with respect to ℓ.

2.4. Some auxiliary results. Although, in the present paper, constants may
change from line to line, we sometimes need to fix constants when we use inequal-
ities (2.5)–(2.8) below.

Proposition 2.7. For any µ > 1, there exists a positive constant Mµ such that
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will show that, even though we do not assume any differentiability of coefficients
of (1.1), pt(x, ℓ;x

′, ℓ′) is smooth with respect to ℓ′ except for the boundary ℓ′ = ℓ
(Theorem 2.5).

The organization of the paper is as follows: assumptions and main results are
exhibited in Section 2. We also mention some auxiliary results that we frequently
use in the present paper. We give an approximation for the semigroup Ptf(x, ℓ) in
Section 3. Based on the approximation for Ptf(x, ℓ), we prove the representation
formula (1.2) in Section 4. In Section 5 we investigate the regularity of pt(x, ℓ;x

′, ℓ′)
with respect to ℓ′. In Appendices, we prove auxiliary results and the first step
formula that is a key formula in the theory of parametrix methodology.

Notations: We denote by Cb(D̄ × R) the space of continuous bounded func-
tions on D̄ × R. The sup-norm of the function f will be denoted by ∥f∥∞. We
denote by N0 the set of all non-negative integers. To describe the joint law of the
approximation, we will use the following notation for Hermite type functions

H̃n(x, a) =

(
d

dx

)n [
1√
2πa

exp(−x2

2a
)

]
, n ∈ N0,

as well as Hn(x, a) = H̃n(x, a)H̃0(x, a)
−1. B(s, t) and Γ(z) denote Beta and

Gamma functions respectively. We frequently use the following formula:
∫ t

0

sβ−1 (t− s)γ−1 ds = B(β, γ) tβ+γ−1 =
Γ(β) Γ(γ)

Γ(β + γ)
tβ+γ−1. (1.4)

We also use the Mittag-Leffler function:

Ea,b(z) :=
∞∑

n=0

zn

Γ(an+ b)
, z ∈ R. (1.5)

We remark that the sum converges for any z ∈ R.
As usual constants are denoted by the letters C and M , and it may change value

from one line to the next. These constant may depend on T , and other constants
appearing in the assumptions.

2. Assumptions and Main Results

2.1. Assumptions. Throughout the present paper, we assume that the coeffi-
cients of SDE (1.1) satisfy the following conditions:

Assumption (H)

H1. a := σ2 is uniformly elliptic and bounded measurable:

0 < a := inf
x∈D̄

a(x) ≤ a := sup
x∈D̄

a(x) < ∞.

H2. a is α-Hölder continuous for some α ∈ (1/2, 1):

∥a∥α := sup
x,y∈D̄, x ̸=y

|a(x)− a(y)|
|x− y|α

< ∞.

H3. b : D̄ → R is bounded and measurable.
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(i) For n = 0, 1, 2, for any z ∈ D̄ and for any (t, x, x′) ∈ (0, T ]× D̄2,

��∂n
x′π

(z)
t (x;x′)

�� ≤ Mµt
−n/2

(
1 ∧ x′

t1/2

)
H̃0(x− x′, µāt). (2.5)

(ii) For any z ∈ D̄ and for any (t, x, ℓ, x′, ℓ′) ∈ (0, T ]× Ā,
��π(z)

t (x, ℓ;x′, ℓ′)
�� ≤ Mµt

−1/2hµ
t (x, ℓ;x

′, ℓ′). (2.6)

(iii) For any (t, x, x′) ∈ (0, T ]× D̄2,

��κt(x;x
′)
�� ≤ Mµt

(α−2)/2

(
1 ∧ x′

t1/2

)
H̃0(x− x′, µāt). (2.7)

(iv) For any (t, x, ℓ, x′, ℓ′) ∈ (0, T ]× Ā,
��κt(x, ℓ;x

′, ℓ′)
�� ≤ Mµt

(α−3)/2hµ
t (x, ℓ;x

′, ℓ′). (2.8)

The constant Mµ depends not only on µ, but also on α, ā, a, ∥b∥∞ and T .

Remark 2.8. The proof of Proposition 2.7 will be given in Appendices. In [7], the
authors studied a similar estimate to (2.5) see Lemma 5.3 in [7].

We will also frequently use the following inequalities.

Proposition 2.9. Let µ > 1 be fixed.

(i) For any 0 < s < t < T , and for any x, x′ ∈ D̄ we have
∫

D

H̃0(x− ξ, µās) H̃0(ξ − x′, µā(t− s)) dξ ≤ H̃0(x− x′, µāt). (2.9)

(ii) For any 0 < s < t < T , and for any (x, ℓ, x′, ℓ′) ∈ Ā we have
∫

D

H̃0(x− ξ, µās)hµ
t−s(ξ, ℓ;x

′, ℓ′) dξ ≤ hµ
t (x, ℓ;x

′, ℓ′). (2.10)

(iii) For any 0 < s < t < T , and for any (x, ℓ, x′, ℓ′) ∈ Ā we have

∫ ℓ′

ℓ

∫

D

|hµ
s (x, ℓ; ξ, λ)κt−s(ξ, λ;x

′, ℓ′)| dξ dλ ≤ Mµ(t− s)α/2−1 hµ
t (x, ℓ;x

′, ℓ′).

(2.11)

Proof. We omit the proof of (2.9) and (2.10) because they are similar to the proof
of (2.11). Let 1 < µ′ < µ be fixed. Put p = µ/µ′ and q = (1− 1/p)−1. Then note
that p, q > 1 and (1/p)+(1/q) = 1. We have that for any ξ, x′ ∈ D and ℓ ≤ λ ≤ ℓ′,

hµ′

t−s(ξ, λ;x
′, ℓ′) = (2πāµ′pq(t− s))1/2hµ′p

t−s(ξ, λ;x
′, ℓ′)hµ′q

t−s(ξ, λ, x
′, ℓ′)

≤ (2πāµ′pq(t− s))1/2hµ
t−s(ξ, λ;x

′, ℓ′)H̃0(ℓ
′ − λ, µ′āq(t− s)).

(2.12)

Here the last inequality follows from the fact that ξ+ x′ + ℓ′ − λ ≥ ℓ′ − λ ≥ 0. By
using this and (2.8) with µ = µ′, we have

|κt−s(ξ, λ;x
′, ℓ′)| ≤ Mµ(t− s)α/2−1hµ

t−s(ξ, λ;x
′, ℓ′)H̃0(ℓ

′ − λ, µ′āq(t− s)).
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with reflecting boundary conditions are pathwise differentiable with respect to the
initial value, and they obtained Bismut-Elworthy’s formula for the gradient of the
transition semigroup E[f(Xt(x))], see also [3].

Tsuchiya [12] obtained, by using parametrix methodology, an approximation
for E[f(Xt(x))] and investigated the existence of the density of Xt(x), see also
[2]. The main purpose of the present paper is to generalize the methodology ex-
posed by [12] and to give some approximation formula of the transition semigroup
Ptf(x, ℓ) := E[f(Xt(x), ℓ + Lt(x))] under mild regularity conditions on the coef-
ficients of Xt(x). The main difference between an approximation for E[f(Xt(x))]
and that for Ptf(x, ℓ) arises from the singularity of the distribution of the local
time. Indeed the local time process Lt(x) stays zero until Xt(x) touches zero,
hence the joint law of (Xt(x), ℓ+Lt(x)) is not absolutely continuous with respect
to the Lebesgue measure. For this reason, an approximation has two parts, that
is, approximations which do not touch the boundary, and approximations which
touch the boundary. This combination of effects will happen in any iteration of
the procedure of the approximation and will generate combinations of approxima-
tions with two parts. This creates difficulties in the analysis. We will show in
Thoerem 2.4 that the joint law of (Xt(x), ℓ+ Lt(x)) has the following form:

P (Xt(x) ∈ dx′, ℓ+ Lt(x) ∈ dℓ′) = pt(x;x
′) dx′ δℓ(dℓ

′) + pt(x, ℓ;x
′, ℓ′)1A dx′ dℓ′.

(1.2)

Here we denote by δℓ(dℓ
′) the Dirac point mass concentrated at ℓ, and put

A := {(x, ℓ, x′, ℓ′) ∈ R4 : x, x′ ∈ D, ℓ′ > ℓ}. (1.3)

The first term in the right hand side in (1.2) have a point mass at the current
value of local time and corresponds to the case where the reflected process does
not touch the boundary. The second term is absolutely continuous with respect
to the Lebesgue measure and corresponds to the case where the reflected process
touches the boundary. In Theorem 2.4, Gaussian upper estimates for pt(x;x

′) and
pt(x, ℓ;x

′, ℓ′) are also obtained.
As an application of Theorem 2.4 we study the regularity of pt(x, ℓ;x

′, ℓ′) with
respect to ℓ′. The regularity of the transition density of the solution to SDE is
usually related to the regularity of its coefficients. Even in the present case, we
can also show, by following a similar approach as in [4], the differentiability of
pt(x;x

′) and pt(x, ℓ;x
′, ℓ′) with respect to x. This application also enables us to

see the differentiability of x → E[g(Xt(x)) : T0(x) ≥ t] or x → E[f(Xt(x), ℓ +
Lt(x)) : T0 < t], where g and f are bounded measurable functions, and T0(x)
is the first hitting time to zero by Xt(x). On the other hand, it seems that the
regularity of pt(x, ℓ;x

′, ℓ′) with respect to local time argument ℓ′ has not been
studied enough. As Nualart and Vives [10] showed, a Brownian local time belongs
to some fractional order Sobolev space in the sense of Malliavin calculus. Hence one
cannot apply standard techniques fromMalliavin calculus to the study of regularity
of local time. However it is known that the distribution of the Brownian local
time is smooth except for the boundary. In the present paper, as an application
of Theorem 2.4, we will investigate the regularity of pt(x, ℓ;x

′, ℓ′) with respect to
ℓ′ under mild regularity conditions on the coefficients of (1.1). In particular we
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Here we replace the constant Mµ′(2πµ′pq)1/2 by Mµ because we may assume that

Mµ′(2πµ′pq)1/2 ≤ Mµ holds. Thus we obtain
∫ ℓ′

ℓ

∫

D

|hµ
s (x, ℓ; ξ, λ)κt−s(ξ, λ;x

′, ℓ′)|dξdλ

≤ Mµ(t− s)α/2−1

∫ ℓ′

ℓ

H̃0(ℓ
′ − λ, µ′āq(t− s))dλ

∫

D

hµ
s (x, ℓ; ξ, λ)h

µ
t−s(ξ, λ;x

′, ℓ′)dξ

≤ Mµ(t− s)α/2−1

∫

R
H̃0(ℓ

′ − λ, µ′āq(t− s))dλ× hµ
t (x, ℓ;x

′, ℓ′)

Here, in the last inequality, we use the semigroup property of H̃0(x, µāt). Therefore
(2.11) holds true. □

3. The Proof of Theorem 2.3

The following lemma plays a fundamental role in the theory of parametrix
methodology. We will prove Lemma 3.1 in Appendices.

Lemma 3.1. Assume the Hypotheses (H) hold. For any f ∈ Cb(D̄×R), we have

Ptf(x, ℓ)− Ptf(x, ℓ) =

∫ t

0

PuSt−uf(x, ℓ) du. (3.1)

Recall that hµ
t (x, ℓ;x

′, ℓ′) is defined by (2.3).

Proposition 3.2. There exists C > 0 such that for any f(x, ℓ) ∈ Cb(D̄ × R)
∥Ptf∥∞ ≤ C∥f∥∞,

and

∥Stf∥∞ ≤ Ct(α−2)/2∥f∥∞,

hold for any t ∈ (0, T ]. Here C depends on α, ā, a, ∥b∥∞ and T .

Proof. For any (x, ℓ, x′, ℓ′) ∈ Ā, note that (x+ x′) (ℓ′ − ℓ) ≥ 0. Hence one can see
that

h2
t (x, ℓ;x

′, ℓ′) ≤ (4πāT )1/2 H̃0(x+ x′, 2āt)H̃0(ℓ
′ − ℓ; 2āt). (3.2)

Using this and Proposition 2.7 with µ = 2, we can obtain the desired estimates. □
3.1. Proof of Theorem 2.3. By using Lemma 3.1, we have

Ptf =Ptf +

∫ t

0

Pu1 St−u1f du1

=I0t f +

∫ t

0

(
Pu1St−u1f +

∫ u1

0

Pu2Su1−u2St−u1f du2

)
du1

=I0t f + I1t f +

∫ t

0

∫ u1

0

Pu2Su1−u2St−u1f du2 du1.

By iterating this procedure N times, we obtain Ptf =
∑N

n=0 I
n
t f +RN+1, with

RN+1 =

∫ t

0

du1

∫ u1

0

du2 · · ·
∫ uN

0

duN+1PuN+1
SuN−uN+1

· · ·St−u1f.
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will show that, even though we do not assume any differentiability of coefficients
of (1.1), pt(x, ℓ;x

′, ℓ′) is smooth with respect to ℓ′ except for the boundary ℓ′ = ℓ
(Theorem 2.5).

The organization of the paper is as follows: assumptions and main results are
exhibited in Section 2. We also mention some auxiliary results that we frequently
use in the present paper. We give an approximation for the semigroup Ptf(x, ℓ) in
Section 3. Based on the approximation for Ptf(x, ℓ), we prove the representation
formula (1.2) in Section 4. In Section 5 we investigate the regularity of pt(x, ℓ;x

′, ℓ′)
with respect to ℓ′. In Appendices, we prove auxiliary results and the first step
formula that is a key formula in the theory of parametrix methodology.

Notations: We denote by Cb(D̄ × R) the space of continuous bounded func-
tions on D̄ × R. The sup-norm of the function f will be denoted by ∥f∥∞. We
denote by N0 the set of all non-negative integers. To describe the joint law of the
approximation, we will use the following notation for Hermite type functions

H̃n(x, a) =

(
d

dx

)n [
1√
2πa

exp(−x2

2a
)

]
, n ∈ N0,

as well as Hn(x, a) = H̃n(x, a)H̃0(x, a)
−1. B(s, t) and Γ(z) denote Beta and

Gamma functions respectively. We frequently use the following formula:
∫ t

0

sβ−1 (t− s)γ−1 ds = B(β, γ) tβ+γ−1 =
Γ(β) Γ(γ)

Γ(β + γ)
tβ+γ−1. (1.4)

We also use the Mittag-Leffler function:

Ea,b(z) :=
∞∑

n=0

zn

Γ(an+ b)
, z ∈ R. (1.5)

We remark that the sum converges for any z ∈ R.
As usual constants are denoted by the letters C and M , and it may change value

from one line to the next. These constant may depend on T , and other constants
appearing in the assumptions.

