Indian Journal of Mathematics and Mathematical Sciences Vol. 12, No. 1, (January. 2016)

ON Q-FINITISTIC SPACES

Shakeel Ahmed*

There are many types of open covers in fuzzy topology (One can see page 187-188 of Liu-Luo[20]). One among these open covers is called Q-open cover. In this paper, we have introduced the concept of Q-finitistic space by using Q-open cover and studied its various properties.

Key Words and Phrases: Finitistic Space, Q-open cover, Good extension property, Continuity.

AMS (MOS) Mathematics subject classification (2000), 54A40, 04A72.

INTRODUCTION AND PRELIMINARIES

The concept of finitistic space in general topology was introduced in 1960 by R.G. Swan [10]. The purpose of considering these spaces was to extend Borel Proofs[1] of P.A. Smith fixed point theorems for spheres (Smith [6], [7], [8], [9]). Of course Swan did not name these spaces as finitistic. The term "Finitistic" was used by Bredon in his book [5] and since than it has become a firmly established term. Let (X, δ) be a L-fuzzy topological space and A be an L-fuzzy subset of X. A subfamily μ of δ is said to be an Q-open cover of A in (X, δ) if $\forall x \in Supp(A)$, there exists some U $\in \mu$ such that $x_{A(x)}$ is not less than or equal to U'. μ is said to be Q-open cover of (X, δ) if μ is Q-open cover of <u>1</u> in (X, δ). Clearly the definition of Q-open covers in fuzzy topology i.e. when I = [0,1] can be written as: Let (X, δ) be a fuzzy topological space and A be a fuzzy subset of X. A subfamily μ of δ is said to be an Q-open cover of A in (X, δ) if $\forall x \in Supp(A)$, there exists some U $\in \mu$ such that A'(x) < U(x).

The order[2] of a family $\{U_{\lambda}: \lambda \in \Delta\}$ of subsets, not all empty, of some set X is the largest integer n for which there exists a subset M of Δ with n +1 elements such that $\bigcap_{\lambda \in M} U_{\lambda}$ is nonempty, or is ∞ if there is no such largest integer. In general topology, a topological space X is said to be Finitistic ([5], p.111) if each open cover of X has a finite order open refinement.

Let $\Delta \neq \emptyset$ and $A = \{A_{\lambda} : \lambda \in \Delta\}$ be a family of fuzzy subsets of a nonempty set X. Then order ([3], [4]) of A is defined as under:

^{*} Department of Mathematics, Govt. Degree College Thanna Mandi, Thanna Mandi, J&K, India, *E-mail: shakeelar2002@yahoo.co.in*

Case-I. When $A_{\lambda} \neq \underline{0}$ for atleast one value of λ in Δ . Then the order of A is the largest nonnegative integer n for which there exists a subset M of Δ having n+1 elements such that $\bigwedge_{\lambda \in M} A_{\lambda} \neq \underline{0}$ or is ∞ if there is no such largest integer n.

Case-II. When $A_{\lambda} = \underline{0}$ for all $\lambda \in \Delta$. Then the order of A is -1. An L-fuzzy topological space (or simply L-topological space) (X, δ) is said to be finitistic [4] if each open cover of (X, δ) has a finite order open refinement. All the other undefined terms on fuzzy topology which have used in this paper can easily be seen in [19] or in [20].

MAIN DEFINITIONS AND RESULTS

Definition 2.1. Let (X, δ) be a fuzzy topological space and A be a fuzzy subset of X. A is said to be Q-finitistic in (X, δ) if every Q-Open Cover of A in (X, δ) has a finite order Q-open refinement. A fuzzy topological space (X, δ) is said to be Q-finitistic in (X, δ) .

Theorem 2.2. Let (X, T) be a general topological space and A $\subset X$. Then A is finitistic in (X, T) if and only if χ_A is Q-finitistic in $(X, \chi(T))$ where χ is characteristic Functor from **Top** to F-**Top**.

