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ABSTRACT

The importance of event logs, as a source of information in systems and network management cannot be compromise.
With the ever increasing size and complexity of today’s event logs, the task of analyzing event logs has become
difficult to carry out manually. For this reason recent research has focused on the automatic analysis of these log
files. IPLoM (Iterative Partitioning Log Mining), a algorithm for the mining of clusters from event logs. Through a
Three step hierarchical partitioning process IPLoM partitions log data into its respective clusters. In its 4th and
final stage IPLoM produces cluster descriptions or line formats for each of the clusters produced. Unlike other
similar algorithms IPLoM is not based on the Apriori algorithm and it is able to find clusters in data whether or not
its instances appear frequently. Ambiguous Token Delimiters is one of the problem present in the IPLoM algorithm.
Using the additional step in the IPLoM algorithm this problem can be overcome. This additional step is added
along with fourth step. This improved IPLoM algorithm can be avoided the Ambiguous Token Delimiters problem.

Index Terms: Algorithms, experimentation, event log mining, fault management, clustering

1. INTRODUCTION

The goal of autonomic computing as espoused by IBM’s senior vice president of research, Paul Horn in
March 2001 can be defined as the goal of building self-managing computing systems [1]. The four key
concepts of self-management in autonomic computing are self-configuration, self-optimization, self-healing,
and self-protection. Given the increasing complexity of computing infrastructure which is stretching to its
limits the human capability to manage it, the goal of autonomic computing is a desirable one. However, it
is a long-term goal, which must first start with the building of computing systems, which can automatically
gather and analyze information about their states to support decisions made by human administrators [1].

Event logs generated by applications that run on a system Consist of independent lines of text data,
which contain information that pertains to events that occur within a system. This makes them an important
source of information to system administrators in fault management and for intrusion detection and
prevention. With regard to autonomic systems, these two tasks are important cornerstones for self-healing
and self-protection, respectively. Therefore, as we move toward the goal of building systems that are capable
of self-healing and self-protection, an important step would be to build systems that are capable of
automatically analyzing the contents of their log files, in addition to measured system metrics [2], [3], to
provide useful information to the system administrators.

The goal of autonomic computing as espoused by IBM’s senior vice president of research, Paul Horn in
March 2001 can be defined as the goal of building self-managing computing systems[5] . The four key
concepts of self-management in autonomic computing are self-configuration, self-optimization, self-healing,
and self-protection. Given the increasing complexity of computing infrastructure which is stretching to its
limits the human capability to manage it, the goal of autonomic computing is a desirable one. However, it
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is a long-term goal, which must first start with the building of computing systems, which can automatically
gather and analyze information about their states to support decisions made by human.

A basic task in automatic analysis of log files is message type extraction [4], [5], [6], and [7]. Extraction
of message types makes it possible to abstract the unstructured content of event logs, which constitutes a
key challenge to achieving fully automatic analysis of system logs. Message type descriptions are the
templates on which the individual unstructured messages in any event log are built. Message types, once
found, are useful in several ways:

• Compression. Message types can abstract the con-tents of system logs. We can therefore use them
to obtain more concise and compact representations of log entries. This leads to memory and space
savings.

• Indexing. Each unique message type can be as-signed an Identifier Index (ID), which in turn can be
used to index historical system logs leading to faster searches. In [8], the authors demonstrated how
message types can be used for log size reduction and indexing of the contents of event logs.

• Model building. The building of computational models on the log data, which usually requires the
input of structured data, can be facilitated by the initial extraction of message type information.
Message types are used to impose structure on the unstructured messages in the log data before they
are used as input into the model building algorithm. In [9], [10], the authors demonstrate how
message types can be used to extract measured metrics used for building computational models
from event logs. The authors were able to use their computed models to detect faults and execution
anomalies using the contents of system logs.

• Visualization. Visualization is an important component of the analysis of large data sets. Visualization
of the contents of systems logs can be made more meaningful to a human observer by using message
types as a feature of the visualization. For the visualization to be meaningful to a human Observer,
the message types must be interpretable. This fact provides a strong incentive for the production of
message types that have meaning to a human observer.

