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AN ANALYSIS OF SOME PROPERTIES OF CLASS OF
ELLIPTIC PARTIAL DIFFERENTIAL OPERATORS:

A SOLUTION OF SOME PROBLEMS

Abstract: We describe a fast and robust method for solving the large sparse linear
systems that arise upon the discretization of elliptic partial differential equations
such as Laplace’s equation and the Helmholtz equation at low frequencies. While
most existing fast schemes for this task rely on so called \iterative” solvers, the
method described here solves the linear sys- tem directly We prove Schwarz-Pick
type estimates and coefficient estimates for a class of functions induced by the
elliptic partial differential operators. Then we apply these results to obtain a Landau
type theorem.

INTRODUCTION

This paper describes a method for rapidly solving large systems of linear equations
with sparse coefficient matrices. It is capable of handling the equations arising from
the finite element or finite difference discretization of elliptic partial differential
equations such as Laplace’s equation, as well as the systems associated with heat
conduction and random walks on certain networks. While most existing fast schemes
for such problems rely on iterative solvers, the method described here solves the
linear system directly (to within a preset computational accuracy). This obviates the
need for customized pre -conditioners, improves robustness in the handling of ill-
conditioned matrices, and leads to dramatic speed-ups in environments in which
several linear systems with the same coefficient matrix are to be solved.

The scheme is described for the case of equations defined on a uniform square
grid. Extensions to more general grids, including those associated with complicated
geometries and local mesh refinements are possible.

For a system matrix of size NxN (corresponding to a  grid), the scheme
requires  arithmetic operations. For a single solve, only
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storage is required. Moreover, for problems loaded on the boundary only, any solves
beyond the first require only  arithmetic operations provided that only
the solution on the boundary is sought. For problems loaded on the entire domain, it
is still possible to perform very fast subsequent solves, but this requires O(N log
AT) storage. Numerical experiments indicate that the constants in these asymptotic
estimates are quite moderate. For instance, to directly solve a system involving a
1 000 000 x 1 000 000 matrix to seven digits of accuracy takes about four
minutes on a 2.8GHz desktop PC with 512Mb of memory. Additional solves beyond
the first can be performed in 0.03 seconds (provided that only boundary data is
involved).

The proposed scheme is conceptually similar to a couple of recently developed
methods for accelerating domain decomposition methods such as nested dissection.
The original nested dissection algorithm reduces a problem defined on a two
dimensional domain in the plane to a sequence of problems defined on one
dimensional domains. These problems involve dense coefficient matrices, but the
reduction in dimensionality results in a decrease in the cost of a direct solve

from  to  fora grid containing Ar points. Observed that these dense

matrices in fact have internal structure, and that by exploiting this structure, it is
possible to further reduce the computational cost. The scheme proposed here is
similar to the schemes in that it relies on a combination of a dimension-reduction
technique, and fast algorithms for structured matrices to solve the resulting sequence
of dense problems. However, it uses a different technique for dimension reduction,
and a much simpler format for working with structured matrices than previous
schemes. Its principal advantage over previous work is that what it actually
computes is a sequence of Schur complements for successively larger parts of the
computational domain. As a consequence, the scheme directly computes the
solution operator that maps a boundary load to the solution on the boundary. Having
access to this operator enables very fast solves in environments where a sequence
of equations on the same computational grid are to be solved for a number of
different boundary loads. The technique of hierarchical computation of Schur
complements also appears to lead to improvements in robustness over competing
methods.
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ELLIPTIC EQUATIONS OF SECOND ORDER

Here we consider linear elliptic equations of second order, mainly the Laplace
equation

Solutions of the Laplace equation are called potential functions or harmonic
functions. The Laplace equation is called also potential equation.

The general elliptic equation for a scalar function , is

where the matrix  is real, symmetric and positive definite. If A is a constant
matrix, then a transform to principal axis and stretching of axis leads to

Fundamental solution

Here we consider particular solutions of the Laplace equation in of the type

where is fixed and / is a function which we will determine such that u defines

a solution if the Laplace equation. Set , then

Thus a solution of is given by
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with constants

Definition. Set . The function

is called singularity function associated to the Laplace equation. Here is the area

of the n-dimensional unit sphere which is given by , where

is the Gamma function. Definition. A function

is called fundamental solution associated to the Laplace equation if

and  for each fixed 

Remark. The fundamental solution 7 satisfies for each fixed the relation

In the language of distribution, this relation can be written by definition as

where is the Dirac distribution, which is called J-function.

