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STRONG CONVERGENCE RATE IN AVERAGING PRINCIPLE
FOR THE HEAT EQUATION DRIVEN BY A GENERAL
STOCHASTIC MEASURE

VADYM RADCHENKO*

ABSTRACT. We consider the stochastic heat equation on [0,7] x R in the
mild form driven by a general stochastic measure p, for p we assume only
o-additivity in probability. The time-averaging of the equation is studied, we
estimate the rate of uniform a. s. convergence to the solution of the averaged
equation.

1. Introduction

In this paper we shall establish the averaging principle for one-dimensional
stochastic heat equation of the form

duc(t,0) = 124D gt 4 f(t/e, 2,00t ) db + o(t/z,x) du(o),
(ta) € (0,T) xR,  (L1)
u:(0,2) = ug(x).
Here € > 0 is a small parameter, and p is a stochastic measure defined on Borel
o-algebra on R. For p we assume o-additivity in probability only, assumptions for
f, o and ug are given in Section 3.
We will study the rate of convergence
sup |uc(t,2) — a(t,z)| = 0, & —0,
t,x

where @ is the solution of the averaged equation

da(t,z) = 188D gy 4 F(o a(t, ) dt + o(2) du(z), (t,2) € (0,T] x R,
(0, 2) = up(x).

(1.2)
We consider solutions to the formal equations (1.1) and (1.2) in the mild form
(see (3.1) and (3.4) below), f and & are defined in (3.3).

A similar problem was recently studied in [19], but in that paper function f
in (1.1) did not depend on the time variable, and averaging was considered for
a stochastic term only. Note that the convergence rate obtained in [19] is higher
that rate in the given paper (see Remark 3.2 below).
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The averaging principle for stochastic systems was studied by many authors.
Equations driven by Wiener process were investigated, for example, in [6] and [21].
Averaging of stochastic partial differential equations mainly was studied for slow-
fast systems, solutions were considered in the mild sense. Heat equation driven
by Brownian motion was considered in [3], [4], and [7], by Wiener and Poisson
processes — in [11] and [23]. Averaging principle for evolution equations with
fractional Brownian motion was obtained in [14] and [24], with a-stable noise —
in [1]. The wave equation driven by Wiener process was considered in [8] and [9],
Burgers equation — in [5], Korteweg-de Vries equation — in [10].

Stochastic integrator in (1.1) is more general, but we study the model with
one equation and additive noise. Averaging principle for one class of equations
with multiplicative noise driven by stochastic measure with continuous paths was
investigated in [20].

The rest of the paper is organized as follows. Section 2 contains the basic facts
concerning stochastic measures. In Section 3 we give the exact formulation of the
problem, our assumptions and formulate the main result (Theorem 3.1). Some
auxiliary statements are proved in Section 4. Proof of the main result is given in
Section 5.

2. Preliminaries

Let Ly = Lo(£2, F, P) be the set of all real-valued random variables defined on the
complete probability space (2, F,P). Convergence in Ly means the convergence
in probability. Let B be a Borel o-algebra on R.

Definition 2.1. A c-additive mapping p : B — Lg is called stochastic measure
(SM).

In other words, u is a vector measure with values in Ly. We do not assume any
martingale properties or moment existence for SM.

For a deterministic measurable function g : R — R, A € B and SM p, an integral
of the form [ 4 9dp is defined and studied in [13, Chapter 7]. In particular, every
bounded measurable g is integrable with respect to (w. r. t.) any p. Note that this
integral was constructed and studied in [13] for p defined on arbitrary o-algebra,
but in our paper, we consider SM on Borel subsets of R.

We can give the following examples of SMs. For square integrable martingal
My, u(A) = fOT 14(t)dM; is an SM. If W/ is a fractional Brownian motion with
Hurst index H > 1/2 and f : [0,7] — R is a bounded measurable function
then u(A) = fOT f(H)1a(t) dWH is an SM, as follows from [15, Theorem 1.1]. An
a-stable random measure defined on B is an SM too for a € (0,1) U (1, 2], see [22,
Chapter 3]. Some other examples are given in [20].

In the sequel, p denotes a SM, C' and C(w) denote positive constants and posi-
tive random constants respectively whose exact values are not important (C' < oo,
C(w) < 00 a. s.).