Figure 1: An example system log file. Each line represents an event

To give an example of what message types are, consider this line of code:

sprintf (message, Connection from %s port %d, ipaddress, port number); in a C program could produce
the following log entries:

“Connection from 192.168.10.6 port 25” “Connection from 192.168.10.6 port 80” “Connection from
192.168.10.7 port 25” “Connection from 192.168.10.8 port 21.”

These four log entries would form a cluster (group) or event type in the event log and can be represented
by the message type description (or line format):

“Connection from * port *.”

The wildcards “*” represent message variables. We will adopt this representation in the rest of our
work. Determining what constitutes a message type might not always be as simple as this example might
suggest. Consider the following messages produced by the same print statement. “Link 1 is up,” “Link 1
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is down,” “Link 3 is down,” “Link 4 is up.” The most logical message type description here is “Link * is
*,” however from a analysis standpoint having two descriptions “Link * is up” and “Link * is
down” maybe preferable. There may also be other cases where messages produced by different print
statements could form single logical message types. However, for the most part, message types will
usually correspond to messages pro-duced by the same print statement, so we retain our representation
for simplicity.

The goal of message type extraction is to find the representations of the message types that exist in a log
file. This problem is well attested to in the literature but there is as yet no standard approach to the problem
[9]. Techniques for automatically mining these line patterns from event logs have been based on the Apriori
algorithm [11] for frequent item sets from data, e.g., Simple Log File Clustering Tool (SLCT) [12] and
Loghound [13], or other line pattern discovery techniques like Teiresias [14] designed for other domains
[7]. SLCT, Loghound, and Teiresias as algorithms are aimed toward the discovery of frequent textual
patterns.

In this paper, we introduce Iterative Partitioning Log Mining (IPLoM), a novel algorithm for the mining
of event type patterns from event logs. Unlike previous algorithms, IPLoM is not primed toward the finding
of only frequent textual patterns, but instead IPLoM’s aim is to find all possible patterns. IPLoM works
through a 3-step partitioning process, which partitions a log file into its respective clusters. In a fourth and
final stage, the algorithm produces.

A cluster description for each leaf partition of the log file. These cluster descriptions then become event
type patterns discovered by the algorithm. IPLoM is able to find clusters in the data irrespective of the
frequency of its instances and it scales gracefully in face of long message type patterns and it produces
message type descriptions at a level of abstraction, which is preferred by a human observer. In our
experiments, we compared the outputs of IPLoM, SLCT, Loghound, and Teiresias on seven different event
log files, making up over 1 million log events, against message types produced manually on the event log
files by our Faculty’s tech support group. Results demonstrate that IPLoM consistently outperforms the
other algorithms. It was able, in the best case, to produce approximately 70 percent of the manually produced
message types compared to 36 percent for the best existing algorithm.

The rest of this paper is organized as follows: Section 2 discusses previous work in event type pattern
mining and categorization. Section 3 outlines the proposed algorithm and the methodology to evaluate its
performance. Section 4 describes the results whereas Section 5 presents the conclusion and the future
work.

2. BACKGROUND AND PREVIOUS WORK

We begin this section by first defining some of the terminology used in this paper. We then discuss previous
related work in the area of event log clustering and message type extraction.

2.1. Definitions

• Event log. A text-based audit trail of events that occur within the system or application processes on a
computer system (Fig. 1).

• Event. An independent line of text within an event log which details a single occurrence on the system,
(Fig. 2). An event typically contains not only a message but other fields of information like a Date,
Source, and Tag as defined in the syslog Request for Comment (RFC) [15]. For message type extraction,
we are only interested in the message field of the event. This is why events are sometimes referred to in
the literature as messages. In Fig. 2, the first five fields (delimited by whitespace) represent the Timestamp,
Host, Class,
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Which may contain more than 1 word up to a maximum value provided by the user. With both SLCT
and Loghound, lines that do not match any of the frequent patterns discovered are classified as outliers.

SLCT and Loghound have received considerable attention and have been used in the implementation
of the Sisyphus Log Data Mining toolkit [22], as part of the Log View log visualization tool [23] and in
online failure prediction [24].