Proof. Here (X, T) be a general topological space and A \subset X and (X, χ (T)) is fuzzy topological space where χ_A is fuzzy subset of X and χ (T) = { $\chi_{U_i} U \in T$ }.Let μ = { $\chi_{U\lambda_i} \lambda \in \Lambda$ } be any Q-open cover of χ_A in (X, χ (T)). We show that $\nu =$ { U_{λ_i} : $\chi_{U\lambda} \in \mu$ } is an open cover of A in (X, T). Let $x \in A$. Then $\chi_A(x) = 1 > 0$. But $\chi_A(x) > 0 \Rightarrow x \in$ Supp(χ_A) and μ is Q –open cover of χ_A in (X, χ (T)) \Rightarrow there exists some $\chi_{U\lambda x} \in \mu$ such that $\chi'_A(x) < \chi_{U\lambda x}(x)$. But $\chi'_A(x) < \chi_{U\lambda x}(x) \Rightarrow \chi_{U\lambda x}(x) = 1 \Rightarrow x \in U_{\lambda x} \Rightarrow \nu$ is an open cover of A in (X, T). Since A is finitistic in (X, T), therefore ν has a finite order open refinement say $\nu_1 =$ { V_{α} : $\alpha \in \Delta$ }. We can easily show that $\mu_1 =$ { $\chi_{V\alpha}$: $V_{\alpha} \in \nu_1$ } is finite order Q-open refinement of μ . Hence χ_A is Q-finitistic in (X, χ (T)). Similarly it can be easily shown that if χ_A is Q-finitistic in (X, χ (T)), then A is finitistic in (X, T).

Theorem 2.3. Let (X, T) be a general topological space. Then (X, T) is finitistic if and only if $(X, \chi(T))$ is Q-finitistic where χ is characteristic Functor from **Top** to F-**Top**.

Proof. Since $\underline{1} = \chi_x$ and $\underline{1}_{(0)} = X$. Hence proof follows by Theorem 2.2.

Theorem 2.4. Let (X, δ) be a weakly induced fuzzy topological space and A be a fuzzy subset of X. Then A is Q-finitistic in (X, δ) if and only if $A_{(0)}$ is finitistic in $(X, [\delta])$.

Proof. Let A be Q-finitistic in (X, δ) . We have to show that $A_{(0)}$ is finitistic in $(X, [\delta])$. Let $\mu = \{U_{\lambda} : \lambda \in \Lambda\}$ be any open cover of $A_{(0)}$ in $(X, [\delta])$. By definition of $[\delta]$ each $\chi_{U\lambda}$ is a fuzzy open subset of X in (X, δ) . We show that $\nu = \{\chi_{U\lambda} : U_{\lambda} \in \mu\}$ is

an Q-open cover of A in (X, δ). Let $x \in \text{Supp}(A)$. Then A(x) > 0. But $A(x) > 0 \Rightarrow x \in A_{(0)}$. Since $\mu = \{U_{\lambda}: \lambda \in \Lambda\}$ be any open cover of $A_{(0)}$ in (X, [δ]), there exists some $U_{\lambda x} \in \mu$ such that $x \in U_{\lambda x}$. Now $x \in U_{\lambda x} \Rightarrow \chi_{U\lambda x}(x) = 1 \Rightarrow A'(x) < 1 = \chi_{U\lambda x}(x) \Rightarrow A'(x) < \chi_{U\lambda x}(x)$. Clearly $\chi_{U\lambda x} \in v$. Hence v is Q-open cover of A in (X, δ). Since A is Q-finitistic in (X, δ), therefore v has a finite order open refinement say $v_1 = \{W_a: \alpha \in \Delta\}$. We show that $\mu_1 = \{(W_{\alpha})_{(0)}: W_{\alpha} \in v_1\}$ is finite order open refinement of μ . Since (X, δ) is weakly induced, therefore each $(W_{\alpha})_{(0)}$ is an open subset of X in (X, [δ]). Let $x \in A_{(0)}$. Then A(x) > 0. But $A(x) > 0 \Rightarrow x \in \text{Supp}(A)$. Since v_1 is Q-open cover of A in (X, δ), therefore there exists some $W_{\alpha} \in v_1$ such that $A'(x) < W_{\alpha}(x) \Rightarrow W_{\alpha}(x) > A'(x) \ge 0 \Rightarrow W_{\alpha}(x) > 0 \Rightarrow x \in (W_{\alpha})_{(0)} \Rightarrow \mu_1$ is an open of $A_{(0)}$ in (X, [δ]). Now we show that order of μ_1 is finite. Here order of v_1 is finite. Let order of $v_1 = m$. Let $\{(W_1)_{(0)}, (W_2)_{(0)}, (W_3)_{(0)}, \dots, (W_{m+2})_{(0)}\}$ be any subfamily of μ_1 having m+2 elements. We have to show that $\bigcap^{m+2}_{i=1}(W_i)_{(0)} = \emptyset$. Let $\bigcap^{m+2}_{i=1}(W_i)_{(0)} \neq \emptyset$. Then there exists some $x \in \bigcap^{m+2}_{i=1}(W_i)_{(0)}$. But $x \in \bigcap^{m+2}_{i=1}(W_i)_{(0)} \Rightarrow x \in (W_i)_{(0)}$ for all $i = 1, 2, 3, \dots, m$.