We will use the following lemma.
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Lemma 2.2. (Lemma 3.1 in [17]) Let ¢, : R — R, I > 1 be measurable functions
such that ¢(x) =Y =, |¢1(x)| is integrable w.r.t. p on R. Then

Z;(/R¢ldu)2< o a s

We consider the Besov spaces B, ([c, d]). Recall that the norm in this classical
space for 0 < a < 1 may be introduced by

d—c 1/2
91l B2, (te,an) = N9llLaie,an + (/O (wa(g,7))2r—207t dr) , (2.1)
where

wa(g,7) = sup (/Cd_h lg(y +h) — g(y)|? dy)W.

0<h<r
For any j € Z and all n > 0, put

dé]’rg — ,] 4 k27n’ 0 S k S 277,7 A(J) (d(J)

(k 1)n’d({2]’ l<k<2m.

The following lemma is a key tool for estimates of the stochastic integral.

Lemma 2.3. (Lemma 3 in [18]) Let Z be an arbitrary set, and function q(z,s) :
Z x [j, 7+ 1] = R is such that all paths q(z,-) are continuous on [j,j+ 1]. Denote

Gn(z,5) = Z (z,d(k Hn )lAif;f(s)'

1<k<2n

Then the random function
W= [ aesduts), zez
(4.3+1]

has a version

nz)= | qo(zs)du(s)
(4,9+1]
+ ;(/MH] qn(z,8) du(s) — /(j,j+1] qn-1(2,s) du(s)) (2.2)

such that for all >0, weQ, z€ Z
(=) < la(z, 5)p((5,5 + 1))

{ZQnﬁ Z (2 dgg) (z,d&) o )| }1/2

n>1 1<k<2n
(G)y 2 2
{2 ST waghir) (23)
n>1 1<k<2n

Theorem 1.1 [12] implies that for « = (8 + 1)/2,

1/2
{Z 2mh Z (2, dyn) *Q(Z,d(k—1)n)|2} < Clla(z ) lBg, g5+ (24)

n>1 1<E<27
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From Lemma 2.2 it follows that for each 5 >0, j € Z

ZQ B Z (]) <400 a.s.

n>1 1<k<2m

3. Problem and Formulation of the Main Result

Consider the heat equations (1.1) in the following mild sense

wit.a) = [ plto = s)uo(o)dy
+/(; ds/Rp(t—S,w—y)f(s/s,%ug(s,y))dy
Jr/Rd/L(y)/O p(t —s,x —y)o(s/e,y)ds. (3.1)

Here p(t,z) = (v/7t) "' e=*"/! is the Gaussian heat kernel,
u(t,z) = u(t,z,w) : [0,T] x Rx Q=R

is an unknown measurable random function, p is a stochastic measure defined on
Borel o—algebra of R. The integrals of random functions w.r.t. ds and dy are
taken for each fixed w € €. For each pair (¢, z) equality (3.1) holds a. s.

Recall that [, p(t,2)dz =1, and for some C, 0 < XA < 1 hold

‘Bptx

‘<Ct L=/t ‘31’”

‘ < Ot3/2e=2a%/t, (3.2)
We will refer to the following assumptions throughout the paper.
Assumption Al. ug(y) = up(y,w) : R x Q@ — R is measurable and
[uo(y)] < C(w),  [uo(y1) = uo(y2)| < Luy(W)lyr — ", Bluo) > 1/2.
Assumption A2. f(s,y,v): Ry x R x R — R is measurable, bounded, and
[f(s,y1,01) = f(8,52,02)| < Lp(lyr — ya| + o1 —v2) .
Assumption A3. o(s,y) : Ry x R — R is measurable, bounded, and
lo(s,91) = 0(s,92)| < Lolyn — 2|7, 1/2 < B(o) <1
Assumption A4. |y|P is integrable w.r.t. u on R for some p > 1/2.

Assumption A5. There exist the following limits

t
fly,v) = lim ~ / f(s,y,v)ds, a(y)= lim ! o(s,y)ds. (3.3)

t—oo t—oo 0

It is easy to see that fulfilment of A2 and A3 for f(s,y,v) and o(s,y) imply
their fulfilment for f(y,v) and &(y).
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We will study convergence u(t,x) — a(t,z), € — 0, were @ is the solution of
the averaged equation (1.2)

at, z) = /R p(t, = — y)uo(y) dy + /O ds /R plt — 5,2 — ) (. a(s,y)) dy

_|_/Rdu(y)/0 p(t—s,x—y)a(y)ds. (3.4)

Theorem of [2] and A1-A3 give that solutions of (3.1) and (3.4) exist and are
unique, and have a Holder continuous version on [§, T] x [— K, K| for each 6, K > 0
(a similar result is given by Theorem [17]). Therefore, u. and @ have a continuous
versions on (0,77 x R.