2. Assumptions and Main Results

2.1. Assumptions. Throughout the present paper, we assume that the coeffi-
cients of SDE (1.1) satisfy the following conditions:

Assumption (H)

H1. a := σ2 is uniformly elliptic and bounded measurable:

0 < a := inf
x∈D̄

a(x) ≤ a := sup
x∈D̄

a(x) < ∞.

H2. a is α-Hölder continuous for some α ∈ (1/2, 1):

∥a∥α := sup
x,y∈D̄, x ̸=y

|a(x)− a(y)|
|x− y|α

< ∞.

H3. b : D̄ → R is bounded and measurable.
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Hence, using Proposition 3.2 we obtain

∥RN+1∥∞ ≤
∫ t

0

du1 · · ·
∫ uN

0

duN+1

N+1∏
j=1

(
C(uj−1 − uj)

(α−2)/2
)
× ∥f∥∞

=
(Ctα/2)N+1

Γ((N + 1)α/2 + 1)
∥f∥∞ → 0,

as N → ∞. Thus the proof is complete.

4. Proof of Theorem 2.4

Recall that pnt (x;x
′), qnt (x, ℓ;x

′, ℓ′) and pnt (x, ℓ;x
′, ℓ′) are defined in Subsec-

tion 2.3 and Mµ is the constant introduced in Proposition 2.7.

4.1. An upper estimate for pt(x;x
′).

Lemma 4.1. For any µ > 1, and for any n ∈ N, the inequality

|pnt (x;x′)| ≤ C ′
0

(M ′tα/2)n

Γ(nα/2 + 1)
H̃0(x− x′;µāt), (t, x, x′) ∈ (0, T ]× D̄2,

holds true. Here we put C ′
0 = Mµ and M ′ = MµΓ(α/2).

Proof. From (2.5), |p0t (x;x′)| ≤ MµH̃0(x − x′, µāt). Thus the assertion for n = 0
holds. Suppose that the assertion holds true for n. Then from the hypothesis of
induction, (2.7), (2.9), and (1.4), we have

|pn+1
t (x;x′)| ≤ C ′

0

(M ′)n Mµ

Γ(nα/2 + 1)

∫ t

0

snα/2 (t− s)α/2−1 ds H̃(x− x′, µāt)

≤ C ′
0

(M ′tα/2)n+1

Γ((n+ 1)α/2 + 1)
H̃0(x− x′, µāt).

Therefore, by induction, the assertion holds for all n ∈ N. □

4.2. An upper estimate for qnt (x, ℓ;x
′, ℓ′). Let us start with a technical lemma.

Lemma 4.2. There exits a positive constant C(α) depending only on α ∈ (1/2, 1)
such that for each n ∈ N

∫ t

0

snα/2(t− s)(α−2)/2

(
1 ∧ x

(t− s)1/2

)
ds ≤ C(α) t(n+1)α/2

(
1 ∧

( x

t1/2

)α)
,

holds, for any (t, x) ∈ (0, T ]× D̄.

Proof. Note that B(nα/2 + 1, α/2) ≤ 2/α. Hence from (1.4) one can see

∫ t

0

snα/2 (t− s)(α−2)/2

(
1 ∧ x

(t− s)1/2

)
ds ≤ 2

α
t(n+1)α/2,
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with reflecting boundary conditions are pathwise differentiable with respect to the
initial value, and they obtained Bismut-Elworthy’s formula for the gradient of the
transition semigroup E[f(Xt(x))], see also [3].

Tsuchiya [12] obtained, by using parametrix methodology, an approximation
for E[f(Xt(x))] and investigated the existence of the density of Xt(x), see also
[2]. The main purpose of the present paper is to generalize the methodology ex-
posed by [12] and to give some approximation formula of the transition semigroup
Ptf(x, ℓ) := E[f(Xt(x), ℓ + Lt(x))] under mild regularity conditions on the coef-
ficients of Xt(x). The main difference between an approximation for E[f(Xt(x))]
and that for Ptf(x, ℓ) arises from the singularity of the distribution of the local
time. Indeed the local time process Lt(x) stays zero until Xt(x) touches zero,
hence the joint law of (Xt(x), ℓ+Lt(x)) is not absolutely continuous with respect
to the Lebesgue measure. For this reason, an approximation has two parts, that
is, approximations which do not touch the boundary, and approximations which
touch the boundary. This combination of effects will happen in any iteration of
the procedure of the approximation and will generate combinations of approxima-
tions with two parts. This creates difficulties in the analysis. We will show in
Thoerem 2.4 that the joint law of (Xt(x), ℓ+ Lt(x)) has the following form:

P (Xt(x) ∈ dx′, ℓ+ Lt(x) ∈ dℓ′) = pt(x;x
′) dx′ δℓ(dℓ

′) + pt(x, ℓ;x
′, ℓ′)1A dx′ dℓ′.

(1.2)

Here we denote by δℓ(dℓ
′) the Dirac point mass concentrated at ℓ, and put

A := {(x, ℓ, x′, ℓ′) ∈ R4 : x, x′ ∈ D, ℓ′ > ℓ}. (1.3)

The first term in the right hand side in (1.2) have a point mass at the current
value of local time and corresponds to the case where the reflected process does
not touch the boundary. The second term is absolutely continuous with respect
to the Lebesgue measure and corresponds to the case where the reflected process
touches the boundary. In Theorem 2.4, Gaussian upper estimates for pt(x;x

′) and
pt(x, ℓ;x

′, ℓ′) are also obtained.
As an application of Theorem 2.4 we study the regularity of pt(x, ℓ;x

′, ℓ′) with
respect to ℓ′. The regularity of the transition density of the solution to SDE is
usually related to the regularity of its coefficients. Even in the present case, we
can also show, by following a similar approach as in [4], the differentiability of
pt(x;x

′) and pt(x, ℓ;x
′, ℓ′) with respect to x. This application also enables us to

see the differentiability of x → E[g(Xt(x)) : T0(x) ≥ t] or x → E[f(Xt(x), ℓ +
Lt(x)) : T0 < t], where g and f are bounded measurable functions, and T0(x)
is the first hitting time to zero by Xt(x). On the other hand, it seems that the
regularity of pt(x, ℓ;x

′, ℓ′) with respect to local time argument ℓ′ has not been
studied enough. As Nualart and Vives [10] showed, a Brownian local time belongs
to some fractional order Sobolev space in the sense of Malliavin calculus. Hence one
cannot apply standard techniques fromMalliavin calculus to the study of regularity
of local time. However it is known that the distribution of the Brownian local
time is smooth except for the boundary. In the present paper, as an application
of Theorem 2.4, we will investigate the regularity of pt(x, ℓ;x

′, ℓ′) with respect to
ℓ′ under mild regularity conditions on the coefficients of (1.1). In particular we
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holds for any (t, x) ∈ (0, T ] × D̄. If x ≥ t1/2, one can easily prove the assertion.
Suppose next that 0 ≤ x < t1/2. Then we have

∫ t

0

snα/2 (t− s)(α−2)/2

(
1 ∧ x

(t− s)1/2

)
ds

=

∫ t−x2

0

snα/2 (t− s)(α−2)/2 x

(t− s)1/2
ds+

∫ t

t−x2

snα/2 (t− s)(α−2)/2 ds

≤ x(t− x2)nα/2
∫ t−x2

0

(t− s)(α−3)/2 ds+ tnα/2
∫ t

t−x2

(t− s)(α−2)/2 ds

≤
(

2

1− α
+

2

α

)
xαtnα/2.

(4.1)

Thus we obtain the desired result with C(α) = 2
1−α + 2

α . □

The following lemma is a modification of Lemma 4.1:

Lemma 4.3. For any µ > 1, there exists a positive constant C such that for any
n ∈ N0 and for any (t, x, x′) ∈ (0, T ]× D̄2,

|pnt (x;x′)| ≤ C
(M ′tα/2)n

Γ((n− 1)α/2 + 1)

(
1 ∧

(
x′

t1/2

)α)
H̃0(x− x′, µāt),

holds. Here M ′ = MµΓ(α/2).

Proof. The assertion for n = 0 follows from (2.5). By using Lemma 4.1, (2.7) and
(2.9), we have

|pnt (x, x′)| ≤ C ′
0Mµ(M

′)n−1

Γ((n− 1)α/2 + 1)

∫ t

0

s(n−1)α/2(t− s)(α−2)/2

(
1 ∧ x′

(t− s)1/2

)
ds

× H̃0(x− x′, µāt)

≤ C ′
0C(α)

Γ(α/2)
· (M ′)ntnα/2

Γ((n− 1)α/2 + 1)

(
1 ∧

(
x′

t1/2

)α)
H̃0(x− x′, µāt).

Here in the last inequality we also use Lemma 4.2. Thus the proof is complete. □

Lemma 4.4. For any µ > 1, there exists a constant C̃0 such that for any n ∈ N
and for any (t, x, ℓ, x′, ℓ′) ∈ (0, T ]× Ā,

|qnt (x, ℓ;x′, ℓ′)| ≤ C̃0
(M ′)n−1t(nα−1)/2

Γ((nα+ 1)/2)
hµ
t (x, ℓ;x

′, ℓ′), (4.2)

holds. Here M ′ = Mµ Γ(α/2).

Proof. Let us estimate the integrand of qnt (x, ℓ;x
′, ℓ′). We take a constant 1 <

µ′ < µ. Using (2.8) with µ′ and Lemma 4.3 we have

|pn−1
s (x; ξ)κt−s(ξ, ℓ;x

′, ℓ′)| ≤ CMµ′ (M ′)n−1

Γ((n− 2)α/2 + 1)
s(n−1)α/2(t− s)(α−3)/2

×
(

ξ

s1/2

)α

H̃0(x− ξ, µās)hµ′

t−s(ξ, ℓ;x
′, ℓ′).

(4.3)
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will show that, even though we do not assume any differentiability of coefficients
of (1.1), pt(x, ℓ;x

′, ℓ′) is smooth with respect to ℓ′ except for the boundary ℓ′ = ℓ
(Theorem 2.5).

The organization of the paper is as follows: assumptions and main results are
exhibited in Section 2. We also mention some auxiliary results that we frequently
use in the present paper. We give an approximation for the semigroup Ptf(x, ℓ) in
Section 3. Based on the approximation for Ptf(x, ℓ), we prove the representation
formula (1.2) in Section 4. In Section 5 we investigate the regularity of pt(x, ℓ;x

′, ℓ′)
with respect to ℓ′. In Appendices, we prove auxiliary results and the first step
formula that is a key formula in the theory of parametrix methodology.

Notations: We denote by Cb(D̄ × R) the space of continuous bounded func-
tions on D̄ × R. The sup-norm of the function f will be denoted by ∥f∥∞. We
denote by N0 the set of all non-negative integers. To describe the joint law of the
approximation, we will use the following notation for Hermite type functions

H̃n(x, a) =

(
d

dx

)n [
1√
2πa

exp(−x2

2a
)

]
, n ∈ N0,

as well as Hn(x, a) = H̃n(x, a)H̃0(x, a)
−1. B(s, t) and Γ(z) denote Beta and

Gamma functions respectively. We frequently use the following formula:
∫ t

0

sβ−1 (t− s)γ−1 ds = B(β, γ) tβ+γ−1 =
Γ(β) Γ(γ)

Γ(β + γ)
tβ+γ−1. (1.4)

We also use the Mittag-Leffler function:

Ea,b(z) :=
∞∑

n=0

zn

Γ(an+ b)
, z ∈ R. (1.5)

We remark that the sum converges for any z ∈ R.
As usual constants are denoted by the letters C and M , and it may change value

from one line to the next. These constant may depend on T , and other constants
appearing in the assumptions.

2. Assumptions and Main Results

2.1. Assumptions. Throughout the present paper, we assume that the coeffi-
cients of SDE (1.1) satisfy the following conditions:

Assumption (H)

H1. a := σ2 is uniformly elliptic and bounded measurable:

0 < a := inf
x∈D̄

a(x) ≤ a := sup
x∈D̄

a(x) < ∞.

H2. a is α-Hölder continuous for some α ∈ (1/2, 1):

∥a∥α := sup
x,y∈D̄, x ̸=y

|a(x)− a(y)|
|x− y|α

< ∞.

H3. b : D̄ → R is bounded and measurable.
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Note that ξ ≤ ξ + x′ + ℓ′ − ℓ for (x, ℓ, x′, ℓ′) ∈ Ā. Hence by using Proposition 6.1
in Appendices, the right hand side above is dominated by

CMµ′ (M ′)n−1

Γ((n− 2)α/2 + 1)
s(n−2)α/2(t− s)α−3/2

×
(
ξ + x′ + ℓ′ − ℓ

(t− s)1/2

)α

H̃0(x− ξ, µās)hµ′

t−s(ξ, ℓ;x
′, ℓ′)

≤ CMµ′ (M ′)n−1

Γ((n− 2)α/2 + 1)
s(n−2)α/2(t− s)α−3/2H̃0(x− ξ, µās)hµ

t−s(ξ, ℓ;x
′, ℓ′),

Integrating both side with s and ξ, and using (2.10), and (1.4), we obtain (4.2). □

4.3. An upper estimate for pnt (x, ℓ;x
′, ℓ′).

Lemma 4.5. For any µ > 1, there exist positive constants C ′′
0 and M ′′ such that

for any n ∈ N0 and for any (t, x, ℓ, x′, ℓ′) ∈ (0, T ]× Ā,

|pnt (x, ℓ;x′, ℓ′)| ≤ C ′′
0

(M ′′)nt(nα−1)/2

Γ((nα+ 1)/2)
hµ
t (x, ℓ;x

′, ℓ′),

holds true.