Converse. Suppose $A_{(0)}$ is finitistic in $(X, [\delta])$. We have to show that A is Q-finitistic in (X, δ) . Let $\mu = \{U_{\lambda} : \lambda \in \Lambda\}$ be any Q-open cover of A in (X, δ) . Let $x \in A_{(0)}$. Then A(x) > 0. But $A(x) > 0 \Rightarrow x \in$ Supp(A). Since μ is Q-open cover of A, there exists some $U_{\lambda x} \in \mu$ such that $A'(x) < U_{\lambda x}(x)$. Let $\mu_1 = \{U_{\lambda x} : x \in$ Supp $(A)\}$. Then clearly $\mu_1 \subset \mu$ and μ_1 is also a Q-open cover of A in (X, δ) . Let $v = \{(U_{\lambda x})_{(A'(x))}: U_{\lambda x} \in \mu_1\}$. We show that v is an open cover of $A_{(0)}$ in $(X, [\delta])$. Clearly each $(U_{\lambda x})_{A'(x)} \in [\delta]$ because (X, δ) is weakly induced. Let $x \in A_{(0)}$. Then A(x) > 0. But $A(x) > 0 \Rightarrow x \in$ Supp $(A) \Rightarrow A'(x) < U_{\lambda x}(x) \Rightarrow U_{\lambda x}(x) \Rightarrow X \in (U_{\lambda x})_{(A'(x))}$. It means v is an open cover of $A_{(0)}$ in finitistic in $(X, [\delta])$, therefore v has a finite order open refinement say $v_1 = \{W_{\alpha} : \alpha \in D\}$. Let $x \in$ Supp(A). Then A(x) > 0 $\Rightarrow x \in A_{(0)}$. Since v_1 is an open cover of $A_{(0)}$, there exists some $W_{\alpha x} \in v_1$ such that $x \in W_{\alpha x}$. Let $\mu_2 = \{\chi_{W\alpha x} \land U_{\lambda x}: x \in$ Supp $(A)\}$. Without loss of generality we can assume that $\chi_{W\alpha x}$ is not repeated in μ_2 . Then it can be easily checked that μ_2 is a finite order Q-open refinement of μ in (X, δ) . Hence A is Q-finitistic in (X, δ) .

Theorem 2.5. Let (X,T) be a general topological space. Then (X,T) is finitistic if and only if $(X, \chi(T))$ is Q-finitistic where χ is characteristic Functor from **Top** to F-**Top**.

Proof. We know that $\chi_X = \underline{1}$. By Theorem 2.2, X is finitistic in (X, T) if and only if χ_X is Q-finitistic in (X, $\chi(T)$). It means (X,T) is finitistic if and only if (X, $\chi(T)$) is Q-finitistic.

Theorem 2.6. Let (X, T) be a general topological space and A be a fuzzy subset of X in $(X, \omega(T))$. A is Q-finitistic in $(X, \omega(T))$ if and only if $A_{(0)}$ is finitistic in (X, T) where ω is the Lowen Functor from **Top** to F-**Top**.

Proof. Since $(X, \omega(T))$ is induced fuzzy topological space and we know every induced fuzzy topological space is weakly induced, therefore $(X, \omega(T))$ is weakly induced. Here $[\omega(T)] = T$. Hence by Theorem 2.4, $A_{(0)}$ is finitistic in (X, T) if and only if A is Q-finitistic in $(X, \omega(T))$.

Theorem 2.7. Q-finitisticness is good extension property of finitisticness in general topology.