In the main theorem we will use the following assumptions.

Assumption A6. Functions

Hf(r,y,v):f(r,y,v)—f(y,v),
Gf(’l“,y7’l)):/0 (f(87y7v)_f(y7v))d87 TERJN Y, veR

are bounded.
Assumption A7. Functions

Ho(ry) = o(ry) —a(y),

Galrin) = [ (ols) ~ o) ds, 7 e Ry,
are bounded.

Assertions A6 and A7 hold, for example, if f(s,y,v) and o(s,y) are bounded,
periodic in s for each y, v, and set of values of minimal period is bounded.
The main result of the paper is the following.

Theorem 3.1. Assume that Assumptions A1-A7 hold. Then for continuous ver-
sions of us and u, and for any

(11 1
0<m <m1n{g,§(l—%)}, (3.5)
we have
sup e M ue(t, x) — a(t,x)| < 400 a. s. (3.6)

e>0,t€[0,T],z€R
Proof of the theorem will be given in Section 5.
Remark 3.2. It was assumed that 3(c) > 3, therefore interval in (3.5) is not empty.

For smooth o we can take any 0 < v; < % Also we can compare our estimate
in (3.5) with results of other papers. In [19], for for equations (3.1) and (3.4), for

f independent of ¢, it was proved that we can take any 0 < 1 < % 1-— #(O_) ,

and for smooth o we obtain 0 < 1 < i.
The order of strong convergence equal to % was obtained in [16] for the system
driven by Brownian motion and Poisson random measure. For systems driven by
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Brownian motions only, in [3], were achieved strong convergence rate 2 — and weak
convergence rate 1—.

4. Auxiliary Lemmata

At first, we will study the Holder regularity of the stochastic integrals in our
equations. The following statement is very similar to Lemma 2 [2]. But here we
obtain that coefficient C'(w) in (4.1) does not depend on z.

Lemma 4.1. Let A8 and A/ hold. Then for version (2.2) of

19(w7t)=/Rdu(y)/0 p(t—s,x—ylo(s,y)ds, te[0,T],

for any v < 1/4 there exist a random constant C(w) < oo a. s. (that depends on
v, is independent of x) such that

[z, t1) — Ha, ta)] < C(w)|ty — to|” (4.1)
for all t1,t2 € [0,T), x € R.
Proof. Let € R, 0 <t <ty <T are fixed. Set

to t1
Q(Zay) = / p(tg—S,!L'—y)O'(S,y) dS—/ p(t1—87$—y)0(87y) dS, = (t17t27x)'
0 0

For version (2.2) of the integral

n(z) = / a(z,y) du(y)
(4,5+1]
holds (2.3). To estimate Besov space norm of ¢(z, ), we consider

Q(Za Y + h) - Q(Z7y)

_A%Mm_&x_y_m_pm—&x—y—mxd&y+m—o@w»@
i /Otl(p(tg — 5,0 —y—h) —p(ta — 5,2 —y))o(s,y)ds
_ /O“(p(tl — 5,2 —y—h)—plty — 5,2 —y))o(s,y)ds
N /tt plts — 8,0 —y — h)(o(s,y + h) — o(s,))ds

+/7mb—&x—y—m—mm—ax—mwwst

t1
=111+ Lo — Lz + Io1 + Iag =11 + I5.
By A3,

ta oy n)?
[o1| < Lohﬁ(a)/ (ty —s) V2 R ds

t1

to
< Lgh/f(ff)/ (ty — 5)"Y2ds = ChP) (ty — t;)V/2. (4.2)

ty
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Using boundedness of o, obtain

t2 (e—y—h)?
[I22] < C/ (ty —s) 72" e ds < Oty — t1)V2.

t1
We will use below the following simple estimate.