Proof. By induction with respect to n, we will prove Lemma 4.5 with constants

C ′′
0 = max{C̃0,MµΓ(1/2)}, M ′′ = 3M ′. (4.4)

Here C̃0 is the constant introduced in Lemma 4.4 and M ′ = MµΓ(α/2). The
assertion for n = 0 can be deduced from (2.6). Suppose that the assertion for n
holds true. By using (2.7), (2.10) and (1.4) we have

∫ t

0

s(nα−1)/2 ds

∫

D

��hµ
s (x, ℓ; ξ, ℓ

′)κt−s(ξ;x
′)
�� dξ

≤ MµΓ((nα+ 1)/2)Γ(α/2)

Γ((n+ 1)α+ 1)/2)
t((n+1)α−1)/2 hµ

t (x, ℓ;x
′, ℓ′),

and by using (2.8), (2.11) and (1.4)
∫ t

0

s(nα−1)/2 ds

∫ ℓ′

ℓ

∫

D

��hµ
s (x, ℓ; ξ, λ)κt−s(ξ, λ;x

′, ℓ′)
�� dξ dλ

≤ Mµ Γ((nα+ 1)/2)Γ(α/2)

Γ((n+ 1)α+ 1)/2)
t((n+1)α−1)/2 hµ

t (x, ℓ;x
′, ℓ′).

Thus, the hypothesis of induction yields
∫ t

0

��S∗
t−sp

n
s (x, ℓ; ·, ·)(x′, ℓ′)

�� ds

≤ C ′′
0

(M ′′)n

Γ(((n+ 1)α+ 1)/2)
(2M ′) t((n+1)α−1)/2 hµ

t (x, ℓ;x
′, ℓ′).

On the other hand, since C̃0 ≤ C ′′
0 and M ′ := MµΓ(α/2) ≤ M ′′, Lemma 4.4 yields

|qn+1
t (x, ℓ;x′, ℓ′)| ≤ C ′′

0

(M ′′)n

Γ(((n+ 1)α+ 1)/2)
M ′t((n+1)α−1)/2 hµ

t (x, ℓ;x
′, ℓ′).
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with reflecting boundary conditions are pathwise differentiable with respect to the
initial value, and they obtained Bismut-Elworthy’s formula for the gradient of the
transition semigroup E[f(Xt(x))], see also [3].

Tsuchiya [12] obtained, by using parametrix methodology, an approximation
for E[f(Xt(x))] and investigated the existence of the density of Xt(x), see also
[2]. The main purpose of the present paper is to generalize the methodology ex-
posed by [12] and to give some approximation formula of the transition semigroup
Ptf(x, ℓ) := E[f(Xt(x), ℓ + Lt(x))] under mild regularity conditions on the coef-
ficients of Xt(x). The main difference between an approximation for E[f(Xt(x))]
and that for Ptf(x, ℓ) arises from the singularity of the distribution of the local
time. Indeed the local time process Lt(x) stays zero until Xt(x) touches zero,
hence the joint law of (Xt(x), ℓ+Lt(x)) is not absolutely continuous with respect
to the Lebesgue measure. For this reason, an approximation has two parts, that
is, approximations which do not touch the boundary, and approximations which
touch the boundary. This combination of effects will happen in any iteration of
the procedure of the approximation and will generate combinations of approxima-
tions with two parts. This creates difficulties in the analysis. We will show in
Thoerem 2.4 that the joint law of (Xt(x), ℓ+ Lt(x)) has the following form:

P (Xt(x) ∈ dx′, ℓ+ Lt(x) ∈ dℓ′) = pt(x;x
′) dx′ δℓ(dℓ

′) + pt(x, ℓ;x
′, ℓ′)1A dx′ dℓ′.

(1.2)

Here we denote by δℓ(dℓ
′) the Dirac point mass concentrated at ℓ, and put

A := {(x, ℓ, x′, ℓ′) ∈ R4 : x, x′ ∈ D, ℓ′ > ℓ}. (1.3)

The first term in the right hand side in (1.2) have a point mass at the current
value of local time and corresponds to the case where the reflected process does
not touch the boundary. The second term is absolutely continuous with respect
to the Lebesgue measure and corresponds to the case where the reflected process
touches the boundary. In Theorem 2.4, Gaussian upper estimates for pt(x;x

′) and
pt(x, ℓ;x

′, ℓ′) are also obtained.
As an application of Theorem 2.4 we study the regularity of pt(x, ℓ;x

′, ℓ′) with
respect to ℓ′. The regularity of the transition density of the solution to SDE is
usually related to the regularity of its coefficients. Even in the present case, we
can also show, by following a similar approach as in [4], the differentiability of
pt(x;x

′) and pt(x, ℓ;x
′, ℓ′) with respect to x. This application also enables us to

see the differentiability of x → E[g(Xt(x)) : T0(x) ≥ t] or x → E[f(Xt(x), ℓ +
Lt(x)) : T0 < t], where g and f are bounded measurable functions, and T0(x)
is the first hitting time to zero by Xt(x). On the other hand, it seems that the
regularity of pt(x, ℓ;x

′, ℓ′) with respect to local time argument ℓ′ has not been
studied enough. As Nualart and Vives [10] showed, a Brownian local time belongs
to some fractional order Sobolev space in the sense of Malliavin calculus. Hence one
cannot apply standard techniques fromMalliavin calculus to the study of regularity
of local time. However it is known that the distribution of the Brownian local
time is smooth except for the boundary. In the present paper, as an application
of Theorem 2.4, we will investigate the regularity of pt(x, ℓ;x

′, ℓ′) with respect to
ℓ′ under mild regularity conditions on the coefficients of (1.1). In particular we
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Therefore by noting the definition of pn+1(x, ℓ;x′, ℓ′), one can show that the desired
estimate for n+ 1 holds true. □

4.4. Proof of Theorem 2.4. The upper estimates of pt(x;x
′) and pt(x, ℓ;x

′, ℓ′)
follow from Lemmas 4.1, and 4.5, respectively. It suffices to show that for any n
and for any f ∈ Cb(D × R)

Int f(x, ℓ) =

∫

D

f(x′, ℓ)pnt (x;x
′) dx′ +

∫

R

∫

D

f(x′, ℓ′) pnt (x, ℓ;x
′, ℓ′) dx′ dℓ′, (4.5)

holds true. We will prove this by induction. We first remark that In+1
t f(x, ℓ) =∫ t

0
Inu1

(St−u1f)(x, ℓ) du1. Hence, we have by the hypothesis of induction that

In+1
t f(x, ℓ)

=

∫ t

0

(∫

D

St−u1f(ξ, ℓ)p
n
u1
(x; ξ) dξ +

∫

R

∫

D

St−u1f(ξ, ℓ
′) pnu1

(x, ℓ; ξ, λ) dξ dλ

)
du1.

By using Fubini theorem, the first term in the right hand side is evaluated as

∫ t

0

∫

D

St−u1f(ξ, ℓ)p
n
u1
(x; ξ) dξ du1 =

∫

R

∫

D

f(x′, ℓ′)pn+1
t (x;x′) dx′ δℓ(dℓ

′)

+

∫

R

∫

D

f(x′, ℓ′)qn+1
t (x, ℓ;x′, ℓ′) dx′ dℓ′,

and the second term is
∫ t

0

∫

R

∫

D

St−u1f(ξ, λ) p
n
u1
(x, ℓ; ξ, λ) dξ dλ du1

=

∫

R

∫

D

f(x′, λ)

(∫ t

0

∫

D

pnu1
(x, ℓ; ξ, λ)κt−u1(ξ;x

′) dξ du1

)
dx′ dλ

+

∫

R

∫

D

f(x′, ℓ′)

(∫ t

0

∫

R

∫

D

pnu1
(x, ℓ; ξ, λ)κt−u1(ξ, λ;x

′, ℓ′) dξ dλ du1

)
dx′ dℓ′.

Thus, noting the definition of pn+1
t (x, ℓ;x′, ℓ′), we have (4.5) for n+ 1.

5. Proof of Theorem 2.5

As we mentioned in Remark 2.6, we have pnt (x, ℓ;x
′, ℓ′) = pnt (x, 0;x

′, ℓ′− ℓ) and
pt(x, ℓ;x

′, ℓ′) = pt(x, 0;x
′, ℓ′ − ℓ). Hence, for the proof of Theorem 2.5, we may

restrict our attention to the kernels pnt (x, 0, x
′; ℓ′) and pt(x, 0, x

′; ℓ′) on

A′
δ := {(x, x′, ℓ′) ∈ R3;x, x′ ∈ D, ℓ′ > δ}.

Moreover we also note that hµ
t (x, ℓ;x

′, ℓ′) = hµ
t (x, 0;x

′, ℓ′ − ℓ) and κt(x, ℓ;x
′, ℓ′) =

κt(x, 0;x
′, ℓ′ − ℓ). In this section, to simplify the notation, we put

pnt (x, x
′; ℓ′) = pnt (x, 0;x

′, ℓ′), pt(x, x
′; ℓ′) = pt(x, 0;x

′, ℓ′),

hµ
t (x, x

′; ℓ′) = hµ
t (x, 0;x

′, ℓ′), κt(x, x
′; ℓ′) = κt(x, 0;x

′, ℓ′).
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will show that, even though we do not assume any differentiability of coefficients
of (1.1), pt(x, ℓ;x

′, ℓ′) is smooth with respect to ℓ′ except for the boundary ℓ′ = ℓ
(Theorem 2.5).

The organization of the paper is as follows: assumptions and main results are
exhibited in Section 2. We also mention some auxiliary results that we frequently
use in the present paper. We give an approximation for the semigroup Ptf(x, ℓ) in
Section 3. Based on the approximation for Ptf(x, ℓ), we prove the representation
formula (1.2) in Section 4. In Section 5 we investigate the regularity of pt(x, ℓ;x

′, ℓ′)
with respect to ℓ′. In Appendices, we prove auxiliary results and the first step
formula that is a key formula in the theory of parametrix methodology.

Notations: We denote by Cb(D̄ × R) the space of continuous bounded func-
tions on D̄ × R. The sup-norm of the function f will be denoted by ∥f∥∞. We
denote by N0 the set of all non-negative integers. To describe the joint law of the
approximation, we will use the following notation for Hermite type functions

H̃n(x, a) =

(
d

dx

)n [
1√
2πa

exp(−x2

2a
)

]
, n ∈ N0,

as well as Hn(x, a) = H̃n(x, a)H̃0(x, a)
−1. B(s, t) and Γ(z) denote Beta and

Gamma functions respectively. We frequently use the following formula:
∫ t

0

sβ−1 (t− s)γ−1 ds = B(β, γ) tβ+γ−1 =
Γ(β) Γ(γ)

Γ(β + γ)
tβ+γ−1. (1.4)

We also use the Mittag-Leffler function:

Ea,b(z) :=
∞∑

n=0

zn

Γ(an+ b)
, z ∈ R. (1.5)

We remark that the sum converges for any z ∈ R.
As usual constants are denoted by the letters C and M , and it may change value

from one line to the next. These constant may depend on T , and other constants
appearing in the assumptions.

2. Assumptions and Main Results

2.1. Assumptions. Throughout the present paper, we assume that the coeffi-
cients of SDE (1.1) satisfy the following conditions:

Assumption (H)

H1. a := σ2 is uniformly elliptic and bounded measurable:

0 < a := inf
x∈D̄

a(x) ≤ a := sup
x∈D̄

a(x) < ∞.

H2. a is α-Hölder continuous for some α ∈ (1/2, 1):

∥a∥α := sup
x,y∈D̄, x ̸=y

|a(x)− a(y)|
|x− y|α

< ∞.

H3. b : D̄ → R is bounded and measurable.
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5.1. Some technical lemmas. Define

ζnt (x, x
′; ℓ′) :=

∫ t

0

∫

D

pn−1
s (x, ξ; ℓ′)κt−s(ξ;x

′) dξ ds,

ρnt (x, x
′; ℓ′) :=

∫ t

0

∫ δ/2

0

∫

D

pn−1
s (x, ξ;λ)κt−s(ξ, x

′, ℓ′ − λ) dξ dλ ds,

ρ̃nt (x, x
′; ℓ′) :=

∫ t

0

∫ ℓ′

δ/2

∫

D

pn−1
s (x, ξ;λ)κt−s(ξ, x

′, ℓ′ − λ) dξ dλ ds.

(5.1)

Then one can see that for any (x, x′, ℓ′) ∈ A′
δ

pnt (x, x
′; ℓ′) = qnt (x, x

′; ℓ′) + ζnt (x, x
′; ℓ′) + ρnt (x, x

′; ℓ′) + ρ̃nt (x, x
′; ℓ′).

In Lemmas 5.1–5.4 below, we will show that the kernels p0t (x, x
′; ℓ′), qnt (x, x

′; ℓ′)
and ρnt (x, x

′; ℓ′) are infinitely differentiable with respect to ℓ′ and give also upper
estimates on Ā′

δ for them. Throughout this section, C0 and M stand for the
constants introduced in Theorem 2.4. We may assume that

max{1,M ′,M ′′} ≤ M. (5.2)

Here M ′ and M ′′ are constants introduced in Lemma 4.1 and Lemma 4.5, respec-
tively. It should be emphasized that the constant C in Lemmas 5.1–5.4 below are
independent of δ and n.

Lemma 5.1. p0t (x, x
′; ℓ′) is infinitely differentiable with respect to ℓ′. Moreover

for any m ∈ N0 and for any µ > 1 there exists a positive constant C such that for
any δ ∈ (0, 1) and for any (t, x, x′, ℓ′) ∈ (0, T ]× Ā′

δ,

��∂m
ℓ′ p

0
t (x, x

′; ℓ′)
�� ≤ C

δm
t−1/2hµ

t (x, x
′; ℓ′),

holds true. Here C depends on m, µ, ā, and a.

Proof. We take a constant 1 < µ′ < µ. From Lemma 6.2 in Appendices, we have
��∂m

ℓ′ p
0
t (x, x

′; ℓ′)
�� = ��H̃m+1(x+ x′ + ℓ′, a(z)t)

��
≤ Ct−(m+1)/2H̃0(x+ x′ + ℓ′, µ′āt)

≤ C

δm
t−1/2

(
x+ x′ + ℓ′

t1/2

)m

hµ′

t (x, x′; ℓ′).