A comparison of SLCT against a bioinformatics pattern discovery algorithm developed by IBM called
Teiresias [14] is carried out in [7]. Teiresias was designed to discover all patterns of at least a given specificity
and support in categorical data.

In our work, we introduce IPLoM, a novel log-clustering algorithm. IPLoM works differently from the
other clustering algorithms described above as it is not based on the Apriori algorithm and does not explicitly
try to find line formats. The algorithm works by creating a hierarchical partitioning of the log data. The leaf
nodes of this hierarchical partitioning of the data are considered clusters of the log data and they are used to
find the cluster descriptions or line formats that define each cluster. Our experiments demonstrate that
IPLoM outperforms SLCT, Loghound, and Teiresias when they are evaluated on the same data sets.

3. METHODOLOGY

In this section, we first give a detailed description of our proposed algorithm and our methodology for
testing its performance against those of previous algorithms.

3.1. The IPLoM Algorithm

The IPLoM algorithm is designed as a log data clustering algorithm. It works by iteratively partitioning a
set of log messages used as training exemplars. At each step of the partitioning process, the resultant
partitions come closer to containing only log messages which are produced by the same line format. At the
end of the partitioning process, the algorithm attempts to discover the line formats that produced the lines
in each partition. These discovered partitions and line formats are the output of the algorithm.

Our main assumptions on the kind of event logs that IPLoM is suited for are the following:

1. The events in the log contain at least one field that is an unstructured natural language description
of the event. These descriptions, which we call “messages,” illustrated in Fig. 2, would naturally be
produced by a set of “print” statements in a program source code.

2. The exact structure of these “messages” is unknown or not well documented.

Figure 2: An example system log event.
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Our work is therefore relevant to any log file where these assumptions are true, not just log files that
meet the format of Fig. 2. Some application event logs are well structured and well documented, e.g.,
WebSphere. In such cases, message type extraction may not be necessary. For example, in [26], the authors
provide a use case of process mining in web services using WebSphere, while in [27], the authors propose
a tool for visualizing web services behavior by mining the contents of event logs. Process mining refers to
the analysis of event logs as a way of monitoring adherence to business process rules. The analysis can be
carried out without message type extraction due to the structured nature of the WebSphere logs, which
utilize the Common Base Event model [21] for event representation.

An outline of the four steps of IPLoM is given in Fig. 3. The algorithm is designed to discover all possible
line formats in the initial set of log messages and does not require a support threshold like SLCT or Loghound.
As it may be sometimes required to find only line formats that have a support that exceeds a certain threshold,
a file prune function (Algorithm 1) is incorporated into the algorithm. By removing the partitions that fall
below the threshold value at the end of each partitioning step, we are able to produce only line formats that
meet the desired support threshold at the end of the algorithm. The use of the file prune function is however
optional. The following sections describe each step of the algorithm in more detail.

Algorithm 1. File_Prune Function: Prunes the partitions produced using the file support threshold.

Input: Collection C½& of log file partitions.

Real number F S as file support threshold. {Range for F S is assumed to be between 0 _ 1.}

Output: Collection C½& of log file partitions with support greater than F S.

1: for every partition in C do

2: Supp ¼ #LinesInP artition

#LinesInCollection

3: if Supp < F S then

4: Delete partition from C½&

5: end if

6: end for

7: Return(C)

3.2. Step 1: Partition by Event Size

The first step of the partitioning process works on the assumption that log messages that have the same
message type description are likely to have the same event size. For this reason, IPLoM’s first step (Fig. 4)
uses the event size heuristic to partition the log messages. By partition, we mean nonoverlapping groupings
of the messages. It can be intuitively concluded that all the instances of this cluster, e.g., “Connection from
255.255.255.255” and “Connection from 0.0.0.0” would also contain the same number of tokens. By
partitioning our data first by event size, we are taking advantage of the property of most cluster instances of
having the same event size. Therefore, the resultant partitions of this heuristic are likely to contain the
instances of the different clusters, which have the same event size.