Boundary value problems

Assume is a connected domain.

Dirichlet problem - The Dirichlet problem (first boundary value problem) is to
find a solution

 of

(1)



An Analysis of Some Properties of Class of Elliptic Partial Differential Operation... 267

(2)

where is given and continuous on

Proposition 1. Assume is bounded, then a solution to the Dirichlet problem is

uniquely determined.

Proof.Maximum principle.

Remark. The previous result fails if we take away in the boundary condition (2)
one point from the theboundary as the following example shows.

Let be the domain 

Figure 1: Counterexample

Assume  is a solution of

This problem has solutions and , where

Another example see an exercise.

In contrast to this behaviour of the Laplace equation, one has uniqueness if
is replaced by the minimal surface equation
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Mixed boundary value problem - The Mixed boundary value problem (third

boundary value problem) is to find a solution  of

(3)

(4)

where  and  are given and continuous on and are given and continuous

on 

Proposition 2. Assume ft is bounded and sufficiently regular, then a solution to
the mixed problem is uniquely determined in the class  provided

on and for at least one point 

Proof Exercise. Hint: Multiply the differential equation by and

integrate the result over 

SCHWARZ-PICK TYPE ESTIMATES AND
COEFFICIENT ESTIMATES

We consider the Dirichlet boundary value problem of distributional sense as follows

(5)

Here, the boundary data  is a distribution on the boundary  of

, and the boundary condition in (5) is interpreted in the distributional sense that

in  as , where

(6)

for .

Olofsson (2014) proved that, for parameter values , a function

satisfies (5) if and only if it has the form of a Poisson type integral
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(7)

where

Gamma function. If we take , then / is polyharmonic (or n-

harmonic), where .

Furthermore, Borichev and Hedenmalm (2014) proved that

In particular, if � = 0, then / is harmonic.

For , the hyper geometric function is defined

by the power series

where (a) o = 1 and for n = 1,2,... are the Pochhammer symbols. Obviously, for.
In particular, for and, we have

(8)

For� = 0, Heinz (1959) and Colonna(1989) proved the following Schwarz-Pick
type estimates on planar harmonic functions, which are the following.

An exact direct solver

In this section we describe a method for directly solving the linear system that relies
on the sparsity pattern of the matrix only. In the absence of rounding errors, it would
be exact. When the matrix A is of size . the method requires floating
point operations and 0(N) memory. This makes the scheme significantly slower
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than well-  known schemes. (We mention that is optimal in this

environment.) The merit of the scheme presented in this section is simply that it can

straight-forwardly be accelerated to an  or possibly even  scheme.

Ordering the N points in the grid in the spiral pattern, the matrix A in equation
Ax=b has the sparsity pattern for N = 100. We next partition the grid into m concentric

squares and collect the nodes into index sets accordingly. In other

words.

For , we let denote the submatrix of A formed

by the inter section of the rows with the columns. The linear system then

takes on the block-tridiagonal form

where x and b have been partitioned accordingly. The sparsity and block pattern of
(13) for m = 5.

The blocked system of equations (13) can now easily be solved by eliminating

the variables one by one. Using the first,  row to

eliminate from the second row. we obtain the following system of equations for

the variables :
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(14)

where  and

This elimination process is continued row by row until we obtain the following

equation for :

(15)

Equation (15) is of size and is solved directly to obtain

Then is determined by solving the equation

The remaining are computed analogously. To summarize the entire process:

We note that while all matrices arc sparse, the matrices arc dense. This

means that the cost of inverting in each step of the algorithm is . (The

remaining matrix-matrix operations involve matrices that are diagonal or tri-diagonal
and have negligible costs in comparison to the matrix inversion.) The total cost

 there fore satisfies 
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CONCLUSION

We have presented a scheme for rapidly performing direct solves on linear systems
involving the large sparse matrices arising from the discretization of elliptic PDEs
such as Laplace’s equation, or the Helmholtz equation at low wave-numbers. The
scheme presented typically achieves an asymptotic computational complexity of

, with a constant su±ciently small that a direct solve of a linear

system involving a million by million sparse coe±cient matrix can be performed in
about four minutes.
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