Here we used the fact that x+ x′ + ℓ′ ≥ δ for (x, x′, ℓ′) ∈ Ā′
δ. Thus the assertion

follows from Proposition 6.1 in Appendices. □

Lemma 5.2. The kernel κt(x, x
′; ℓ′) is infinitely differentiable with respect to ℓ′.

Moreover for any m ∈ N0 and for any µ > 1 there exists a positive constant C
such that for any δ ∈ (0, 1) and for any (t, x, x′, ℓ′) ∈ (0, T ]× Ā′

δ,

��∂m
ℓ′ κt(x, x

′, ℓ′)
�� ≤ C

δm
t(α−3)/2hµ

t (x, x
′; ℓ′),

holds true. Here C depends on m, µ, α, ā, a, ∥b∥∞ and T .
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with reflecting boundary conditions are pathwise differentiable with respect to the
initial value, and they obtained Bismut-Elworthy’s formula for the gradient of the
transition semigroup E[f(Xt(x))], see also [3].

Tsuchiya [12] obtained, by using parametrix methodology, an approximation
for E[f(Xt(x))] and investigated the existence of the density of Xt(x), see also
[2]. The main purpose of the present paper is to generalize the methodology ex-
posed by [12] and to give some approximation formula of the transition semigroup
Ptf(x, ℓ) := E[f(Xt(x), ℓ + Lt(x))] under mild regularity conditions on the coef-
ficients of Xt(x). The main difference between an approximation for E[f(Xt(x))]
and that for Ptf(x, ℓ) arises from the singularity of the distribution of the local
time. Indeed the local time process Lt(x) stays zero until Xt(x) touches zero,
hence the joint law of (Xt(x), ℓ+Lt(x)) is not absolutely continuous with respect
to the Lebesgue measure. For this reason, an approximation has two parts, that
is, approximations which do not touch the boundary, and approximations which
touch the boundary. This combination of effects will happen in any iteration of
the procedure of the approximation and will generate combinations of approxima-
tions with two parts. This creates difficulties in the analysis. We will show in
Thoerem 2.4 that the joint law of (Xt(x), ℓ+ Lt(x)) has the following form:

P (Xt(x) ∈ dx′, ℓ+ Lt(x) ∈ dℓ′) = pt(x;x
′) dx′ δℓ(dℓ

′) + pt(x, ℓ;x
′, ℓ′)1A dx′ dℓ′.

(1.2)

Here we denote by δℓ(dℓ
′) the Dirac point mass concentrated at ℓ, and put

A := {(x, ℓ, x′, ℓ′) ∈ R4 : x, x′ ∈ D, ℓ′ > ℓ}. (1.3)

The first term in the right hand side in (1.2) have a point mass at the current
value of local time and corresponds to the case where the reflected process does
not touch the boundary. The second term is absolutely continuous with respect
to the Lebesgue measure and corresponds to the case where the reflected process
touches the boundary. In Theorem 2.4, Gaussian upper estimates for pt(x;x

′) and
pt(x, ℓ;x

′, ℓ′) are also obtained.
As an application of Theorem 2.4 we study the regularity of pt(x, ℓ;x

′, ℓ′) with
respect to ℓ′. The regularity of the transition density of the solution to SDE is
usually related to the regularity of its coefficients. Even in the present case, we
can also show, by following a similar approach as in [4], the differentiability of
pt(x;x

′) and pt(x, ℓ;x
′, ℓ′) with respect to x. This application also enables us to

see the differentiability of x → E[g(Xt(x)) : T0(x) ≥ t] or x → E[f(Xt(x), ℓ +
Lt(x)) : T0 < t], where g and f are bounded measurable functions, and T0(x)
is the first hitting time to zero by Xt(x). On the other hand, it seems that the
regularity of pt(x, ℓ;x

′, ℓ′) with respect to local time argument ℓ′ has not been
studied enough. As Nualart and Vives [10] showed, a Brownian local time belongs
to some fractional order Sobolev space in the sense of Malliavin calculus. Hence one
cannot apply standard techniques fromMalliavin calculus to the study of regularity
of local time. However it is known that the distribution of the Brownian local
time is smooth except for the boundary. In the present paper, as an application
of Theorem 2.4, we will investigate the regularity of pt(x, ℓ;x

′, ℓ′) with respect to
ℓ′ under mild regularity conditions on the coefficients of (1.1). In particular we
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Proof. We take constants 1 < µ′′ < µ′ < µ. It follows from the Hölder continuity
for a (H2 of Assumption (H)) that

��∂m
ℓ′ κt(x, x

′; ℓ′)
�� ≤ ∥a∥αtα/2

(
|x− x′|
t1/2

)α ��H̃m+3(x+ x′ + ℓ′, a(x′)t)
��

+ ∥b∥∞
��H̃m+2(x+ x′ + ℓ′, a(x′)t)

��

≤ C∥a∥αt(α−m−3)/2

(
x+ x′ + ℓ′

t1/2

)α

hµ′′

t (x, x′; ℓ′)

+ C∥b∥∞t−(m+2)/2hµ′

t (x, x′; ℓ′).

Here we also use Lemma 6.2. Because t−(m+2)/2 ≤ T (1−α)/2 × t(α−m−3)/2, Propo-
sition 6.1 shows that the right hand side above is dominated by

Ct(α−m−3)/2hµ′

t (x, x′; ℓ′) ≤ C

δm
t(α−3)/2

(
x+ x′ + ℓ′

t1/2

)m

hµ′

t (x, x′; ℓ′).

Here we used the fact that x + x′ + ℓ′ ≥ δ for (x, x′, ℓ′) ∈ Ā′
δ again. Thus the

assertion follows from Proposition 6.1. □

Lemma 5.3. For each n ∈ N, qnt (x, x′; ℓ′) is infinitely differentiable with respect
to ℓ′. Moreover for any m ∈ N0 and for any µ > 1 there exists a positive constant
C such that for any n, for any δ ∈ (0, 1) and for any (t, x, x′, ℓ′) ∈ (0, T ]× Ā′

δ,

|∂m
ℓ′ q

n
t (x, x

′; ℓ′)| ≤ C

δm
· Mnt(nα−1)/2

Γ((nα+ 1)/2)
hµ
t (x, x

′; ℓ′), (5.3)

holds. Here C depends on m, µ, α, ā, a, ∥b∥∞ and T .

Proof. We take a constant 1 < µ′ < µ. It follows from Lemma 4.3 with µ = µ and
Lemma 5.2 with µ = µ′ that

|pn−1
s (x; ξ) ∂m

ℓ′ κt−s(ξ, x
′; ℓ′)| ≤ C

δm
· (M ′)n−1

Γ((n− 2)α/2 + 1)
s(n−1)α/2(t− s)(α−3)/2

×
(

ξ

s1/2

)α

H̃0(x− ξ, µās)hµ′

t−s(ξ, x
′; ℓ′).

We remark that the right hand side above is the same as that of (4.3) up to
constant multiple. Hence, by the same way as the proof of Lemma 4.4, we have

|pn−1
s (x; ξ) ∂m

ℓ′ κt−s(ξ, x
′; ℓ′)|

≤ C

δm
· Mn s(n−2)α/2(t− s)α−3/2

Γ((n− 2)α/2 + 1)
H̃0(x− ξ, µās)hµ

t−s(ξ, x
′; ℓ′).

(5.4)

Here we also use (5.2). This yields in particular that

sup
ℓ′∈[ℓ+δ,+∞)

|pn−1
s (x; ξ) ∂m

ℓ′ κt−s(ξ, x
′; ℓ′)|

≤ C

δm
· Mn s(n−2)α/2(t− s)α−3/2

Γ((n− 2)α/2 + 1)
H̃0(x− ξ, µās)H̃0(ξ + x′, µā(t− s)).
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will show that, even though we do not assume any differentiability of coefficients
of (1.1), pt(x, ℓ;x

′, ℓ′) is smooth with respect to ℓ′ except for the boundary ℓ′ = ℓ
(Theorem 2.5).

The organization of the paper is as follows: assumptions and main results are
exhibited in Section 2. We also mention some auxiliary results that we frequently
use in the present paper. We give an approximation for the semigroup Ptf(x, ℓ) in
Section 3. Based on the approximation for Ptf(x, ℓ), we prove the representation
formula (1.2) in Section 4. In Section 5 we investigate the regularity of pt(x, ℓ;x

′, ℓ′)
with respect to ℓ′. In Appendices, we prove auxiliary results and the first step
formula that is a key formula in the theory of parametrix methodology.

Notations: We denote by Cb(D̄ × R) the space of continuous bounded func-
tions on D̄ × R. The sup-norm of the function f will be denoted by ∥f∥∞. We
denote by N0 the set of all non-negative integers. To describe the joint law of the
approximation, we will use the following notation for Hermite type functions

H̃n(x, a) =

(
d

dx

)n [
1√
2πa

exp(−x2

2a
)

]
, n ∈ N0,

as well as Hn(x, a) = H̃n(x, a)H̃0(x, a)
−1. B(s, t) and Γ(z) denote Beta and

Gamma functions respectively. We frequently use the following formula:
∫ t

0

sβ−1 (t− s)γ−1 ds = B(β, γ) tβ+γ−1 =
Γ(β) Γ(γ)

Γ(β + γ)
tβ+γ−1. (1.4)

We also use the Mittag-Leffler function:

Ea,b(z) :=
∞∑

n=0

zn

Γ(an+ b)
, z ∈ R. (1.5)

We remark that the sum converges for any z ∈ R.
As usual constants are denoted by the letters C and M , and it may change value

from one line to the next. These constant may depend on T , and other constants
appearing in the assumptions.

2. Assumptions and Main Results

2.1. Assumptions. Throughout the present paper, we assume that the coeffi-
cients of SDE (1.1) satisfy the following conditions:

Assumption (H)

H1. a := σ2 is uniformly elliptic and bounded measurable:

0 < a := inf
x∈D̄

a(x) ≤ a := sup
x∈D̄

a(x) < ∞.

H2. a is α-Hölder continuous for some α ∈ (1/2, 1):

∥a∥α := sup
x,y∈D̄, x ̸=y

|a(x)− a(y)|
|x− y|α

< ∞.

H3. b : D̄ → R is bounded and measurable.
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The right hand side above belongs to L1((0, t)×D, ds dξ). Thus qnt (x, x
′; ℓ′) is m

times differentiable with respect to ℓ′ on A′
δ and

∂m
ℓ′ q

n
t (x, x

′; ℓ′) =

∫ t

0

ds

∫

D

pn−1
s (x; ξ) ∂m

ℓ′ κt−s(ξ, x
′; ℓ′)dξ,

holds. Using (5.4), (2.10) and (1.4) we obtain (5.3). □
Lemma 5.4. For each n ∈ N, ρnt (x, x′; ℓ′) is infinitely differentiable with respect
to ℓ′. Moreover for any m ∈ N and for any µ > 1 there exists a positive constant
C such that for any n, for any δ ∈ (0, 1) and for any (t, x, x′; ℓ′) ∈ (0, T ]× Ā′

δ,

��∂m
ℓ′ ρ

n
t (x, x

′; ℓ′)
�� ≤ C

δm
· Mnt(nα−1)/2

Γ((nα+ 1)/2)
hµ
t (x, x

′; ℓ′), (5.5)

holds. Here C depends on m, µ, α, ā, a, ∥b∥∞ and T .

Proof. For (x, x′, ℓ′) ∈ Ā′
δ, one can see (ξ, x′, ℓ′−λ) ∈ Ā′

δ/2 if (ξ, λ) ∈ D× (0, δ/2).
Hence it follows from Lemmas 4.5 and 5.2 that�� pn−1

s (x, ξ;λ) ∂m
ℓ′ κt−s(ξ, x

′; ℓ′ − λ)
��

≤ C

(δ/2)m
· M

n−1s((n−1)α−1)/2(t− s)α/2−1

Γ(((n− 1)α+ 1)/2)
hµ
s (x, ξ;λ)h

µ
t−s(ξ, x

′; ℓ′ − λ).
(5.6)

This yields in particular that

sup
ℓ′∈[δ,+∞)

�� pn−1
s (x, ξ;λ) ∂m

ℓ′ κt−s(ξ, x
′; ℓ′ − λ)

��

≤ 2mC

δm
· M

n−1s((n−1)α−1)/2(t− s)α/2−1

Γ(((n− 1)α+ 1)/2)
H̃0(x+ ξ, µās) H̃0(ξ + x′, µā(t− s)).

The right hand side above belongs to L1((0, t)×D× (0, δ/2), ds dξ dλ). Therefore
ρnt (x, x

′; ℓ′) is m times differentiable with respect to ℓ′ and

∂m
ℓ′ ρ

n
t (x, x

′; ℓ′) =

∫ t

0

∫ δ/2

0

∫

D

pn−1
s (x, ξ;λ) ∂m

ℓ′ κt−s(ξ, x
′; ℓ′ − λ) dξ dλ ds,

holds. Next, we prove (5.5). We take a constant 1 < µ′ < µ. By using Lemma 5.2
with µ = µ′ and (2.12), we have

��∂m
ℓ′ κt−s(ξ, x

′, ℓ′ − λ)
�� ≤ C

δm
(t− s)α/2−1hµ

t (ξ, x
′; ℓ′)H̃0(ℓ

′ − λ, µāq(t− s)).

By using Lemma 4.5, one can prove (5.5) similarly to the proof of (2.11). □
5.2. Proof of Theorem 2.5. Let m0 be an arbitrary natural number. For each
n it is enough to show that:

Claim An: pnt (x, x
′; ℓ′) ism0 times differentiable on A′ := ∪0<δ<1A

′
δ with respect

to ℓ′. Moreover, for any 0 ≤ m ≤ m0 there exist constants C̃m and M̃m such that
for any δ ∈ (0, 1) and for any (x, x′, ℓ′) ∈ Ā′

δ,

��∂m
ℓ′ p

n
t (x, x

′; ℓ′)
�� ≤ C̃m

δm
· (M̃m)nt(nα−1)/2

Γ((nα+ 1)/2)
hµ
t (x, x

′; ℓ′),

holds ture. Both constants C̃m and M̃m depend on m, µ, α, ā, a, ∥b∥∞ and T ,
but are independent of δ and n.
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with reflecting boundary conditions are pathwise differentiable with respect to the
initial value, and they obtained Bismut-Elworthy’s formula for the gradient of the
transition semigroup E[f(Xt(x))], see also [3].