t [e%e) 1 o)
1 r= 1 1
/ e tdr b/:z/ —e Fdz < 1{t>b}/ fdz—&—/ e “dz
o T b/t # b/t 1

t
< 1>y lng +1.
We get

to
|Ioo| = / (p(ta —s,2 —y —h) —p(ta — 5,2 — y))a(s,y)ds‘
t

A3 t2 y+h _ _
< C/ ds/ ‘M dv
ty Y

ov

(3.2) ta y+h A(w—m)?
< C ds/ (ty —s)"te™ 2 dv
t1 Y

to—t1 y+h 2
r—ty—s C1 _Aw—n)?
2 C/ dr/ rte — dv
0 Y
yth t2—t A(w—a)?
:C/ dv/ rle 77 Lijo—g|>1y dr
Y 0

y+h ta—t1 L A—m)?
dv r e T 1{|'ufz|§1} dr
0

/

(4.4) y+h to—t N

< C’/ dv/ r~te" v dr
Y 0
/

vEh ty —t
(Ltamtispoainy In oz iy do

y+h
SC’h(thtl)JrCthC/ |1n|vfx||1{|v_$|§1} dv
y

h/2
< Ch(ty — 1) +Ch+c/ |Inr|dr < Chln|h| < Ch™,
0

153

(4.4)

) yth T
Ch(tg —tl) +Ch+0/ 1{T>|vfz|2} In ml{‘v,ﬂgl} dv
Y

(4.5)

where 0 < vy < 1 is arbitrary and C' depends on ~y. (We have used that maximal

value of fyy+h |In |7[|1¢jrj<1} dv is achieved for y = —h/2).

Multiplying (4.3) and (4.5) at power 0y and 1—§y respectively, dg € (0, 1), using

(4.2), we get

|| < |[Io1| + |[Toa] < CRPO) (ty — t1)1/2 4 CRUI=00)0(1y — 1)%/2

< C(tg _ t1)60/2(h5(0) + h(l—éo)ryo).

(4.6)
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For 79 — 1—, and 1 — 69 — 1/2+ we get (1 — dg)yo > 1/2 and 6y — 1/2—.
By A3, we get

ty
111 < Lo hﬁ()/ lp(ta —s,o —y —h) —p(t1 — s, —y — h)|ds

<L hﬁ(")/ ds/

t1
(3.2) Ty 2
< ChPl /ds/ T —38) —3/2¢— - h)d

tl t2
< C’hﬁ(")/ ds/ (1 — )73 2dr < CRPO (ty — 1)1/ (4.7)
0

apT—sx y—h) ir

Further, as in (4.7), we obtain
ty
(1o — Ths| = ’/ (p(tz = s,z —y —h) —p(ty — 8,2 —y — h))o(s,y)ds
0

- /0 l(p(tz —s,x—y)—plti — 5,2 —y))o(s,y)ds

ty

A3
<C [ Ip(ta —s,x—y—h)—p(ti —s,x—y—h)lds
0

ty
+C/ Ip(ta — s, 2 —y) —p(t1 — s, —y)|ds

<C/ /Wp —y—h)

Analogously to (4.5), for any 0 < 79 < 1 we get
|Tia — Iis| < |Ii2| + |[13] < CR. (4.9)

Multiplying (4.8) and (4.9) to the power §p and 1 — §q respectively, using (4.7),
we get

|| < |In|+ T2 — Lig| < ChP@) (ta — t1)1/2 + Chi=%0)70 (t2 — t1)60/2
< C(t2 _ t1)50/2(h5(0) + h(1—50)’m)_

dr < C(ty —t1)Y2.  (4.8)

Thus,
lg(z,y + h) —q(z,y)| < C(ta — t1)50/2(h5(o) + h(l_(go),m).

Therefore,

</01 (w2<9ﬂ“))2r‘2a—1dr)1/2

1 1 1/2
gC(tz—tl)‘SO/Q(/ r2ﬂ(")_2“_1dr+/ 7‘2(1_50)"’0_20‘_1dr)
0 0

< Oty —ty)%/?

for respective 1/2 < oo < min{(1 — dg)7o, 5(0)}. As we have mentioned after (4.6),
we can take any g < 1/2.
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Also for y € R by (4.7) and (4.2)
dz)l = | [0l = 5.0 -) = plts - 5.0~ g)o(s.) ds
0