Sometimes, it is possible that clusters with events of variable size exist in the event log. This scenario
is explained in more detail in Section 4.7.3.

Since IPLoM assumes that messages belonging to the same cluster should have the same number of
tokens or event size, this step of the algorithm would separate such clusters. This does not occur too often,
and variable size message types can still be found by post processing IPLoM’s results. The process of
finding variable size message types can be computationally expensive. Nevertheless, performing this process
on the templates produced by IPLoM rather than on the complete log would require less computation.
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3.3. Step 2: Partition by Token Position

At this point, each partition of the log data contains log messages, which are of the same size and can
therefore be viewed as n-tuples, with n being the event size of the log messages in the partition. This step
of the algorithm works on the assumption that the column with the least number of variables (unique
words) is likely to contain words, which are constant in that position of the message type descriptions that
produced them. Our heuristic is therefore to find the token position with the least number of unique values
and further split each partition using the unique values in this token position, i.e., each resultant partition
will contain only one of those unique values in the token position discovered, as can be seen in the example
outlined in Fig. 5. A pseudo code description of this step of the partitioning process is given in Algorithm 2.

Algorithm 2. IPLoM Step 2: Selects the token position with the lowest cardinality and then separates
the lines in the partition based on the unique values in the token position. Backtracks on partitions with
lines that fall below the partition support threshold.

Input: Collection of log file partitions from Step-1.

Real number P ST as partition support threshold. {Range for P ST is assumed to be between 0 _ 1.}

Output: Collection of log file partitions derived at Step-2

C In.

1: for every log file partition do {Assume lines in each partition have same event size.}

2: Determine token position P with lowest cardinality with respect to set of unique tokens.

3: Create a partition for each token value in the set of unique tokens that appear in position P.

4: Separate contents of partition based on unique token values in token position P . into separate
partitions.

5: end for

6: for each partition derived at Step-2 do {}

Figure 5: IPLoM Step 2: partition by token position. Selects the token position with the least number of unique values, token
position 2 in this example. Then, it separates the messages into partitions-based unique token values, i.e.,

“plb” and “address:”, in the token position

Figure 4: IPLoM Step 1: partition by event size. Separates the messages into partitions based on their event size
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7: if P SR < P S then

8: Add lines from partition to Outlier partition

9: end if

10: end for

11: File_Prune() {Input is the collection of newly created partitions}

12: Return() {Output is collection of pruned new partitions}

The memory requirement of unique token counting is a potential concern with the algorithm. While the
problem of unique token counting is not specific to IPLoM, we believe IPLoM has an advantage in this
respect. Since IPLoM partitions the database, only the contents of the partition being handled need be
stored in memory. This greatly reduces the memory requirements of the algorithm. More-over, other
workarounds can be implemented to further reduce the memory requirements. For example, in this Step 2
of the algorithm, by determining an upper bound (UB) on the lowest token count in Step 1, we can drastically
reduce the memory requirements of this step, further counts of unique tokens in any token position that
exceeds the upper bound can be eliminated. However, in this work, our aim is to make a proof of concept
so we left the implementation of such code optimization techniques for future work.

Despite the fact that we use the token position with the least number of unique tokens, it is still possible
that some of the values in the token position might actually be variables in the original message type
descriptions. While an error of this type may have little effect on Recall, it could adversely affect Precision.
To mitigate the effects of this error, a partition support ratio (PSR) for each partition produced could be
introduced.

This partition has event size equal to 4. We need to select two token positions to perform the search for
bijection on. The first token position has one unique token, {Command}. The second token position has
two unique tokens, {has, failed}. The third token position has three unique tokens, {completed, been, on}.
While the fourth token position has three unique tokens, {successfully, aborted, starting}. We notice in this
example that token count 3 appears most frequently, twice, once in position 3 and once in position 4. The
heuristic would therefore select token positions 3 and 4 in this example.

Algorithm 3. IPLoM Step 3: Selects the two token positions and then separates the lines in the partition
based on the relational mappings of unique values in the token positions. Backtracks on partitions with
lines that fall below the partition support threshold.