Proof. We know that $1_{(0)} = X$. By Theorem 2.6, <u>1</u> is Q-finitistic in $(X, \omega(T))$ if and only if $\underline{1}_{(0)}$ is finitistic in (X,T). It means (X,T) is finitistic if and only if $(X, \omega(T))$ is Q-finitistic.

Theorem 2.8. Every closed fuzzy subset of a Q-finitistic space is Q-finitistic.

Proof. Let (X, δ) be a Q-finitistic space and A be a closed fuzzy subset of X in (X, δ) . We have to show that A is Q-finitistic. Let $\mu = \{U_{\lambda}: \lambda \in \Lambda\}$ be any Q-open cover of A. We show that $\nu = \{U_{\lambda}: \lambda \in \Lambda\} \cup \{A'\}$ is a Q-open cover of (X, δ) . Let $x \in X$. Then two cases arise:

Case-I. When $x \in \text{Supp}(A)$. Then A(x) > 0. But $A(x) > 0 \Rightarrow A'(x) < 1$. But $x \in \text{Supp}(x) \Rightarrow$ there exists some $U_{\lambda x} \in \mu$ such that $A'(x) < U_{\lambda x}(x) \Rightarrow U_{\lambda x}(x) > A'(x) \ge 0$ = $\underline{1}'(x) \Rightarrow \underline{1}'(x) < U_{\lambda x}(x)$.

Case-II. When $x \notin \text{Supp}(A)$. Then A(x) = 0. But $A(x) = 0 \Rightarrow A'(x) = 1 > 0 = \underline{1}'(x)$ $\Rightarrow \underline{1}'(x) < A'(x)$. From cases-I and II, we conclude that for all $x \in \text{Supp}(\underline{1}) = X$, there exists some $U \in v$ such that $\underline{1}'(x) < U(x)$. Hence v is Q-open cover of (X, δ) . Since (X, δ) is Q-finitistic, therefore v has a finite order Q-open refinement say $v_1 = \{W_{\alpha} : \alpha \in \Delta\}$. Let $\mu_1 = v_1 - \{W_{\alpha} \in v_1 : W_{\alpha} \le A'\}$. It can be easily shown that μ_1 is a finite order Q-open refinement of μ . Hence A is Q-finitistic in (X, d).

Theorem 2.9. Every closed subspace of a Q-finitistic space is Q-finitistic.

Proof. Let (X, δ) be a Q-finitistic space and $(Y, \delta|_Y)$ be a closed subspace of (X, δ) . We have to show that $(Y, \delta|_Y)$ Q-finitistic.Let $\mu = \{U_{\lambda}: \lambda \in \Lambda\}$ be any Q-open cover of $(Y, \delta|_Y)$. Then for all $U_{\lambda} \in \mu$, there exists V_{λ} such that $U_{\lambda} = V_{\lambda}|_Y$. We show that $\nu = \{V_{\lambda}: U_{\lambda} = V_{\lambda}|_Y$ where $U_{\lambda} \in \mu\} \cup \{\chi_{Y'}\}$ is Q-open cover of (X, δ) . Clearly each member of ν is fuzzy open subsets of X in (X, δ) . Let $x \in \text{Supp}(\underline{1}) = X$. Then two cases arise:

Case-I. When $x \in Y$. Then there exists some $U_{\lambda x} \in \mu$ such that $\underline{1}'(x) < U_{\lambda x}(x)$.

Case-II. When $x \notin Y$. Then $x \in Y'$. But $x \in Y' \Rightarrow \chi_{Y'}(x) = 1 > 0 = \underline{1}'(x) \Rightarrow \underline{1}'(x) < \chi_{Y'}(x)$. Thus v is a Q-open cover of (X, δ) . Since (X, δ) is Q-finitistic, therefore v has a finite order Q-open refinement say $v_1 = \{W_{\alpha} : \alpha \in \Delta\}$. Then clearly $\mu_1 = \{W_{\alpha}|_Y: W_{\alpha} \in v1\}$ is finite order Q-open refinement of μ . Hence $(Y, \delta|_Y)$ is Q-finitistic.

Theorem 2.10. Every Q-compact fuzzy subset is Q-finitistic.