+ / plts — s, — y)o(s,y) ds| < Clts — t1)"/?,

t1

therefore
la(z, e < Clta — )2, la(z,4)| < Clta — )"/ (4.10)
From (2.1) it follows that
lla(z, ) Bg, (je.ap < Clta — 151)‘5"/2 (4.11)

for any dp < 1/2. We set v = §p/2 < 1/4, take p > 1/2 from Assumption A4, and
have

[9(t1) t2|—‘/ (z,y) duly ‘/ zydu()‘
(4,5+1]
(2. 3) (2.4)
> gz )5 + 1)
JEZL
) 1/2
+ O Nl g { D270 D AR}
JEZ n>1 1<k<2n
(4'10%(4'11) ty —t1) [Z (4,5 + 1))
JEZ
+Z{22n(1—2a) Z \u(AS;B)P}”Q}
jEZ n>1 1<k<2n
/ /
<t~ 10 [( 03+ 02l +1002) (sl + )
JEZ JEZL
; / /
H(E 2o Sl 3 k) (S n) 7,
n>1 JEZ 1<k<2n Jjez

(4.12)

2
where the sums with SMs have a kind > ;2 (fR o d,u) ,

{ou(y), 121} ={lil + D" 140 (), J €2},
{ou(v), 1= 1} ={(j| + 172" 22100 (), jE€Z, n>1, 1<k <2

From the inequalities

Z|¢z I <CA+ 7)ol +1)7% < oo,

JEL
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and Lemma 2.2 it follows that
2
Z(/ (bld,u) < 400 a. s.
— R

Thus, (4.12) implies (4.1). O

For solutions of (3.1) and (3.4), Theorem of [2] states the Holder regularity for
t € [4,T] for any ¢ > 0 (a similar result is given by Theorem [17]). But we need an
estimate of increments of the solutions for ¢ € (0,7}, and will prove the following
statement.

Lemma 4.2. Let Assumptions A1-AJ hold, and u is a solution of equation

u(t,z) = /Rp(t,f = y)uo(y) dy

+/Otds/Rp(ts,xy)f(s,y,U(s,y))dy
+/Rdu(y) /Otp(t—s,x—y)a(s,y) ds .

Then for continuous version of u, each 0 < ~ < 1/4, some C(w), and all
0<ti <to <T,x€R holds

lu(ty, ) — u(te, z)| < Clw)(lnty —Inty
+ t2 hth - tl lnt1 — (tQ - tl) ln(tg — tl) + (tg — tl)’y). (413)

Proof. Theorem [2] states that wu(f,x) has a Holder continuous version on
[0,T] x [-K, K] for each §, K > 0. Therefore, u(t,z) has a continuous version
n (0,7] x R. Also, we will take version (2.2) of ¥(x,t) from Lemma 4.1.

Let 0 < t; <ty <T. We have

(4.1)
lu(ts, z) — u(te, )| < /R Ip(t1,z —y) — p(t2, z — y)| luo(y)| dy
1 d -~ - d
+ ‘/0 S/Rp(tl S,.’E y)f(87y7u(57y)) y

—/st/p(tg—s,x—y)f(&y,u(s,y))dy + C(w)(ta — 1)
0 R
=: J1—|—J2+C(w)(t2 —tl)’y.

From definition of solution, it follows that the inequality holds a. s. for each pair
(t,z). We can say that it holds a. s. for all (t,z) € (QN (0,7]) x Q, and, by
continuity, obtain the estimate for (¢,x) € (0,77 x R.

We get
(3.2) 5 =
8p d < Ow /dy/ T 2e” Aezu dr

to
52 O / /

:C(w)/ 1d7’/7’ 2e” A dy = C(w)(Inty — Inty).

t1 R
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For Js we obtain

ty
Jzé/o ds/Rlp(tl—S,x—y)—p(tz—s,x—y)lIf(s7y7u(8,y))|dy
n / ds / plts — 5,2 — 9) | £ (5,9, u(s,9))] dy

A2 t1
gc/ d$/|pt1*5x*) p(t2 — 8,2 —y)|dy
+ C(ty —t1) =: Jo1 + C(t2 — t1).

We get
t1 to _ _
J21§0/ ds/dy/ M‘Uh—
0 R t
(3.2) ty t2 . o y)2
< C/ ds/dy/ (T—s)_%e_k(ffs) dr
0 R t1
t1 to )2
=O/ ds/ (T—S)ildT/(T—S)iée_% dy
0 t1 R
ty
= C/ (In(tz — s) — In(ty — s))ds
0
= C(tQ lnt2 — tl hltl — (tg — tl) ll'l(tz — tl)).
From our estimates of J; and Jo we arrive at (4.13). O

To estimate the difference of terms of (3.1) and (3.4), we will need the following
result.