Tsuchiya [12] obtained, by using parametrix methodology, an approximation
for E[f(Xt(x))] and investigated the existence of the density of Xt(x), see also
[2]. The main purpose of the present paper is to generalize the methodology ex-
posed by [12] and to give some approximation formula of the transition semigroup
Ptf(x, ℓ) := E[f(Xt(x), ℓ + Lt(x))] under mild regularity conditions on the coef-
ficients of Xt(x). The main difference between an approximation for E[f(Xt(x))]
and that for Ptf(x, ℓ) arises from the singularity of the distribution of the local
time. Indeed the local time process Lt(x) stays zero until Xt(x) touches zero,
hence the joint law of (Xt(x), ℓ+Lt(x)) is not absolutely continuous with respect
to the Lebesgue measure. For this reason, an approximation has two parts, that
is, approximations which do not touch the boundary, and approximations which
touch the boundary. This combination of effects will happen in any iteration of
the procedure of the approximation and will generate combinations of approxima-
tions with two parts. This creates difficulties in the analysis. We will show in
Thoerem 2.4 that the joint law of (Xt(x), ℓ+ Lt(x)) has the following form:

P (Xt(x) ∈ dx′, ℓ+ Lt(x) ∈ dℓ′) = pt(x;x
′) dx′ δℓ(dℓ

′) + pt(x, ℓ;x
′, ℓ′)1A dx′ dℓ′.

(1.2)

Here we denote by δℓ(dℓ
′) the Dirac point mass concentrated at ℓ, and put

A := {(x, ℓ, x′, ℓ′) ∈ R4 : x, x′ ∈ D, ℓ′ > ℓ}. (1.3)

The first term in the right hand side in (1.2) have a point mass at the current
value of local time and corresponds to the case where the reflected process does
not touch the boundary. The second term is absolutely continuous with respect
to the Lebesgue measure and corresponds to the case where the reflected process
touches the boundary. In Theorem 2.4, Gaussian upper estimates for pt(x;x

′) and
pt(x, ℓ;x

′, ℓ′) are also obtained.
As an application of Theorem 2.4 we study the regularity of pt(x, ℓ;x

′, ℓ′) with
respect to ℓ′. The regularity of the transition density of the solution to SDE is
usually related to the regularity of its coefficients. Even in the present case, we
can also show, by following a similar approach as in [4], the differentiability of
pt(x;x

′) and pt(x, ℓ;x
′, ℓ′) with respect to x. This application also enables us to

see the differentiability of x → E[g(Xt(x)) : T0(x) ≥ t] or x → E[f(Xt(x), ℓ +
Lt(x)) : T0 < t], where g and f are bounded measurable functions, and T0(x)
is the first hitting time to zero by Xt(x). On the other hand, it seems that the
regularity of pt(x, ℓ;x

′, ℓ′) with respect to local time argument ℓ′ has not been
studied enough. As Nualart and Vives [10] showed, a Brownian local time belongs
to some fractional order Sobolev space in the sense of Malliavin calculus. Hence one
cannot apply standard techniques fromMalliavin calculus to the study of regularity
of local time. However it is known that the distribution of the Brownian local
time is smooth except for the boundary. In the present paper, as an application
of Theorem 2.4, we will investigate the regularity of pt(x, ℓ;x

′, ℓ′) with respect to
ℓ′ under mild regularity conditions on the coefficients of (1.1). In particular we
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We first determine C̃m and M̃m (0 ≤ m ≤ m0). In view of Lemmas 5.1–5.4, for

any 0 ≤ m ≤ m0, there exists a positive constant C̃m such that for any n, for any
δ ∈ (0, 1) and for any (x, x′, ℓ′) ∈ Ā′

δ, the following inequalities hold true:

��∂m
ℓ′ p

0
t (x, x

′; ℓ′)
�� ≤ C̃m

δm
t−1/2hµ

t (x, x
′; ℓ′),

��∂m
ℓ′ κt(x, x

′; ℓ′)
�� ≤ C̃m

δm
t(α−3)/2hµ

t (x, x
′; ℓ′),

(5.7)

and

��∂m
ℓ′ q

n
t (x, x

′; ℓ′)
��+ ��∂m

ℓ′ ρ
n
t (x, x

′; ℓ′)
�� ≤ C̃m

δm
· Mnt(nα−1)/2

Γ((nα+ 1)/2)
hµ
t (x, x

′; ℓ′). (5.8)

Here M is the constant introduced in Theorem 2.4. We may assume that 1 ≤
C̃m ≤ C̃m+1 for any 0 ≤ m ≤ m0 − 1. Next, M̃m is defined recursively as follows{

M̃0 = M,

M̃m = max{M̃m−1, 2 + (m+ (πµāT/2)1/2) · 2mC̃m}, for 1 ≤ m ≤ m0.
(5.9)

It should be remarked that C̃m and M̃m are independent of δ and n.
Now, by induction with respect to n, we will prove Claim An holds for any

n ∈ N0. The case n = 0 has been already proved in Lemma 5.1. Suppose
that Claim Ak holds for 0 ≤ k ≤ n. Let us show that Claim An+1 holds true.
We have already shown that qn+1

t (x, x′; ℓ′) and ρn+1
t (x, x′; ℓ′) are infinitely dif-

ferentiable with respect to ℓ′ and given the upper estimates for their derivatives
(see Lemmas 5.3 and 5.4). Hence we restrict our attention to ζn+1

t (x, x′; ℓ′) and
ρ̃n+1
t (x, x′; ℓ′) that are defined by (5.1).

Differentiability of ζn+1
t (x, x′; ℓ′): For (x, x′, ℓ′) ∈ A′

δ and for ξ ∈ D, by the
hypothesis of induction and (2.7) we have

|∂m
ℓ′ p

n
s (x, ξ; ℓ

′)κt−s(ξ;x
′)|

≤ C̃m

δm
(M̃m)ns(nα−1)/2(t− s)α/2−1

Γ((nα+ 1)/2)
hµ
s (x, ξ; ℓ

′)H̃0(x
′ − ξ, µā(t− s)).

(5.10)

Thus we have

sup
ℓ′∈[δ,+∞)

|∂m
ℓ′ p

n
s (x, ξ; ℓ

′)κt−s(ξ;x
′)|

≤ C̃m

δm
· (M̃m)n(t− s)α/2−1

Γ((nα+ 1)/2)
H̃0(x+ ξ, µās)H̃0(ξ − x′, µā(t− s)).

The right hand side above belongs to L1((0, t) ×D, ds dξ) and hence ζnt (x, x
′, ℓ′)

is m times differentiable on A′
δ with respect to ℓ′ and

∂m
ℓ′ ζ

n+1
t (x, x′; ℓ′) =

∫ t

0

∫

D

∂m
ℓ′ p

n
s (x, ξ; ℓ

′)κt−s(ξ;x
′) dξ ds,

holds. By using (5.10), (2.10) and (1.4), we have also

��∂m
ℓ′ ζ

n+1
t (x, x′; ℓ′)

�� ≤ C̃m

δm
· (M̃m)nt((n+1)α−1)/2

Γ(((n+ 1)α+ 1)/2)
hµ
t (x, x

′; ℓ′). (5.11)
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will show that, even though we do not assume any differentiability of coefficients
of (1.1), pt(x, ℓ;x

′, ℓ′) is smooth with respect to ℓ′ except for the boundary ℓ′ = ℓ
(Theorem 2.5).

The organization of the paper is as follows: assumptions and main results are
exhibited in Section 2. We also mention some auxiliary results that we frequently
use in the present paper. We give an approximation for the semigroup Ptf(x, ℓ) in
Section 3. Based on the approximation for Ptf(x, ℓ), we prove the representation
formula (1.2) in Section 4. In Section 5 we investigate the regularity of pt(x, ℓ;x

′, ℓ′)
with respect to ℓ′. In Appendices, we prove auxiliary results and the first step
formula that is a key formula in the theory of parametrix methodology.

Notations: We denote by Cb(D̄ × R) the space of continuous bounded func-
tions on D̄ × R. The sup-norm of the function f will be denoted by ∥f∥∞. We
denote by N0 the set of all non-negative integers. To describe the joint law of the
approximation, we will use the following notation for Hermite type functions

H̃n(x, a) =

(
d

dx

)n [
1√
2πa

exp(−x2

2a
)

]
, n ∈ N0,

as well as Hn(x, a) = H̃n(x, a)H̃0(x, a)
−1. B(s, t) and Γ(z) denote Beta and

Gamma functions respectively. We frequently use the following formula:
∫ t

0

sβ−1 (t− s)γ−1 ds = B(β, γ) tβ+γ−1 =
Γ(β) Γ(γ)

Γ(β + γ)
tβ+γ−1. (1.4)

We also use the Mittag-Leffler function:

Ea,b(z) :=
∞∑

n=0

zn

Γ(an+ b)
, z ∈ R. (1.5)

We remark that the sum converges for any z ∈ R.
As usual constants are denoted by the letters C and M , and it may change value

from one line to the next. These constant may depend on T , and other constants
appearing in the assumptions.

2. Assumptions and Main Results

2.1. Assumptions. Throughout the present paper, we assume that the coeffi-
cients of SDE (1.1) satisfy the following conditions:

Assumption (H)

H1. a := σ2 is uniformly elliptic and bounded measurable:

0 < a := inf
x∈D̄

a(x) ≤ a := sup
x∈D̄

a(x) < ∞.

H2. a is α-Hölder continuous for some α ∈ (1/2, 1):

∥a∥α := sup
x,y∈D̄, x ̸=y

|a(x)− a(y)|
|x− y|α

< ∞.

H3. b : D̄ → R is bounded and measurable.

REGULARITY OF THE LOCAL TIME 17

Differentiability of ρ̃n+1
t (x, x′; ℓ′): We first remark that

∂ℓ′

∫ ℓ′

δ/2

pns (x, ξ;λ)κt−s(ξ, x
′; ℓ′ − λ) dλ

= pns (x, ξ; ℓ
′)κt−s(ξ, x

′; 0) +

∫ ℓ′

δ/2

pns (x, ξ;λ)∂ℓ′κt−s(ξ, x
′; ℓ′ − λ) dλ.

(5.12)

Note that ∂ℓ′κt(x, x
′; ℓ′ − λ) = −∂λκt(x, x

′; ℓ′ − λ). Hence by the integration by
parts formula we can evaluate the second term of the right hand side of (5.12) as
follows

∫ ℓ′

δ/2

pns (x, ξ;λ)∂ℓ′κt−s(ξ, x
′; ℓ′ − λ) dλ

= − pns (x, ξ; ℓ
′)κt−s(ξ, x

′; 0) + pns (x, ξ; δ/2)κt−s(ξ, x
′; ℓ′ − δ/2)

+

∫ ℓ′

δ/2

∂λp
n
s (x, ξ;λ)κt−s(ξ, x

′; ℓ′ − λ) dλ.

Therefore the first term of the right hand side of (5.12) is canceled, and we obtain

∂ℓ′

∫ ℓ′

δ/2

κt−s(ξ, x
′, ℓ′ − λ) pns (x, ξ;λ) dλ

= pns
(
x, ξ; δ/2

)
κt−s

(
ξ, x′; ℓ′ − δ/2

)
+

∫ ℓ′

δ/2

∂λp
n
s (x, ξ;λ)κt−s(ξ, x

′; ℓ′ − λ) dλ.

Iterating this procedure m times we have

∂m
ℓ′

∫ ℓ′

δ/2

pns (x, ξ;λ)κt−s(ξ, x
′; ℓ′ − λ) dλ

=
m−1∑
j=0

∂j
ℓ′p

n
s

(
x, ξ; δ/2

)
∂m−1−j
ℓ′ κt−s

(
ξ, x′; ℓ′ − δ/2

)

+

∫ ℓ′

δ/2

∂m
ℓ′ p

n
s (x, ξ;λ)κt−s(ξ, x

′; ℓ′ − λ) dλ.

Since (x, x′, ℓ′) ∈ A′
δ, one can see (x, ξ, δ/2), (ξ, x′, ℓ′ − δ/2) ∈ Ā′

δ/2 whenever
ξ ∈ D. Therefore by the hypothesis of induction and (5.7) we have

���∂j
ℓ′p

n
s (x, ξ; δ/2) ∂

m−1−j
ℓ′ κt−s(ξ, x

′; ℓ′ − δ/2)
���

≤ C̃j

(δ/2)j
· C̃m−1−j

(δ/2)m−1−j
· (M̃j)

ns(nα−1)/2

Γ((nα+ 1)/2)
(t− s)α/2−1

× hµ
s (x, ξ; δ/2)h

µ
t−s(ξ, x

′; ℓ′ − δ/2)

≤ 2mC̃2
mM̃n

ms(nα−1)/2(t− s)α/2−1

δmΓ((nα+ 1)/2)
hµ
s (x, ξ; δ/2) · h

µ
t−s(ξ, x

′; ℓ′ − δ/2).
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with reflecting boundary conditions are pathwise differentiable with respect to the
initial value, and they obtained Bismut-Elworthy’s formula for the gradient of the
transition semigroup E[f(Xt(x))], see also [3].

Tsuchiya [12] obtained, by using parametrix methodology, an approximation
for E[f(Xt(x))] and investigated the existence of the density of Xt(x), see also
[2]. The main purpose of the present paper is to generalize the methodology ex-
posed by [12] and to give some approximation formula of the transition semigroup
Ptf(x, ℓ) := E[f(Xt(x), ℓ + Lt(x))] under mild regularity conditions on the coef-
ficients of Xt(x). The main difference between an approximation for E[f(Xt(x))]
and that for Ptf(x, ℓ) arises from the singularity of the distribution of the local
time. Indeed the local time process Lt(x) stays zero until Xt(x) touches zero,
hence the joint law of (Xt(x), ℓ+Lt(x)) is not absolutely continuous with respect
to the Lebesgue measure. For this reason, an approximation has two parts, that
is, approximations which do not touch the boundary, and approximations which
touch the boundary. This combination of effects will happen in any iteration of
the procedure of the approximation and will generate combinations of approxima-
tions with two parts. This creates difficulties in the analysis. We will show in
Thoerem 2.4 that the joint law of (Xt(x), ℓ+ Lt(x)) has the following form:

P (Xt(x) ∈ dx′, ℓ+ Lt(x) ∈ dℓ′) = pt(x;x
′) dx′ δℓ(dℓ

′) + pt(x, ℓ;x
′, ℓ′)1A dx′ dℓ′.