Proof. Let (X, δ) be a fuzzy topological space and A be a Q-compact fuzzy subset of X in (X, δ) . Let $\mu = \{U_{\lambda}: \lambda \in \Lambda\}$ be any Q-open cover of A in (X, δ) . Since A is Q-compact, therefore μ has a finite Q-open subcover say $\nu = \{U_1, U_2, U_3, \dots, U_n\}$. Then clearly $\nu_1 = \{\underline{0}, U_1, U_2, U_3, \dots, U_n\}$ is finite order Q-open refinement of μ . Hence A is Q-finitistic.

Remark 2.11. Converse of above theorem is not true. See following example:

Example 2.12. Let X be an infinite set. Let $\delta = \{\chi_U: U \subset X\}$. Then clearly (X, δ) is a fuzzy topological space and $\underline{1}$ is Q-finitistic in (X, δ) because the family $\{\chi_{\{x\}}: x \in X\}$ is zero order Q-open refinement of every Q-open cover of $\underline{1}$ in (X, δ) . But $\underline{1}$ is not Q-compact in (X, δ) because the Q-open cover $\{\chi_{\{x\}}: x \in X\}$ of $\underline{1}$ has no finite Q-open subcover.

Theorem 2.13. If supp(A) is finite, then A is Q-finitistic.

Proof. Let (X, δ) be a fuzzy topological space and A be a fuzzy subset of X in (X, δ) such that supp(A) is finite. We have to show that A is Q-finitistic. Let $\mu = \{U_{\lambda}: \lambda \in \Lambda\}$ be any Q-open cover of A in (X, δ) . Since supp(A) is finite, we can write supp (A) = $\{x_1, x_2, x_3, \dots, x_n\}$. Since μ is a Q-open cover of A in (X, δ) , for all $x_i \in$ supp(A), there exists some $U_{\lambda i} \in \mu$ such that $A'(x) < U_{\lambda i}(x)$. Then clearly $\nu = \{\underline{0}, U_{\lambda i}, U_{\lambda 2}, U_{\lambda 3}, \dots, U_{\lambda n}\}$ is finite order Q-open refinement of μ . Hence A is Q-finitistic.

Remark 2.14. Converse of above theorem is not true. See following example:

Example 2.15. Let X be an infinite set. Let $\delta = \{\chi_U: U \subset X\}$. Then clearly (X, δ) is a fuzzy topological space and <u>1</u> is Q-finitistic in (X, δ) because the family $\{\chi_{\{x\}}: x \in X\}$ is zero order Q-open refinement of every Q-open cover of <u>1</u> in (X, δ) . But supp(<u>1</u>) = X which is not finite.

Theorem 2.16. Let X be a fuzzy topological space such that order of each element of supp(A) is finite in (X, δ) . Then A is Q-finitistic in (X, δ) .

Theorem 2.17. Join of two Q-finitistic fuzzy subsets of a set is again a Q-finitistic.

Proof. Let (X, δ) be a fuzzy topological space and A, B be two Q-finitistic fuzzy subsets of X in (X, δ) . We have to show that $A \lor B$ is again a Q-finitistic subset of X in (X, δ) . Let $\mu = \{U_{\lambda}: \lambda \in \Lambda\}$ be any Q-open cover of $A \lor B$ in (X, δ) . It can be easily checked that μ is Q-open cover of A as well as Q-open cover of B.Since both A and B are Q-finitistic, therefore μ has two finite order Q-open refinements say μ_A and μ_B . Let $\nu = \mu_A \lor \mu_B$. Then clearly ν is finite order Q-open refinement of μ . Hence $A \lor B$ is Q-finitistic fuzzy subset of X in (X, δ) .

Remark 2.18. Join of arbitrary family of Q-finitistic fuzzy subsets need not be Q-finitistic.

Example 2.19. Let X be an infinite set. Let T be a general topology on X such that (X, T) is not finitistic. Then $(X,\chi(T))$ is not Q-finitistic by Theorem 2.3. Let $x \in X$. Then $\chi_{\{x\}}$ is Q-finitistic fuzzy subset of X in $(X,\chi(T))$ but $\bigvee_{x \in X} \chi_{\{x\}} = \chi_X = \underline{1}$ is not Q-finitistic in $(X,\chi(T))$ because $(X,\chi(T))$ is not Q-finitistic.

Remark 2.20. Continuous image of Q-finitistic space need not be Q-finitistic.