To summarize the steps of the heuristic, we first determine the number of unique tokens in each token
position of a partition. We then determine the most frequently occurring token count among all the token
positions. This value must be greater than 1. The token count that occurs most frequently is likely indicative
of the number of message types that exist in the partition. If this is true, then a bijective relationship should
exist between the tokens in the token positions that have this token count.

Despite the fact that we use the token position with the least number of unique tokens, it is still possible
that some of the values in the token position might actually be variables in the original message type
descriptions. While an error of this type may have little effect on Recall, it could adversely affect Precision

Input: Collection of partitions from Step 2. {Partitions of event size 1 or 2 are not processed here}

Real number CT as cluster goodness threshold. {Range for CT is assumed to be between 0 _ 1.}

Output: Collection of partitions derived at Step-3.

1: for every log file partition do

2: if CGR >¼ CT then {See (2)}
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3: Add partition to collection of output partitions

4: Move to next partition.
5: end if

6: Determine token positions using heuristic as P 1 and P 2. {Heuristic is explained in the text. We
assume token position P 1 occurs before P 2.}

7: Determine mappings of unique token values P 1 in respect of token values in P 2 and vice versa.

8: if mapping is 1 _ 1 then
9: Create partitions for event lines that meet each 1 _ 1 relationship.

10: else if mapping is 1 _ M or M _ 1 then

11: Determine variable state of M side of relationship.
12: if variable state of M side is CONST ANT then

13: Create partitions for event lines that meet relationship.
14: else {variable state of M side is V ARIABLE}

15: Create new partitions for unique tokens in M side of the relationship.

16: end if
17: else {mapping is M _ M}

18: All lines with meet M _ M relationships are placed in one partition.
19: end if

20: end for
21: for each partition derived at Step-3 do {}

22: if P SR < P S then

23: Add lines from partition to Outlier partition
24: end if

25: end for
26: File_Prune() {Input is the collection of newly created partitions}

27: Return() {Output is collection of pruned new partitions}

Once the most frequently occurring token count value is determined, the token positions chosen will be
the first two token positions, which have a token count value equivalent to the most frequently occurring
token count.

A bijective function is a 1-1 relation that is both injective and surjective. When a bijection exists
between two elements in the sets of tokens, this usually implies that a strong relationship exists between
them and log messages that have these token values in the corresponding token positions are separated into
a new partition privileged and imprecise in position 2 also, respectively, contain the tokens instruction and
exception in position 3 and vice versa. Consider the event messages given in Fig. 6 below to illustrate 1-M,
M-1, and M-M relationships. If token positions 2 and 3 are chosen by the heuristic, we would have a 1-M
relationship with tokens speeds, 3,552 and 3,311 as all lines that contain the token speeds in position 2 have
either tokens 3,552 or 3,311 in position 3, a M-1 relationship will be the reverse of this scenario. On the
other hand, if token positions 3 and 4 are chosen by the heuristic, we would have a M-M relationship.

It is obvious that no discernible relationship can be found with the tokens in the chosen positions.
Token 3,552 (in position 3) maps to tokens 3,552 (in position 4) and 3,534. On the other hand, token 3,311
also maps to token 3,534, this makes it impossible to split these messages using their token relationships.
It is a scenario like this that we refer to as a M-M relationship.
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In the case of 1-M and M-1 relations, the M side of the relation could represent variable values (so we
are dealing with only one message type description) or constant values (so each value actually represents a
different message type description). The diagram in Fig. 8 describes the simple heuristic that we developed
to deal with this problem. Using the ratio between the number of unique values in the set and the number of
lines that have these values in the correspond-ing token position in the partition, and two threshold values,
a decision is made on whether to treat the M side as consisting of constant values or variable values.

Before partitions are passed through the partitioning process of Step 3 of the algorithm, they are evaluated
to determine if they already form good clusters. To do this, a cluster goodness ratio threshold (CGT) is
introduced into the algorithm. The cluster goodness ratio (CGR) is the ratio of the number of token positions
that have only one unique value to the event size of the lines in the partition, according to (2).