(1.2)

Here we denote by δℓ(dℓ
′) the Dirac point mass concentrated at ℓ, and put

A := {(x, ℓ, x′, ℓ′) ∈ R4 : x, x′ ∈ D, ℓ′ > ℓ}. (1.3)

The first term in the right hand side in (1.2) have a point mass at the current
value of local time and corresponds to the case where the reflected process does
not touch the boundary. The second term is absolutely continuous with respect
to the Lebesgue measure and corresponds to the case where the reflected process
touches the boundary. In Theorem 2.4, Gaussian upper estimates for pt(x;x

′) and
pt(x, ℓ;x

′, ℓ′) are also obtained.
As an application of Theorem 2.4 we study the regularity of pt(x, ℓ;x

′, ℓ′) with
respect to ℓ′. The regularity of the transition density of the solution to SDE is
usually related to the regularity of its coefficients. Even in the present case, we
can also show, by following a similar approach as in [4], the differentiability of
pt(x;x

′) and pt(x, ℓ;x
′, ℓ′) with respect to x. This application also enables us to

see the differentiability of x → E[g(Xt(x)) : T0(x) ≥ t] or x → E[f(Xt(x), ℓ +
Lt(x)) : T0 < t], where g and f are bounded measurable functions, and T0(x)
is the first hitting time to zero by Xt(x). On the other hand, it seems that the
regularity of pt(x, ℓ;x

′, ℓ′) with respect to local time argument ℓ′ has not been
studied enough. As Nualart and Vives [10] showed, a Brownian local time belongs
to some fractional order Sobolev space in the sense of Malliavin calculus. Hence one
cannot apply standard techniques fromMalliavin calculus to the study of regularity
of local time. However it is known that the distribution of the Brownian local
time is smooth except for the boundary. In the present paper, as an application
of Theorem 2.4, we will investigate the regularity of pt(x, ℓ;x

′, ℓ′) with respect to
ℓ′ under mild regularity conditions on the coefficients of (1.1). In particular we
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Here in the last inequality we use C̃j ≤ C̃m, M̃j ≤ M̃m. Note that (x, ξ, λ) ∈ Ā′
δ/2

if (ξ, λ) ∈ D × (δ/2, ℓ′). Hence the hypothesis of induction and (2.8) also yields

∫ ℓ′

δ/2

��∂m
ℓ′ p

n
s (x, ξ;λ)κt−s(ξ, x

′; ℓ′ − λ)
�� dλ

≤ C̃m

(δ/2)m
· (M̃m)ns(nα−1)/2(t− s)α/2−1

Γ((nα+ 1)/2)

∫ ℓ′

δ/2

hµ
s (x, ξ;λ)h

µ
t−s(ξ, x

′; ℓ′ − λ) dλ

≤ 2m(C̃m)2

δm
· (M̃m)ns(nα−1)/2(t− s)α/2−1

Γ((nα+ 1)/2)
exp

{
−(2ξ)2/2µāt

}
· hµ

t (x, x
′; ℓ′).

Here we used the fact that C̃m ≥ 1 and the semigroup property of hµ
t (x, x

′; ℓ′) =

H̃0(x+ x′ + ℓ′;µāt). Therefore we obtain

�����∂
m
ℓ′

∫ ℓ′

δ/2

pns (x, ξ;λ)κt−s(ξ, x
′; ℓ′ − λ) dλ

�����

≤ C̃m

δm
· 2

mC̃m (M̃m)ns(nα−1)/2

Γ((nα+ 1)/2)
(t− s)α/2−1

×
{
mhµ

s

(
x, ξ; δ/2

)
hµ
t−s(ξ, x

′; ℓ′ − δ/2) + e−(2ξ)2/2µāt · hµ
t (x, x

′; ℓ′)
}
.

(5.13)

In particular we have

sup
ℓ′∈[δ,+∞)

�����∂
m
ℓ′

∫ ℓ′

δ/2

pns (x, ξ;λ)κt−s(ξ, x
′; ℓ′ − λ) dλ

�����

≤ C̃m

δm
· 2

mC̃m(M̃m)ns(nα−1)/2

Γ((nα+ 1)/2)
(t− s)α/2−1

×
{
m · H̃0(x+ ξ, µās)H̃0(ξ + x′, µā(t− s)) + e−(2ξ)2/2µāt H̃0(x+ x′, µāt)

}
.

The right hand side above belongs to L1((0, t) ×D, ds dξ) and hence ρ̃nt (x, x
′; ℓ′)

is m times differentiable and

∂m
ℓ′ ρ̃

n
t (x, x

′; ℓ′) =

∫ t

0

∫

D

(
∂m
ℓ′

∫ ℓ′

δ/2

pns (x, ξ;λ)κt−s(ξ, x
′; ℓ′ − λ) dλ

)
dξ ds,

holds. By using (5.13), we have

��∂m
ℓ′ ρ̃

n
t (x, x

′; ℓ′)
��

≤ C̃m

δm
· (m+ (πµāT/2)1/2)× 2mC̃m(M̃m)nt((n+1)α−1)/2

Γ((n+ 1)α+ 1)/2)
× hµ

t (x, x
′; ℓ′).

(5.14)

The final step of the proof of Theorem 2.5: Now, one can conclude that
pn+1
t (x, x′, ℓ′) is m times differentiable with respect to ℓ′ for arbitrary m ≤ m0 on
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will show that, even though we do not assume any differentiability of coefficients
of (1.1), pt(x, ℓ;x

′, ℓ′) is smooth with respect to ℓ′ except for the boundary ℓ′ = ℓ
(Theorem 2.5).

The organization of the paper is as follows: assumptions and main results are
exhibited in Section 2. We also mention some auxiliary results that we frequently
use in the present paper. We give an approximation for the semigroup Ptf(x, ℓ) in
Section 3. Based on the approximation for Ptf(x, ℓ), we prove the representation
formula (1.2) in Section 4. In Section 5 we investigate the regularity of pt(x, ℓ;x

′, ℓ′)
with respect to ℓ′. In Appendices, we prove auxiliary results and the first step
formula that is a key formula in the theory of parametrix methodology.

Notations: We denote by Cb(D̄ × R) the space of continuous bounded func-
tions on D̄ × R. The sup-norm of the function f will be denoted by ∥f∥∞. We
denote by N0 the set of all non-negative integers. To describe the joint law of the
approximation, we will use the following notation for Hermite type functions

H̃n(x, a) =

(
d

dx

)n [
1√
2πa

exp(−x2

2a
)

]
, n ∈ N0,

as well as Hn(x, a) = H̃n(x, a)H̃0(x, a)
−1. B(s, t) and Γ(z) denote Beta and

Gamma functions respectively. We frequently use the following formula:
∫ t

0

sβ−1 (t− s)γ−1 ds = B(β, γ) tβ+γ−1 =
Γ(β) Γ(γ)

Γ(β + γ)
tβ+γ−1. (1.4)

We also use the Mittag-Leffler function:

Ea,b(z) :=
∞∑

n=0

zn

Γ(an+ b)
, z ∈ R. (1.5)

We remark that the sum converges for any z ∈ R.
As usual constants are denoted by the letters C and M , and it may change value

from one line to the next. These constant may depend on T , and other constants
appearing in the assumptions.

2. Assumptions and Main Results

2.1. Assumptions. Throughout the present paper, we assume that the coeffi-
cients of SDE (1.1) satisfy the following conditions:

Assumption (H)

H1. a := σ2 is uniformly elliptic and bounded measurable:

0 < a := inf
x∈D̄

a(x) ≤ a := sup
x∈D̄

a(x) < ∞.

H2. a is α-Hölder continuous for some α ∈ (1/2, 1):

∥a∥α := sup
x,y∈D̄, x ̸=y

|a(x)− a(y)|
|x− y|α

< ∞.

H3. b : D̄ → R is bounded and measurable.
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A′
δ. Moreover by using (5.8), (5.11) and (5.14) we have��∂m

ℓ′ p
n+1
t (x;x′; ℓ′)

�� ≤ |∂m
ℓ′ q

n+1
t (x, x′; ℓ′)|+ |∂m

ℓ′ ζ
n+1
t (x, x′; ℓ′)|

+ |∂m
ℓ′ ρ

n+1(x, x′; ℓ′)|+ |∂m
ℓ′ ρ̃

n+1
t (x, x′; ℓ′)|

≤ C̃m

δm
· (M̃m)n+1t((n+1)α−1)/2

Γ((n+ 1)α+ 1)/2)
hµ
t (x, x

′; ℓ′).

Thus the proof is complete.

6. Appendices

6.1. Proof of Proposition 2.7. In this subsection we will prove Proposition 2.7.

Proposition 6.1. Let p be a continuous function with polynomial growth. For
any µ > 1, there exists a positive constant C such that��p(x/√a) H̃0(x, a)

�� ≤ CH̃0(x, µa),

holds true for any x ∈ R and a > 0. Here C depends on p, and µ.

Proof. Let µ′ > 1 be a constant satisfying 1/µ+ 1/µ′ = 1. We have

��p(x/√a) H̃0(x, a)
�� = ��p(x/√a)

�� exp
{
− x2

2µ′a

}
· µ1/2 H̃0(x, µa) ≤ CH̃0(x, µa).

Here we set C = supz

{
|p(z)|e−z2/2µ′

}
× µ1/2. □

Lemma 6.2. For each n ∈ N0 and for any µ > 1, there exists a positive constant
C such that for any z ∈ D̄ and for any (t, x) ∈ (0, T )× D̄

��H̃n(x, a(z)t)
�� ≤ Ct−n/2H̃0(x, µāt), (6.1)

holds. Here C depends on n, ā, a and µ.

Proof. For any a > 0, note that H̃0(x, a) = a−1/2H̃0(x/a
1/2, 1). Hence one obtains

H̃n(x, a) = a−1/2 dn

dxn
H̃0(x/a

1/2, 1) = a−(n+1)/2Hn(x/a
1/2, 1)H̃0(x/a

1/2, 1).

It follows from Proposition 6.1 that for any µ > 1 we can find a positive con-
stant C ′ which depends on Hn and µ, and satisfies

��Hn(x/a
1/2, 1)H̃0(x/a

1/2, 1)
�� ≤

C ′H̃0(x/a
1/2, µ) = C ′a1/2H̃0(x, µa). Thus we obtain (6.1) after using H1 of As-

sumption (H) . □

Proof of (2.5). We first note that for each n = 0, 1, 2 and for any µ > 1, there
exists a positive constant C such that

|∂n
x π̄

(z)
t (x;x′)| ≤ C t−n/2 H̃0(x− x′, µāt), (6.2)

holds for any t ∈ (0, T ] and for any (x, x′) ∈ D̄×D̄. Indeed we have by Lemma 6.2

|∂n
x π̄

(z)
t (x, x′)| ≤

���H̃n(x− x′, a(z)t)
���+

���H̃n(x+ x′, a(z)t)
���

≤ C t−n/2
{
H̃0(x− x′, µāt) + H̃0(x+ x′, µāt)

}

≤ C t−n/2H̃0(x− x′, µāt).
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with reflecting boundary conditions are pathwise differentiable with respect to the
initial value, and they obtained Bismut-Elworthy’s formula for the gradient of the
transition semigroup E[f(Xt(x))], see also [3].

Tsuchiya [12] obtained, by using parametrix methodology, an approximation
for E[f(Xt(x))] and investigated the existence of the density of Xt(x), see also
[2]. The main purpose of the present paper is to generalize the methodology ex-
posed by [12] and to give some approximation formula of the transition semigroup
Ptf(x, ℓ) := E[f(Xt(x), ℓ + Lt(x))] under mild regularity conditions on the coef-
ficients of Xt(x). The main difference between an approximation for E[f(Xt(x))]
and that for Ptf(x, ℓ) arises from the singularity of the distribution of the local
time. Indeed the local time process Lt(x) stays zero until Xt(x) touches zero,
hence the joint law of (Xt(x), ℓ+Lt(x)) is not absolutely continuous with respect
to the Lebesgue measure. For this reason, an approximation has two parts, that
is, approximations which do not touch the boundary, and approximations which
touch the boundary. This combination of effects will happen in any iteration of
the procedure of the approximation and will generate combinations of approxima-
tions with two parts. This creates difficulties in the analysis. We will show in
Thoerem 2.4 that the joint law of (Xt(x), ℓ+ Lt(x)) has the following form:

P (Xt(x) ∈ dx′, ℓ+ Lt(x) ∈ dℓ′) = pt(x;x
′) dx′ δℓ(dℓ

′) + pt(x, ℓ;x
′, ℓ′)1A dx′ dℓ′.

(1.2)

Here we denote by δℓ(dℓ
′) the Dirac point mass concentrated at ℓ, and put

A := {(x, ℓ, x′, ℓ′) ∈ R4 : x, x′ ∈ D, ℓ′ > ℓ}. (1.3)

The first term in the right hand side in (1.2) have a point mass at the current
value of local time and corresponds to the case where the reflected process does
not touch the boundary. The second term is absolutely continuous with respect
to the Lebesgue measure and corresponds to the case where the reflected process
touches the boundary. In Theorem 2.4, Gaussian upper estimates for pt(x;x

′) and
pt(x, ℓ;x

′, ℓ′) are also obtained.
As an application of Theorem 2.4 we study the regularity of pt(x, ℓ;x

′, ℓ′) with
respect to ℓ′. The regularity of the transition density of the solution to SDE is
usually related to the regularity of its coefficients. Even in the present case, we
can also show, by following a similar approach as in [4], the differentiability of
pt(x;x

′) and pt(x, ℓ;x
′, ℓ′) with respect to x. This application also enables us to

see the differentiability of x → E[g(Xt(x)) : T0(x) ≥ t] or x → E[f(Xt(x), ℓ +
Lt(x)) : T0 < t], where g and f are bounded measurable functions, and T0(x)
is the first hitting time to zero by Xt(x). On the other hand, it seems that the
regularity of pt(x, ℓ;x

′, ℓ′) with respect to local time argument ℓ′ has not been
studied enough. As Nualart and Vives [10] showed, a Brownian local time belongs
to some fractional order Sobolev space in the sense of Malliavin calculus. Hence one
cannot apply standard techniques fromMalliavin calculus to the study of regularity
of local time. However it is known that the distribution of the Brownian local
time is smooth except for the boundary. In the present paper, as an application
of Theorem 2.4, we will investigate the regularity of pt(x, ℓ;x

′, ℓ′) with respect to
ℓ′ under mild regularity conditions on the coefficients of (1.1). In particular we
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In the last inequality we have used the fact that H̃0(x+x′, µāt) ≤ H̃0(x−x′, µāt)
for (x, x′) ∈ D̄ × D̄.