Example 2.21. Let (X, D) be a discrete general topological space where X is an infinite set. Let T be a topology on X such that (X, T) is not finitistic. Then by Theorem 2.3, $(X, \chi(D))$ is Q-finitistic where $(X, \chi(T))$ is not Q-finitistic. Let I: $X \rightarrow X$ defined as I(x) = x. Then clearly I: $(X, \chi(D)) \rightarrow (X, \chi(T))$ is continuous and onto. It means $(X, \chi(T))$ is continuous image of $(X, \chi(D))$. Here $(X, \chi(D))$ is Q-finitistic but $(X, \chi(T))$ is not Q-finitistic.

Theorem 2.22. Homeomorphic image of Q-finitistic space is Q-finitistic.

Proof. Let (X, δ_1) be a Q-finitistic space and $f : (X, \delta_1) \rightarrow (Y, \delta_2)$ be a homoeomorphism. We have to show that (Y, δ_2) is Q-finitistic. Let $\mu = \{U_{\lambda} : \lambda \in \Delta\}$ be any Q-open cover of (X, δ_2) . We show that $\nu = \{U_{\lambda}f : U_{\lambda} \in \mu\}$ is a Q-open cover of (X, δ_1) . Since f is continuous, therefore each $U_{\lambda}f$ is an L-fuzzy open set in (X, δ_1) . Also let $x \in \text{supp}(\underline{1}) = X$. Then $f(x) \in Y = \text{supp}(\underline{1})$. Since $\mu = \{U_{\lambda} : \lambda \in \Delta\}$ is a Q-open cover of (Y, δ_2) , there exists some $U_{\lambda} \in \mu$ such that $\underline{1}'(f(x)) < U_{\lambda}(f(x))$. But $\underline{1}'(f(x)) < U_{\lambda}(f(x)) \Rightarrow \underline{1} < U_{\lambda}f(x) \Rightarrow \underline{1}(x) < U_{\lambda}f(x) \Rightarrow \nu = \{U_{\lambda}f : U_{\lambda} \in \mu\}$ is an Qopen cover of (X, δ_1) . Since (X, δ_1) is Q-finitistic, therefore $\nu = \{U_{\lambda}f : U_{\lambda} \in \mu\}$ has a finite order Q-open refinement say $\nu_1 = \{V_{\beta}: \beta \in \Delta_1\}$. Again since $f^{-1}: (Y, \delta_2) \rightarrow$ (X, δ_1) is continuous, it can be easily checked that $\mu_1 = \{V_{\beta}f^{-1}: V_{\beta} \in V_1\}$ is a finite order Q-open refinement of μ . Hence (Y, δ_2) is Q-finitistic in (Y, δ_2) .

Theorem 2.23. Let $\{(X_t, \delta_t), t \in T\}$ be a family of fuzzy topological spaces such that $(X, \bigoplus_{t \in T} \delta_t)$ is Q-finitistic. Then (X_t, δ_t) is Q-finitistic $\forall t \in T$.

Proof. Here $X = \bigcup_{t \in T} X_t$ where X_t 's are disjoint. Suppose $(X, \bigoplus_{t \in T} \delta_t)$ is Q-finitistic. Let $\mu_t = \{U_{\lambda} : \lambda \in \Delta\}$ be any Q-open cover of (X_t, δ_t) . $\forall U_{\lambda} \in \mu_t$, define $R_{\lambda} = U_{\lambda}$ on X_t and $R_{\lambda} = \underline{1}$ on $X \cdot X_t$ where $X = \bigcup_{t \in T} X_t$. The clearly μ , the family of all R_{λ} 's is an Q-open cover of $(X, \bigoplus_{t \in T} \delta_t)$). Since $(X, \bigoplus_{t \in T} \delta_t)$ is Q-finitistic, therefore μ has a finite order Q-open refinement say $V = \{V_{\beta} : \beta \in \Delta_1\}$. Then clearly $V_t = \{V_{\beta}|_{X_t} : V_{\beta} \in V\}$ is finite order Q-open refinement of μ_t . Hence (X_t, δ_t) is Q-finitistic $\forall t \in T$.

Theorem 2.24. Let (X, δ_1) and (Y, δ_2) be two Q-finitistic spaces. Then $(X \cup Y, \delta_1 \oplus \delta_2)$ is Q-finitistic.