In the example in Fig. 7, the partition to be split has four token positions. Of these four, the first and
second have only one unique value, i.e., “Program” and “Interrupt,” respectively. Therefore, the CGR for
this partition will be 2

4
 . Partitions that have a value higher than the CGT are considered good clusters and

are not partitioned any further in this step. Just as in Step 2 the PSR can be used to backtrack on the
partitioning at the end of Step 3.

CGR ¼
#T okenP ositionsW ithOneUniqueT okenInP artition 

:
 ð2Þ

Figure 8: Deciding on how to treat 1-M and M-1 relationships. This procedure is implemented in the
Get_Rank_Position function

Figure 9: IPLoM Step 4: discover message type descriptions. If the cardinality of the unique token values in a token
position is equal to 1, then that token position is represented by that token value in the template. Else, we represent

the token position with an “*”.
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3.4. Step 4: Discover Message Type Descriptions (Line Formats) from Each Partition

In this step of the algorithm, partitioning is complete and we assume that each partition represents a cluster,
i.e., every log message in the partition was produced using the same line format. A message type description
or line format consists of a line of text where constant values are represented literally and variable values
are represented using wild-cards. This is done by counting the number of unique tokens in each token
position of a partition. If a token position has only one value then it is considered a constant value in the
line format, while if it is more than one then it is considered a variable. This process is illustrated in Fig. 9.

3.6. Algorithm Parameters

In this section, we give a brief overview of the parameters/ thresholds used by IPLoM. The fact that IPLoM
has several parameters, which can be used to tune its performance, provides flexibility for the system
administrators since this gives them the option of using their expert knowledge when they see it necessary

• File support threshold (FST). Ranges between [0,1]. It reduces the number of clusters produced by
IPLoM. Any cluster whose instances have a support value less than this threshold is discarded. The
higher this value is set to, the fewer the number of clusters that will be produced. This parameter is
similar to the support threshold defined for SLCT and Loghound.

• Partition support threshold. Ranges between [0,1]. It is essentially a threshold that controls
backtracking. Based on our experiments, the guideline is to set this parameter to very low values,
i.e., <0:05, for optimum performance.

• Upper_bound and Lower_bound. Ranges between [0,1].

M side of relationships in Step 2. Lower_Bound should usually take values <0:5 while Upper_Bound
takes values >0:5.

• Cluster goodness threshold. Ranges between [0,1]. It is used to avoid further partitioning. Its optimal
setting should lie in the range of 0.3-0.6.

4. RESULTS

Our goal in the design of IPLoM was threefold. The first was to design an algorithm that is able to find all
message types that may exist in a given log file. The second was to give every message type an equal
chance of being found irrespective of the frequency of its instances in the data. Our third was to design an
algorithm that will produce message types at an abstraction level preferred by a human observer. We therefore
begin our discussion in this section by first describing the setup of our experiments in Section 4.1 and then
providing results that show how these goals have been met using a default scenario for running the algorithm,
i.e., when we want to find all message types in Section 4.2. We also provide results on resource consumption
(CPU and Memory) for the SLCT, Loghound and IPLoM in Section 4.2For SLCT and Loghound, this
support value can be specified either as a percentage of the number of events in the event log or as an absolute
value. For this reason, we run two sets of experiments using support values specified as percentages and as
absolute values. In either case, we set these support values low because intuitively this allows for finding most
of the clusters in the data, which is one of our goals. In Section 4.5, we present results of parameter sensitivity
analysis. In Section 4.6, we present a case study testing IPLoM on the logs from one of the world’s fastest
supercomputers. In Section 4.7, we discuss our analysis of the performance limits of IPLoM.

4.1. Experimental Setting

All our experiments were run on an iMac7 desktop computer running Mac OS X 10.5.6. The machine has
an Intel Core 2 Duo processor with a speed of 2.4 GHz and 2 GB of memory. In order to evaluate the
performance of IPLoM, we selected open source implementations of algorithms previously used in system/
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application log data mining. For this reason, SLCT, Loghound, and Teiresias were selected. We therefore
tested the four algorithms against seven log data sets, which we compiled from different sources, Table 1
gives an overview of the data sets used. The message types in Table 1 were derived manually. The HPC log
file is a publicly available data set collected on high performance clusters at the Los Alamos National
Laboratory in New Mexico, USA [28]. The Access, Error, System, and Rewrite data sets were collected on
our faculty network at Dalhousie, while the Syslog and Windows files were collected on servers owned by
a large ISP working with our research group. Due to privacy issues, we are not able to make the Dalhousie
and ISP data available to the public.