Next, we suppose that x ≥ x′ ≥ 0. Then Lemma 6.2 also shows that

|∂n
x π̄

(z)
t (x;x′)| ≤

∫ x+x′

x−x′

���∂n+1
y H̃0(y, a(z)t)

��� dy

≤ Ct−(n+1)/2

∫ x+x′

x−x′

���H̃0(y, µāt)
��� dy

≤ Ct−n/2 x′

t1/2
H̃0(x− x′, µāt).

(6.3)

Here we have used the fact that H̃0(y, µāt) ≤ H̃0(x − x′, µāt) for any y ∈ [x −
x′, x + x′], since we assumed that x ≥ x′ ≥ 0. Therefore the desired inequality is
valid for x ≥ x′ ≥ 0.

Now suppose that x′ ≥ x ≥ 0. For n = 0, since π
(z)
t (x;x′) = π

(z)
t (x′;x), one

can show by the same procedure as (6.3) that

��π̄(z)
t (x;x′)

�� ≤ C · x

t1/2
H̃0(x− x′, µāt) ≤ C · x′

t1/2
H̃0(x− x′, µāt), (6.4)

because x′ ≥ x ≥ 0. Thus we obtain the desired result for n = 0.
We omit the proof of the case n = 1, because it is similar to and simpler than

that of the case n = 2. Since H2(x, a) = −a−1 + (x/a)2, we have

��∂2
xπ̄

(z)
t (x;x′)| ≤ 1

at

��π(z)
t (x;x′)

��+
(
x− x′

a(z)t

)2

H̃0(x− x′, ā(z)t)

+

(
x+ x′

a(z)t

)2

H̃0(x+ x′, ā(z)t).

By using (6.4), one can see

1

at

��π(z)
t (x;x′)

�� ≤ C

a
t−1 x′

t1/2
H̃0(x− x′, µāt).

From Proposition 6.1 we also have

(
x− x′

a(z)t

)2

H̃0(x−x′, a(z)t) ≤ C(x′ − x)

(a(z)t)3/2
H̃0(x−x′, µāt) ≤ Cx′

(at)3/2
H̃0(x−x′, µāt),

and
(
x+ x′

a(z)t

)2

H̃0(x+x′, ā(z)t) ≤ C(x′ + x)

(a(z)t)3/2
H̃0(x+x′, µāt) ≤ 2Cx′

(at)3/2
H̃0(x−x′, µāt),

because x′ ≥ x ≥ 0. Thus the desired inequality for n = 2 also holds true. □

Let us prove the rest of Proposition 2.7.

Proof of (2.6), (2.7), and (2.8) . By using Lemma 6.2 one can see (2.6). Let us
prove (2.7). We take a constant 1 < µ′ < µ. By using (2.5) and Hölder continuity
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will show that, even though we do not assume any differentiability of coefficients
of (1.1), pt(x, ℓ;x

′, ℓ′) is smooth with respect to ℓ′ except for the boundary ℓ′ = ℓ
(Theorem 2.5).

The organization of the paper is as follows: assumptions and main results are
exhibited in Section 2. We also mention some auxiliary results that we frequently
use in the present paper. We give an approximation for the semigroup Ptf(x, ℓ) in
Section 3. Based on the approximation for Ptf(x, ℓ), we prove the representation
formula (1.2) in Section 4. In Section 5 we investigate the regularity of pt(x, ℓ;x

′, ℓ′)
with respect to ℓ′. In Appendices, we prove auxiliary results and the first step
formula that is a key formula in the theory of parametrix methodology.

Notations: We denote by Cb(D̄ × R) the space of continuous bounded func-
tions on D̄ × R. The sup-norm of the function f will be denoted by ∥f∥∞. We
denote by N0 the set of all non-negative integers. To describe the joint law of the
approximation, we will use the following notation for Hermite type functions

H̃n(x, a) =

(
d

dx

)n [
1√
2πa

exp(−x2

2a
)

]
, n ∈ N0,

as well as Hn(x, a) = H̃n(x, a)H̃0(x, a)
−1. B(s, t) and Γ(z) denote Beta and

Gamma functions respectively. We frequently use the following formula:
∫ t

0

sβ−1 (t− s)γ−1 ds = B(β, γ) tβ+γ−1 =
Γ(β) Γ(γ)

Γ(β + γ)
tβ+γ−1. (1.4)

We also use the Mittag-Leffler function:

Ea,b(z) :=
∞∑

n=0

zn

Γ(an+ b)
, z ∈ R. (1.5)

We remark that the sum converges for any z ∈ R.
As usual constants are denoted by the letters C and M , and it may change value

from one line to the next. These constant may depend on T , and other constants
appearing in the assumptions.

2. Assumptions and Main Results

2.1. Assumptions. Throughout the present paper, we assume that the coeffi-
cients of SDE (1.1) satisfy the following conditions:

Assumption (H)

H1. a := σ2 is uniformly elliptic and bounded measurable:

0 < a := inf
x∈D̄

a(x) ≤ a := sup
x∈D̄

a(x) < ∞.

H2. a is α-Hölder continuous for some α ∈ (1/2, 1):

∥a∥α := sup
x,y∈D̄, x ̸=y

|a(x)− a(y)|
|x− y|α

< ∞.

H3. b : D̄ → R is bounded and measurable.
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property of a, we have

|κt(x;x
′)| ≤ C

{
∥a∥αtα/2−1

(
|x− x′|
t1/2

)α (
1 ∧

(
x′

t1/2

))
H̃0(x− x′, µ′āt)

+ ∥b∥∞t−1/2

(
1 ∧

(
x′

t1/2

))
H̃0(x− x′, µāt)

}

≤ Ctα/2−1

(
1 ∧ x′

t1/2

)
H̃0(x− x′, µāt).

Here we have also used Proposition 6.1 and t−1/2 ≤ T (1−α)/2 · tα/2−1, in the last
inequality. Thus we obtain (2.7). The proof of (2.8) follows the same line as the
proof of Lemma 5.2. □

6.2. Proof of Lemma 3.1. Recall that Pt and St are defined in Subsection 2.3.

Lemma 6.3. For any f ∈ Cb(D̄ × R), we have that limt→0 Ptf(x, ℓ) = f(x, ℓ)
holds for each (x, ℓ) ∈ D̄ × R.

Proof. Note that Ptf can be written as Ptf(x, ℓ) = J1
t f(x, ℓ) + J2

t f(x, ℓ) with

J1
t f(x, ℓ) =

∫ ∞

0

f(x′, ℓ)π̄
(x′)
t (x;x′) dx′,

J2
t f(x, ℓ) =

∫ ∞

ℓ

∫

D̄

f(x′, ℓ′)π̄
(x′)
t (x, ℓ;x′, ℓ′) dx′ dℓ′.

(6.5)

We first note that J1
t f(0, ℓ) = 0 since π

(x′)
t (0, x′) = 0 for any x′ ∈ D̄. We do the

change of variable (x′, ℓ′) = (
√
āt ξ, ℓ+

√
āt λ) =: (x(t, ξ), ℓ(t, λ)), and we see that

J2
t f(0, ℓ) is equal to∫ ∞

0

∫ ∞

0

f(x(t, ξ), ℓ+ ℓ(t, ξ))
2
√
ā(ξ + λ)√

2πa(x(ξ, t))3
exp

{
− ā · (ξ + λ)2

2a(x(ξ, t))

}
dξ dλ.

Since f is bounded and a is uniformly elliptic, Lebesgue theorem shows that
J2
t f(0, ℓ) → f(0, ℓ), as t → 0. Hence we have Ptf(0, ℓ) → f(0, ℓ), as t → 0. Next,

suppose that x ∈ D. Then we do the change of variable x′ = x+
√
āt ξ =: x(t, ξ),

and see that J1
t f(x, ℓ) is equal to∫ ∞

0

f(x(t, ξ), ℓ)
(
H̃0(

√
ātξ, a(x(t, ξ))t)− H̃0(2x+

√
ātξ, a(x(t, ξ))t)

) √
āt dξ.

By the same reason as above, one can apply Lebesgue theorem again and we have
J1
t f(x, ℓ) → f(x, ℓ), as t → 0 for (x, ℓ) ∈ D × R. On the other hand, it follows

from (2.6) that

|π(x′)
t (x, ℓ;x′, ℓ′)| ≤ Ct−1/2hµ

t (x, ℓ;x
′, ℓ′) ≤ Ct−1/2 exp{−x2/2āt} H̃0(x

′, µāt),

and hence

|J2f(x, ℓ)| ≤ C∥f∥∞t−1/2 exp{−x2/2āt} → 0,

as t → 0 since x > 0. Therefore for (x, ℓ) ∈ D × R, we have Ptf(x, ℓ) → f(x, ℓ),
as t → 0. Thus the proof is complete. □
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with reflecting boundary conditions are pathwise differentiable with respect to the
initial value, and they obtained Bismut-Elworthy’s formula for the gradient of the
transition semigroup E[f(Xt(x))], see also [3].

Tsuchiya [12] obtained, by using parametrix methodology, an approximation
for E[f(Xt(x))] and investigated the existence of the density of Xt(x), see also
[2]. The main purpose of the present paper is to generalize the methodology ex-
posed by [12] and to give some approximation formula of the transition semigroup
Ptf(x, ℓ) := E[f(Xt(x), ℓ + Lt(x))] under mild regularity conditions on the coef-
ficients of Xt(x). The main difference between an approximation for E[f(Xt(x))]
and that for Ptf(x, ℓ) arises from the singularity of the distribution of the local
time. Indeed the local time process Lt(x) stays zero until Xt(x) touches zero,
hence the joint law of (Xt(x), ℓ+Lt(x)) is not absolutely continuous with respect
to the Lebesgue measure. For this reason, an approximation has two parts, that
is, approximations which do not touch the boundary, and approximations which
touch the boundary. This combination of effects will happen in any iteration of
the procedure of the approximation and will generate combinations of approxima-
tions with two parts. This creates difficulties in the analysis. We will show in
Thoerem 2.4 that the joint law of (Xt(x), ℓ+ Lt(x)) has the following form:

P (Xt(x) ∈ dx′, ℓ+ Lt(x) ∈ dℓ′) = pt(x;x
′) dx′ δℓ(dℓ

′) + pt(x, ℓ;x
′, ℓ′)1A dx′ dℓ′.

(1.2)

Here we denote by δℓ(dℓ
′) the Dirac point mass concentrated at ℓ, and put

A := {(x, ℓ, x′, ℓ′) ∈ R4 : x, x′ ∈ D, ℓ′ > ℓ}. (1.3)

The first term in the right hand side in (1.2) have a point mass at the current
value of local time and corresponds to the case where the reflected process does
not touch the boundary. The second term is absolutely continuous with respect
to the Lebesgue measure and corresponds to the case where the reflected process
touches the boundary. In Theorem 2.4, Gaussian upper estimates for pt(x;x

′) and
pt(x, ℓ;x

′, ℓ′) are also obtained.
As an application of Theorem 2.4 we study the regularity of pt(x, ℓ;x

′, ℓ′) with
respect to ℓ′. The regularity of the transition density of the solution to SDE is
usually related to the regularity of its coefficients. Even in the present case, we
can also show, by following a similar approach as in [4], the differentiability of
pt(x;x

′) and pt(x, ℓ;x
′, ℓ′) with respect to x. This application also enables us to

see the differentiability of x → E[g(Xt(x)) : T0(x) ≥ t] or x → E[f(Xt(x), ℓ +
Lt(x)) : T0 < t], where g and f are bounded measurable functions, and T0(x)
is the first hitting time to zero by Xt(x). On the other hand, it seems that the
regularity of pt(x, ℓ;x

′, ℓ′) with respect to local time argument ℓ′ has not been
studied enough. As Nualart and Vives [10] showed, a Brownian local time belongs
to some fractional order Sobolev space in the sense of Malliavin calculus. Hence one
cannot apply standard techniques fromMalliavin calculus to the study of regularity
of local time. However it is known that the distribution of the Brownian local
time is smooth except for the boundary. In the present paper, as an application
of Theorem 2.4, we will investigate the regularity of pt(x, ℓ;x

′, ℓ′) with respect to
ℓ′ under mild regularity conditions on the coefficients of (1.1). In particular we
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Recall that D is defined by (2.2). We denote by C∞
K (D̄×R) the space of smooth

functions on D × R with compact support.

Proposition 6.4. For f ∈ C∞
K (D̄ × R), we have Ptf ∈ D.

Proof. Since f ∈ C∞
K (D̄ × R), by applying Lebesgue theorem, one can see that

∂x(Ptf), ∂2
x(Ptf), and ∂ℓ(Ptf) exist. It remains to check that ∂ℓPtf(0, ℓ) +

∂xPtf(0, ℓ) = 0. Note first that

∂xPtf(x, ℓ) =

∫

D̄

f(x′, ℓ)∂xπ̄
(x′)
t (x;x′)dx′

+

∫ ∞

ℓ

∫

D̄

f(x′, ℓ′)∂xπ̄
(x′)
t (x, ℓ;x′, ℓ′)dx′ dℓ′.

Using the fact that π̄
(x′)
t (0;x′) = 0 and the continuity of f(x′, ℓ′)π̄

(x′)
t (x, ℓ;x′, ℓ′)

at ℓ′ = ℓ, we also have

∂ℓPtf(0, ℓ) =−
∫

D̄

f(x′, ℓ)π̄
(x′)
t (0, ℓ;x′, ℓ)dx′

+

∫ ∞

ℓ

∫

D̄

f(x′, ℓ′)∂ℓπ̄
(x′)
t (0, ℓ;x′, ℓ′)dx′ dℓ′.