Proof. Let $\mu = \{U_{\lambda} : \lambda \in \Delta\}$ be any Q-open cover of $(X \cup Y, \delta_1 \oplus \delta_2)$. Then clearly $\mu_x = \{U_{\lambda}|_X : U_{\lambda} \in \mu\}$ and $\mu_Y = \{U_{\lambda}|_Y : U_{\lambda} \in \mu\}$ are Q-open covers of (X, δ_1) and (Y, δ_2) respectively. Since both (X, δ_1) and (Y, δ_2) are Q-finitistic, therefore μ_X and μ_Y have finite order Q-open refinements say V_X and V_Y . Define $R_{\alpha} = V_{\alpha}$ on X and $R_{\alpha} = \underline{0}$ on Y and $S_{\beta} = W_{\beta}$ on Y and $S_{\beta} = \underline{0}$ on X where $V_{\alpha} \in V_X$ and $W_{\beta} \in V_Y$. Then clearly

the family V of all $R_{\alpha's}$ and $S_{\beta's}$ defined above is a finite order Q-open refinement of μ . Hence $(X \cup Y, \delta_1 \oplus \delta_2)$ is Q-finitistic.

Theorem 2.25. The sum space $(X \cup Y, \delta_1 \oplus \delta_2)$ is Q-finitistic if and only if (X, δ_1) and (Y, δ_2) are Q-finitistic. Proof follows by Theorem 2.23 and Theorem 2.24.

REFERENCES

- A. Borel, Nouvelle demonstraction d'un Theorem de. P.A. Smith, Commt. Math. Helv. 28 (1955), 27-39.
- [2] A.R. Pears, Dimension Theory of General Spaces, Cambridge University Press (1975).
- [3] D.S. Jamwal and Shakeel Ahmed, On Covering Dimension of L-fuzzy Subsets and Ltopological spaces, *The Journal of Fuzzy Mathematics*, No. 2, 12 (2004), 331–339.
- [4] D.S. Jamwal and Shakeel Ahmed, On Covering Dimension and Finitistic Spaces in Ltopology. *The Journal of Fuzzy Mathematics*, No. 2, 14 (2006), 207-222.
- [5] G.E. Bredon, Introduction to compact transformation groups, Academic Press (1972).
- [6] P.A. Smith, Transformation of finite period, Ann. of Math., 39 (1938), 127-164.
- [7] P.A. Smith, Transformation of finite period-II, Ann. of Math., 40 (1939), 690-711.
- [8] P.A. Smith, Transformation of finite period-III, Ann. of Math., 42 (1941), 446-458.
- [9] P.A. Smith, transformation of finite period-IV, Ann. of Math, 46(1945), 357-364.
- [10] R.G. Swan, A new method of fixed point theory, comm.. Math. Helv. 34 (1960), 1-16.
- [11] Shakeel Ahmed, On α-Finitistic Spaces, Tamsui Oxford Journal of Mathematical Sciences, No.1, 22(2006), 73-82.
- [12]S. Deo, Topology of finitistic spaces and related topics, Bull. Allahabad Math. Soc.2 (1987), 31-61.
- [13] S. Deo and A.R. Pears, A completely finitistic space is finite dimensional. Bull. London Math. Soc. 17 (1985), 49-51.
- [14]S.Deo and H.S. Trapathi, compact lie group action on finitistic spaces, Topology 21 (1982), 393-399.
- [15]S. Deo and M. Singh, On certain constructions in finitistic spaces, Int. J. Math and Math. Soc. 6 (1983), 477-482.
- [16] S. Maclane, Categories for the working mathematicians, Springer-Verlag (1971).
- [17] S. Willard, General topology, Addison-Wesley pub. Co. (1970).
- [18] T. E. Gantner, R.C. Steinlage and R.H. Warren, compactness in fuzzy topological spaces, J. Math. Anal. Appl. 62(1978), 547-562.
- [19]U. Hohle and S.E. Rodabaugh (Editors) Mathematics of Fuzzy sets, logic, topology and Measure theory, Kluwer Academic Pub. (1999).
- [20] Y.M. Liu and M.K. Luo, Fuzzy Topology, World Scientific Pub. (1997).

This document was created with the Win2PDF "print to PDF" printer available at http://www.win2pdf.com

This version of Win2PDF 10 is for evaluation and non-commercial use only.

This page will not be added after purchasing Win2PDF.

http://www.win2pdf.com/purchase/