F -Measure 2 _ P recision _ Recall: 5

¼  P recision þ  Recall ð Þ

The parameter values used in running the experiments that produced our baseline results and the results
in Sections 4.3 and 4.4 are provided in Table 2. The seed value for SLCT and Loghound is a seed for a
random number generator used by the algorithms, all other parameter values for SLCT and Loghound are
left at their default values. The parameters for Teiresias were also chosen to achieve the lowest support
value allowed by the algorithm. The IPLoM parameters were all set empirically except in the case of the
cluster goodness threshold and the partition support threshold.

In setting the cluster goodness threshold, we ran IPLoM on the HPC file while varying this value. The
parameter was then set to the value (0.34) that gave the best result and was kept constant for the other files
used in our experiments. On the other hand, the partition support threshold was set to 0 to provide a
baseline performance. Such a setting for the performance threshold implies that no backtracking was done
during partitioning.

It is pertinent to note that we were unable to test the Teiresias algorithm against all our data sets. This
was due to its inability to scale to the size of our data sets. This is a problem that is attested to in [7], too.
Thus, in this work, Teiresias could only be tested against the Syslog data set. The memory consumption
results were obtained by monitoring the processes for each algorithm by using the Unix ps and grep utilities.

4.2. Baseline Experiments

The result of our default evaluation of SLCT, Loghound, and IPLoM are shown in Fig. 10. The graphs in
Fig. 10 visualize these results for Recall, Precision, and F-Measure metrics for all the algorithms using the
“IR” evaluation method. Since one of our aims is to find all message types that may exist in a log file, we
run this set of experiments with the lowest file support threshold possible, which is an absolute support
value of 1. SLCT and Loghound would not work efficiently with an absolute support value of 1, so we run
them with 2 instead. An absolute support value of 1 means every line/word will be considered frequent and
the result of the algorithms will be reduced to the case of finding unique lines for SLCT or the case of
finding all possible templates for Loghound. Both situations are not validated desirable. Since Teiresias
worked only on the Syslog data-set, its results are not included in our analysis. Utilizing the parameter
values listed in Table 2, Teiresias produced a Recall performance of 0.1, a Precision performance of 0.04,
which led to an F-Measure performance of 0.06 using the IR evaluation method. By providing “IR”
evaluations that compare the results of the algorithms with manually produced results, we evaluate how
well we have met the third design goal, which was to design an algorithm that will produce message types
at an abstraction level preferred by a human observer.

Another cardinal goal in the design of IPLoM is the ability to discover clusters in event logs irrespective
of how frequently its instances appear in the data. The performance of the algorithms using this evaluation
criterion is outlined in Table 5. The results show a reduction in performance for all the algorithms for
clusters with a few instances; however, IPLoM’s performance was more resilient.
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For fairness in our comparison, we provide two different evaluations for Loghound. Loghound being a
frequent item set mining algorithm is unable to detect variable parts of a message type when they occur at
the tail end of a message type description. For example, if we intend to find the message type description
“Error code: *,” it is possible for Loghound to find the message type description “Error code:” without the
trailing variable at the end. In such a situation, we need to try that how come the user will get the error code
as above as follows.

We however state that we provide these results for information purposes only. It is our belief that
considering message type descriptions where the number of trailing variables cannot be assessed is
detrimental to our goal of ensuring that we find only meaningful message types at an abstraction level
preferred by a human observer. This interpretation means that we can no longer distinguish an instance of
the first message type from an instance of the second or third message types. So even though we have
presented Loghound-2 results where the trailing variables are not used, we believe that inpractice one
needs to use the trailing variables to distinguish the aforementioned differences. However, we wanted to
give the benefit of doubt to Loghound for a fair comparison.