Since for any z ∈ D̄, ∂xπ̄
(z)
t (0;x′) = −2H̃1(x

′, a(z)t) = π̄
(z)
t (0, ℓ;x′, ℓ) and

∂ℓπ̄
(z)
t (0, ℓ;x′, ℓ′) + ∂xπ̄

(z)
t (0, ℓ;x′, ℓ′) = 0,

one can see ∂ℓPtf(0, ℓ) + ∂xPtf(0, ℓ) = 0 holds. Thus the proof is complete. □

Proposition 6.5. If f is continuous function on D × R with compact support,
then (3.1) holds true.

Proof. In view of Proposition 3.2 Hence it suffices to show that (3.1) holds true
for any f ∈ C∞

K (D̄ ×R). From Proposition 6.4, Pt−uf is in D if f ∈ C∞
K (D̄ ×R).

Thus Itô’s formula shows

E[Pt−sf(Xs, ℓ+ Ls)]

= Ptf(x, ℓ) +

∫ s

0

E[∂uPt−uf(Xu, ℓ+ Lu) + LPt−uf(Xu, ℓ+ Lu)]du.

Here 0 < s < t. We also have

∂uPt−uf(x, ℓ)

=

∫
f(x′, ℓ)∂uπ̄

(x′)
t−u(x;x

′) dx′ +

∫

R

∫

D

f(x′, ℓ′) ∂uπ̄
(x′)
t−ut(x, ℓ;x

′, ℓ′) dx′ dℓ′

= −
∫

f(x′, ℓ)L̄(x′)π̄
(x′)
t−u(x;x

′) dx′ −
∫

R

∫

D

f(x′, ℓ′) L̄(x′)π̄
(x′)
t−u(x, ℓ;x

′, ℓ′) dx′ dℓ′.

From here one obtains that

E[Pt−sf(Xs, ℓ+ Ls)]− Ptf(x, ℓ) =

∫ s

0

E[St−uf(Xu, ℓ+ Lu)]du.

One can see that the right hand side above converges to
∫ t

0
E[St−uf(Xu, ℓ+Lu)]du

as s → t, in view of Proposition 3.2. On the other hand it follows from Lemma 6.3
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will show that, even though we do not assume any differentiability of coefficients
of (1.1), pt(x, ℓ;x

′, ℓ′) is smooth with respect to ℓ′ except for the boundary ℓ′ = ℓ
(Theorem 2.5).

The organization of the paper is as follows: assumptions and main results are
exhibited in Section 2. We also mention some auxiliary results that we frequently
use in the present paper. We give an approximation for the semigroup Ptf(x, ℓ) in
Section 3. Based on the approximation for Ptf(x, ℓ), we prove the representation
formula (1.2) in Section 4. In Section 5 we investigate the regularity of pt(x, ℓ;x

′, ℓ′)
with respect to ℓ′. In Appendices, we prove auxiliary results and the first step
formula that is a key formula in the theory of parametrix methodology.

Notations: We denote by Cb(D̄ × R) the space of continuous bounded func-
tions on D̄ × R. The sup-norm of the function f will be denoted by ∥f∥∞. We
denote by N0 the set of all non-negative integers. To describe the joint law of the
approximation, we will use the following notation for Hermite type functions

H̃n(x, a) =

(
d

dx

)n [
1√
2πa

exp(−x2

2a
)

]
, n ∈ N0,

as well as Hn(x, a) = H̃n(x, a)H̃0(x, a)
−1. B(s, t) and Γ(z) denote Beta and

Gamma functions respectively. We frequently use the following formula:
∫ t

0

sβ−1 (t− s)γ−1 ds = B(β, γ) tβ+γ−1 =
Γ(β) Γ(γ)

Γ(β + γ)
tβ+γ−1. (1.4)

We also use the Mittag-Leffler function:

Ea,b(z) :=
∞∑

n=0

zn

Γ(an+ b)
, z ∈ R. (1.5)

We remark that the sum converges for any z ∈ R.
As usual constants are denoted by the letters C and M , and it may change value

from one line to the next. These constant may depend on T , and other constants
appearing in the assumptions.

2. Assumptions and Main Results

2.1. Assumptions. Throughout the present paper, we assume that the coeffi-
cients of SDE (1.1) satisfy the following conditions:

Assumption (H)

H1. a := σ2 is uniformly elliptic and bounded measurable:

0 < a := inf
x∈D̄

a(x) ≤ a := sup
x∈D̄

a(x) < ∞.

H2. a is α-Hölder continuous for some α ∈ (1/2, 1):

∥a∥α := sup
x,y∈D̄, x ̸=y

|a(x)− a(y)|
|x− y|α

< ∞.

H3. b : D̄ → R is bounded and measurable.

REGULARITY OF THE LOCAL TIME 23

that the left hand side above also converges to E[f(Xt, ℓ+Lt)]−Ptf(x, ℓ) as s → t.
Thus we conclude that (3.1) holds for any f ∈ C∞

K (D̄ × R). □

Lemma 6.6. Let f ∈ Cb(D × R). For R > 0, we consider a continuous function
fR such that ∥fR∥∞ ≤ ∥f∥∞ and

fR(x, l) =

{
f(x, l) if x+ |ℓ| < R

0 if x+ |ℓ| > R+ 1,

holds. Let K ⊂ D × R be an arbitrary compact set. Then inequalities hold:

(i) For any t ∈ (0, T ] and for any large enough R > 0 we have

sup
(x,ℓ)∈K

|(Ptf − PtfR)(x, ℓ)| ≤ C∥f∥∞
∫

{ξ∈R: |ξ|>R/8āT}
H̃0(ξ, 1) dξ.

(ii) For any t ∈ (0, T ] and for any large enough R > 0, we have

sup
(x,ℓ)∈K

|(Stf − StfR)(x, ℓ)| ≤ C∥f∥∞ t(α−2)/2

∫

{ξ∈R: |ξ|>R/8āT}
H̃0(ξ, 1) dξ.

Proof. We prove (ii) only, since the proof of (i) is similar to and easier than that of
(ii). We prove (ii) for any R > 0 satisfying K ⊂ {(x, ℓ) ∈ D̄ × R : x+ |ℓ| ≤ R/2}.
Using Proposition 3.2 and (3.2) we have

|(Stf − StfR)(x, ℓ)|

≤ C∥f∥∞t(α−2)/2

{∫

{x′∈D̄: x′+|ℓ|>R}
H̃0(x− x′, 2āt) dx′

+

∫ ∫

{(x′,ℓ′)∈D̄×R :x′+|ℓ′|>R}
H̃0(x− x′; 2āt)H̃0(ℓ− ℓ′, 2āt) dx′ dℓ′

}

≤ C∥f∥∞t(α−2)/2

{∫

{x′∈R: |x−ξ|+|ℓ|>R}
H̃0(ξ, 2āt) dξ

+

∫ ∫

{(ξ,λ)∈R2 :|x−ξ|+|ℓ−λ|>R}
H̃0(ξ, 2āt)H̃0(λ, 2āt) dξ dλ

}
.

Here we also do the change of variable ξ = x−x′ in the first term and (ξ, λ) = (x−
ξ, ℓ−λ) in the second term. Since {ξ ∈ R : |ξ−x|+|ℓ| > R} ⊂ {ξ ∈ R : |ξ| > R/2}
for any (x, ℓ) ∈ K, we have∫

{ξ∈R: |ξ−x|+|ℓ|>R}
H̃0(ξ, 2āt) dξ ≤

∫

{ξ∈R: |ξ|>R/2}
H̃0(ξ, 2āt) dξ

≤
√
T

∫

{ξ∈R: |ξ|>R/4āT}
H̃0(ξ, 1) dξ.

We have also that for any (x, ℓ) ∈ K

{(ξ, λ) ∈ R2 : |x− ξ|+ |ℓ− λ| > R}
⊂ {(ξ, λ) ∈ R2 : |ξ|+ |λ| > R/2}

⊂ {(ξ, λ) ∈ R2 : |ξ| > R/4}
∪

{(ξ, λ) ∈ R2 : |λ| > R/4},
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with reflecting boundary conditions are pathwise differentiable with respect to the
initial value, and they obtained Bismut-Elworthy’s formula for the gradient of the
transition semigroup E[f(Xt(x))], see also [3].

Tsuchiya [12] obtained, by using parametrix methodology, an approximation
for E[f(Xt(x))] and investigated the existence of the density of Xt(x), see also
[2]. The main purpose of the present paper is to generalize the methodology ex-
posed by [12] and to give some approximation formula of the transition semigroup
Ptf(x, ℓ) := E[f(Xt(x), ℓ + Lt(x))] under mild regularity conditions on the coef-
ficients of Xt(x). The main difference between an approximation for E[f(Xt(x))]
and that for Ptf(x, ℓ) arises from the singularity of the distribution of the local
time. Indeed the local time process Lt(x) stays zero until Xt(x) touches zero,
hence the joint law of (Xt(x), ℓ+Lt(x)) is not absolutely continuous with respect
to the Lebesgue measure. For this reason, an approximation has two parts, that
is, approximations which do not touch the boundary, and approximations which
touch the boundary. This combination of effects will happen in any iteration of
the procedure of the approximation and will generate combinations of approxima-
tions with two parts. This creates difficulties in the analysis. We will show in
Thoerem 2.4 that the joint law of (Xt(x), ℓ+ Lt(x)) has the following form:

P (Xt(x) ∈ dx′, ℓ+ Lt(x) ∈ dℓ′) = pt(x;x
′) dx′ δℓ(dℓ

′) + pt(x, ℓ;x
′, ℓ′)1A dx′ dℓ′.

(1.2)

Here we denote by δℓ(dℓ
′) the Dirac point mass concentrated at ℓ, and put

A := {(x, ℓ, x′, ℓ′) ∈ R4 : x, x′ ∈ D, ℓ′ > ℓ}. (1.3)

The first term in the right hand side in (1.2) have a point mass at the current
value of local time and corresponds to the case where the reflected process does
not touch the boundary. The second term is absolutely continuous with respect
to the Lebesgue measure and corresponds to the case where the reflected process
touches the boundary. In Theorem 2.4, Gaussian upper estimates for pt(x;x

′) and
pt(x, ℓ;x

′, ℓ′) are also obtained.
As an application of Theorem 2.4 we study the regularity of pt(x, ℓ;x

′, ℓ′) with
respect to ℓ′. The regularity of the transition density of the solution to SDE is
usually related to the regularity of its coefficients. Even in the present case, we
can also show, by following a similar approach as in [4], the differentiability of
pt(x;x

′) and pt(x, ℓ;x
′, ℓ′) with respect to x. This application also enables us to

see the differentiability of x → E[g(Xt(x)) : T0(x) ≥ t] or x → E[f(Xt(x), ℓ +
Lt(x)) : T0 < t], where g and f are bounded measurable functions, and T0(x)
is the first hitting time to zero by Xt(x). On the other hand, it seems that the
regularity of pt(x, ℓ;x

′, ℓ′) with respect to local time argument ℓ′ has not been
studied enough. As Nualart and Vives [10] showed, a Brownian local time belongs
to some fractional order Sobolev space in the sense of Malliavin calculus. Hence one
cannot apply standard techniques fromMalliavin calculus to the study of regularity
of local time. However it is known that the distribution of the Brownian local
time is smooth except for the boundary. In the present paper, as an application
of Theorem 2.4, we will investigate the regularity of pt(x, ℓ;x

′, ℓ′) with respect to
ℓ′ under mild regularity conditions on the coefficients of (1.1). In particular we
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and hence∫ ∫

{(ξ,ℓ′)∈R2 :|x−ξ|+|ℓ−λ|>R}
H̃0(ξ, 2āt)H̃0(λ, 2āt) dξ dλ

≤
∫

{ξ∈R : |ξ|>R/4}
H0(ξ, 2āt) dξ +

∫

{λ∈R : |λ|>R/4}
H0(λ, 2āt) dλ

≤ 2
√
T

∫

{ξ∈R: |ξ|>R/8āT}
H̃0(ξ, 1) dξ.

Therefore we obtain (ii). □

Proof of Lemma 3.1. For any f ∈ Cb(D × R), and for any R > 0, we take fR as
in Lemma 6.6. Then one can see that

��PT f(x, ℓ)− PT fR(x, ℓ)
�� ≤ 2∥f∥∞P (|XT (x)|+ |ℓ+ LT (x)| ≥ R),

which yields limR→∞ PT fR(x, ℓ) = PT f(x, ℓ). In view of (i) of Lemma 6.6 we also
have limR→∞ PtfR(x, ℓ) = Ptf(x, ℓ).

For any R0 > 0, we set K = {(x, ℓ) : x + |ℓ| ≤ R0}. Using Proposition 3.2 we
have

|E[ST−uf(Xu(x), ℓ+ Lu(x))]− E[ST−ufR(Xu(x), ℓ+ Lu(x))]|
≤ |E[ST−u(f − fR)(Xu(x), ℓ+ Lu(x)) : |Xu(x)|+ |ℓ+ Lu(x)| ≤ R0]|

+ |E[ST−u(f − fR)(Xu(x), ℓ+ Lu(x)) : |Xu(x)|+ |ℓ+ Lu(x)| ≥ R0]|

≤ sup
(ξ,λ)∈K

|ST−u(f − fR)(ξ, λ)|

+ C(T − u)(α−2)/2∥f∥∞P (|Xu(x)|+ |ℓ+ Lu(x)| > R0).

Hence (ii) of Lemma 6.6 shows that

lim sup
R→∞

��E[ST−uf(Xu(x), ℓ+ Lu(x))]− E[ST−ufR(Xu(x), ℓ+ Lu(x))]
��

≤ C(T − u)(α−2)/2∥f∥∞P (|Xu(x)|+ |ℓ+ Lu(x)| > R0),

holds. Because R0 > 0 is arbitrary, this yields that

lim
R→∞

∫ T

0

E[ST−ufR(Xu(x), ℓ+ Lu(x))] du =

∫ T

0

E[ST−uf(Xu(x), ℓ+ Lu(x))] du.

From Proposition 6.5, (3.1) is valid for fR. Therefore the approximation arguments
above imply that (3.1) is also valid for any f ∈ Cb(D × R). □
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2. Assumptions and Main Results

2.1. Assumptions. Throughout the present paper, we assume that the coeffi-
cients of SDE (1.1) satisfy the following conditions:
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x∈D̄
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