Lemma 4.3. Let h(r,y,2) : Ry x Rx Z — R and h(y,z) : R x Z — R be
measurable for each fired z, and functions

H(Tvy’ Z) = h(’l",y, Z) - ﬁ(ya Z)’ G(Tvy’ Z) = /Or(h(vvy’ ) }_L(y7 )) dv

are bounded on Ry x R x Z. Then

(z—1)2
1 t e t-s _
sup 7‘/dy/7hss,y,z — h(y, z))ds| < 4oc.
veR,zeZ,e>0,tc(0,7) lenel g 0o Vt—s (h(s/ ) (4:2)
(4.14)

Proof. Let |H(r,y,z)| < C’H, |G(T y,2)] < Cq. At first, consider the case t > ¢,
and use the decomposition fo fo 4 ft . For the second term, we have

)2

‘/dy/ \/7 (h(s/e,y,2) = h(y, 2)) ds

(Jr y)

<C d dy =C 4.15
H// = (4.15)
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t—e .
For [, we obtain

O
€ t—

[ [ e~ b ds

(z—y)?

t—ae e
—|[a € L dG(s/e.,
[ [ cacts/e )

2
- (mt—?{s) tfé‘)
t—s 0

e
—E‘Ady(FG(S/S,y,Z)
_(z—y)? 9 _(z=p)?

_/Rd@//O_EG(S/g’y’Z)(Qf/@tibs)S_ (m—\/g/()teis);s )ds‘

a -~ _ (z—y)?
(0,y,2)=0 C e € d
< € G/i Y
R \/g

2

t=e o~ UEs x — 6_%
+5Cg/Rdy/O (2m+( \/y()t—is)f’ )ds

v=(z—y)/Vt—s
<

2
v2e?

6C+ng/0_ ds/R(Q\/?tvs)?’ + \/(t78)3>\/t—78dv

t—e
:50—1—50/ ds
0 t—s

While e < ¢t < T, we arrive at (4.14) in this case.

If 0 < t < e, we repeat the estimates from (4.15) for fot, and obtain the upper
bound Ct < Ce. O

=eC+eC(Int —1Ine).

5. Proof of the Main Result

Now we prove Theorem 3.1. We take the versions of stochastic integrals defined
by Lemma 2.3. Consider

t
& = /]Rdu(y)/ p(t—s,x—y)o(s/e,y)ds
0
t
- / du(y)/ p(t— s,z —y)o(y)ds.
R 0
In [19] it was proved that for given version of £, and any 0 < vy, < %(1 — #(U))

6] < Cw)™ a.s. (5.1)

where C'(w) depends on 7, is independent of ¢, x (see Step 1 of proof of Theo-
rem 1 [19]).
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We have
|ue(t, z) — a(t, z)]|

‘/ ds/ (t—s,2 —y)(f(s/e,y,uc(s,y)) — (s/s,y,a(&y))dy‘
+ ’/ ds/ (t—s,x—y)(f(s/e,y,u(s,y)) *f(y,ﬂ(s,y)))dy‘ +C(w)eM

= .[1 + .[2 + C )671 (52)

and for the first term obtain

. A2 t
i€ Lf/ ds/p(t—s,x—ynus(&y)—a<s,y>|dy
0 R

< Lf/ sup [z (s, ) — (s, y)|ds/p<t—s,x—y> dy
0 R

yeR

t
— Ly [ supluc(s.9) ~a(s.)|ds (5.3)
0 yeR

(from bound?dness of f and f it follows that sup,cp [uc(s,y) — (s, y)| < oo a. s.).
Consider I5. Divide [0,T] into n segments of length A = T'/n. We get that

n—1
By |f ds [ plt = 5.0~ )(F(s/z0,0(50)
(EAAE, (k+1) ANt R

k=0

— fly,u(s,y))) dy

<31 g 2 P 57 =0/

- f(S/E, Y, ﬂ(/ﬂA7 y))) dy’

+ [ ds [ plt = 5.0 = 9)(F(s/2,p.0(kD. )
(EAAE, (k+1)AAL] R

~ Fly.alkd,y)) dy

' ’/(kAMa(kJrl)A/\t] s /]Rp(t = s,z —y)(f(y, u(kA,y))
Fly, (s,y))) dy )

n—1
2k 7(k 2k
(I + I3 + I55).
k=0

From Lemma 4.3 it follows that for each 1 < k <n

i <Clelnel. (5.4)
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Consider » '~ : IQUf), where 12(1 will be estimated separately.