The average IR F-Measure performance across the data sets, at this default support level, is 0.07, 0.04,
0.10, and 0.46 for SLCT, Loghound, Loghound-2, and IPLoM, respectively. However, as stated in [29], in
cases where data sets have relatively long patterns or low minimum support thresholds are been used, a
priori-based algorithms incur nontrivial computational cost during candidate generation. The event size
statistics for our data sets are outlined in Table 3, which shows the HPC file as having the largest maximum
and average event sizeThis was however not a problem for SLCT (as it generates only 1 item sets). In terms
of performance based on event size, Table 4 shows consistent performance from IPLoM irrespective of
event size, while SLCT and Loghound seem to suffer for midsize clusters. Evaluations of Loghound
considering the trailing variable problem shows Loghound achieving its best results for message types with
a large event size and achieving results which are comparable to IPLoM in the other categories.

Another cardinal goal in the design of IPLoM is the ability to discover clusters in event logs irrespective
of how frequently its nstances appear in the data. The performance of the algorithms using this evaluation
criterion is outlined in Table 5. The results show a reduction in performance for all the algorithms for
clusters with a few instances; however, IPLoM’s performance was more resilient.

Table 3
Log Data Event Size Statistics

Name Min Max Avg.

HPC 1 95 30.7

Syslog 1 25 4.57

Windows 2 82 22.38

Access 3 13 5.0

Error 1 41 9.12

Table 4
Algorithm Performance Based on Cluster Event Size

Event Size Range No. of Clusters Percentage Retrieved (%)

SLCT Loghound Loghound-2 IPLoM

1-10 316 12.97 13.29 49.68 53.80

11-20 142 7.04 9.15 35.92 49.30

>21 68 15.15 16.67 77.27 51.52
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The resource consumption results for SLCT, Loghound, and IPLoM are presented in Tables 6, 7, and 8.
The tables results classification accuracy. The IPLoM algorithm is a lightweight.

5. CONCLUSION AND FUTURE WORK

Due to the size and complexity of sources of information used by system administrators in fault management,
it has become imperative to find ways to manage these sources of information automatically. Application
logs are one such source. We present our work on designing a novel algorithm for message type extraction
from log files, IPLoM. So far, there is no standard approach to tackling this problem in the literature [9].
Message types are semantic groupings of system log messages. They are important to system administrators,
as they aid their understanding of the contents of log files. Administrators become familiar with message
types over time and through experience. Our work provides a way of finding these message types
automatically. In conjunction with the other fields in an event (host names, severity), message types can be
used for more detailed analysis of log files.

Through a 3-step hierarchical partitioning process, IPLoM partitions log data into its respective clusters.
In its fourth and final stage, IPLoM produces message type descriptions or line formats for each of the
clusters produced. IPLoM is able to find message clusters whether or not its instances are frequent. We
demonstrate that IPLoM produces cluster descriptions, which match human judgment more closely when
compared to SLCT, Log-hound, and Teiresias. It is also shown that IPLoM demonstrated statistically
significantly better performance than either SLCT or Loghound on six of the seven different data sets
tested. These results however do not imply that SLCT and Loghound are not useful tools for event log
analysis. They can still be useful for log analysis that involves other fields in an event. However, our results
show that a specialized algorithm such as IPLoM can significantly improve the abstraction level of the
unstructured message types extracted from the data.

Message types are fundamental units in any application log file. Determining what message types can
be produced by an application accurately and efficiently is therefore a fundamental step in the automatic
analysis of log files. Message types, once determined, which simplifies further processing steps like
visualization or mathematical modeling, but also a way of labeling the individual terms (distinct word and
position pairs) in the data.

Future work on IPLoM will involve using the information derived from the results of IPLoM in other
automatic log analysis tasks which help with fault management. We also intend to implement an optimized
version of IPLoM in a low level programming language such as C/C++, and make it publicly available on
our website.3 Lastly, our future work will continue on the integration of machine learning techniques and
information retrieval with message type clustering in order to study automation of fault management and
troubleshooting for computer systems.
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