-5

~ (/2. ulkD, y)) dy

n—1

ds/Rpu—s,x— ([ (s/2,9,(5,9))

ANt (k+1)AAL]

<Ly ds / p(t — 5,7 — y)la(s, y) — alkA, y)| dy
R

k=0 /(kA/\f (k+1)ANt]

(4.13)
< LiCw Z/dy/ p(t—s,x—y)(lns —InkA
kANt (k+1) AAL]

+slns — kEAInkA — (s — kA)In(s — kA) + (s — kA)7)ds
+ Lf/ ds/p(t — s,z —y)|u(s,y) — u(0,y)| dy. (5.5)
(0,An]  JR
It is easy to check that the function
fr(s) =Ins —InkA+ slns — kAInkA — (s — kA)In(s — kA) + (s — kA)Y

is increasing. Therefore, fr(s) < fr((k+ 1)A) in (5.5), and we have

N - d
Z/ /kAAt(k+1)A/\t] Pt =52 —y)fu(s)ds

Z ((k+1)A / ds/p(t—s,m—y)dy
(kAAL(k+1)AA] IR

k=
n

,_.,_.

<3 fl(k+1)A)A
=1

- Z(lnk+1 —InkA)

?T'

+((k+1)An(k+1)A — kAlnkA) — AlnA + m)

(lnnA InA+nAlnnA —AlnA - (n—1)AlnA+ (n— 1)A7)

nA=

nn n—1, /T
SRR LR T(—)7 < Cn.
n n

In fé?) we need to estimate
a(t,z) —u(0,2)| = |a(t,z) — uo(x)|

]/ (1,2 = y)uo(y) dy — uo()
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t
+ ‘/ ds/Rp(t—sw—y)f(y,ﬂ(say))dy’
0
t
+ ‘/Rdu(y)/ p(t— s,z —y)a(y) dS‘ = 1) + I3} + 110,
0

55 = [ plt.r = uot dy —uota) [

p(t,w —y) dy|
R

(@—y)?

Al
< cw) / Ptz — )y — 2P dy = Clw)t 2 / Ty ]P0 gy
Z:(JC—:'!J)/\/Z C(w)t—l/Z/ e—zQZﬁ(uo)t,B(uo)—‘rl/ZdZ — C(w)t,ﬁ(uU),

R

57

t
fé?)QSC/O ds/Rp(tf x—y)dy = Ct,

. (4.1)
0 <" ow)t.

Using these estimates for ¢ < A = T/n, taking into account inequality
v < 1/4 < B(up), obtain
n—1
Z Iz(]f) < Clw)n™7.
k=0
Obviously, we can repeat our considerations and obtain the same estimates for
1 2(k)
jo L33 -
Using also (5.4), we get for each positive integer n
I, < C(w)(nlelne| +n77).
Function g(z) = z|elne| + =7, > 0 has minimum value

g(z.) = lene] O (v 4 1)y /O gl = (y/]elne])/OFD.

We have % < C, x > x, therefore there exists positive integer n, € [z, x,+1)

such that
g(n,) < Clelng[?/0O+Y),

Recall that v < 1/4 is arbitrary and v < 1/5. We can take v/(y+ 1) > v; and
obtain

Iy < C(w)e™m. (5.6)
Therefore, using (5.1), (5.2), (5.3), and (5.6), we have

t

ue(t, @) — u(t, )| < Ly / sup [ug (s, y) — (s, y)| ds + Clw)e™.
0 yeR

Taking a supremum, we conclude that

t
sup |ue(t, z) — a(t,2)| < L / sup [ue (s, y) — (s, y)| ds + C(w)e™.
z€R 0 yeR
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From the Gronwall inequality obtain

sup |ue(t, ) — a(t, z)| < C(w)e™,
z€R

where C'(w) is independent of ¢ and . Thus, we obtain (3.6).
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